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Quantitative quality assessment of microscopic image mosaicing
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Abstract—The mosaicing technique has been employed in more
and more application fields, from entertainment to scientific ones.
In the latter case, often the final evaluation is still left to human
beings, that assess visually the quality of the mosaic. Many times,
a lack of objective measurements in microscopic mosaicing may
prevent the mosaic from being used as a starting image for
further analysis.

In this work we analyze three different metrics and indexes, in
the domain of signal analysis, image analysis and visual quality,
to measure the quality of different aspects of the mosaicing
procedure, such as registration errors and visual quality. As the
case study we consider the mosaicing algorithm we developed.
The experiments have been carried out by considering mosaics
with very different features: histological samples, that are made
of detailed and contrasted images, and live stem cells, that show
a very low contrast and low detail levels.

Index Terms—mosaicing, quality assessment, microscopy, stem
cells

I. INTRODUCTION

IMAGE mosaicing is a well known technique used to
wide the (microscope) field of view by collecting and

stitching together overlapping images of the same scene. The
outcome, the mosaic, may undergo several effects from as
many causes: uneven lighting condition of the image field
of view, registration errors to compute the transformation
between images, stitching and, finally, moving objects that
mislead the feature matching algorithm. Nevertheless, the most
traditional way to evaluate the quality of microscopic image
mosaics is still based on visual evaluation of experts, or simply,
end users. For instance, the authors in [1] conceive a complex
mosaicing algorithm for automated microscopes and limited
overlapping area between images. The results, referring to
histological samples and cells, just report visual considerations
regarding evidences of misalignment and stitching. Or else,
the mosaics achieved in [2] with an automated microscope
have been visually compared with the frozen histology. A
few other works try introducing the concept of objective
assessment. This concept in [3] refers to mosaics of urban
scenes and concerns the interest points matching and the
radiometric correction processes. Besides visual evaluation,
a reconstruction error is built as the mean of the intensity
difference between two successive images on the overlapping
area. In [4], the authors build synthetic virtual slides to be
used as the ground truth about the positioning accuracy of
a stitching algorithm for virtual microscopy. Besides testing
visually the algorithm on several real world examples, the
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authors compute the positioning error mean μ and standard
deviation σ of the Euclidean distance between the supposed
and the computed translational vector.

The reason why this happens is due to the mosaics usually
not being used for measuring purposes. On the contrary, we
aim to apply to the mosaic the algorithm we have already
developed for segmentation of skin cells [5] and to devise
proper segmentation algorithms to characterize stem cells. In
this paper, we consider three well known metrics and indexes
to give measures of visible defects arising from stitching
effects, uneven illumination of the microscope field of view,
geometric misalignments. These measurements regard generic
signal analysis (Mean Square Error, MRE), image signal anal-
ysis (Peak Signal-to-Noise Ratio, PSNR) and visual analysis
(Universal Quality Index, UQI). This work is organized as
follows. Sect. II outlines the image mosaicing stages while
Sect. III gives details of their most significant sources of error.
Sect. IV describes the metrics and the indexes we use to give
measures regarding the quality of microscopic image mosaics.
Two mosaics built of histological and stem cell images are
analyzed in Sect. V and their quality measured according to
the numerical and the visual point of view. Some conclusions
are drawn in Sect. VI and some proposal for future works are
given.

II. MOSAICING: AN OUTLINE

Image mosaicing in the field of microscopy can be per-
formed in different ways, depending whether the microscope
has an automated stage holder or not. Modern automated
microscopes are usually endowed with the option of per-
forming image mosaicing by using known translations of the
motorized stage. Through this expensive option, the mosaic
is composed by stitching the images according to the known
relative positions. Otherwise, the stage holder is positioned
manually: in this case, the mosaic can be built by using
image registration techniques and exploiting a suitable overlap
between the images of the captured sequence. In any case, the
problem is twofold: aligning images from a geometric point of
view and achieving a seamless stitching even in the presence
of abrupt changes in lighting conditions within an image. The
former can be solved by a geometric registration, whereas the
latter requires a tonal registration. In order to better understand
the errors that affect the system, we first outline the mosaicing
method we adopted.

A. Registration

The registration model can be set to different kinds of trans-
formation: translative, affine and projective one, according to
the design of the image acquisition system and the geometry
of the object being imaged. In case of microscopy, due to
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the geometry of the system, the mapping between points on
two consecutive images can be reasonably achieved through a
translative model. However, in a real world scenario, yet more
in case of manual movements, the ideal translational motion
of the stage is only a simplification, since the camera principal
axis of the optical system might not be perfectly normal to the
holder’s plane. Moreover, there can be a misalignment also
between the components of the stage such that a drift along
the two moving directions might occur.

To the purpose of this work, we can assume the effects
of such misalignment as being negligible, and we choose a
pure translative model. Images are aligned by detecting and
matching features in a common overlapping region by tracking
features extracted in two consecutive acquired frames, using
a frame-to-frame (F2F) registration strategy. We have chosen
the Kanade-Lucas-Tomasi feature tracker (KLT) [6][7] since
it can achieve a high accuracy and its computational cost is
compatible with a real-time application of the method. A fast
initial guess, based on a phase-correlation approach [8], is
computed to guide the KLT tracker in case of large displace-
ments of the holder position. The phase correlation guess
is used as a coarse estimation of the holder displacements,
this granting additional benefits in terms of robustness and
performance. Once the tracker has found enough reference
points in the common region, the transformation matrix H
is estimated according to the given model by using a robust
estimator to eliminate outliers (RANSAC, [9]) and solving the
overdetermined equation system.

B. Image warping

The registration procedure is able to calculate the transfor-
mation matrix at a sub-pixel level. Accordingly, the image
warping is based on interpolation techniques. Here, we have
chosen not to use any blending mask in order to evaluate the
quality of our registration method right along the stitching
regions. Images are warped into the mosaic frame through a
bi-linear interpolation by overwriting all the transformed pixels
belonging to each image. Depending on our choice, images are
also tonally aligned by using our method described in [10][11].

III. TYPES OF ERRORS

In order to assess the quality of the resulting mosaic,
different sources of error have to be considered. Firstly, there
can be errors due to the registration algorithm, which are
purely geometric errors, due to the least square nature of the
fitting of the estimated transformation matrix, although the
outliers have been removed by RANSAC. Secondly, since we
are dealing with discrete image grids, the procedures of image
warping and stitching in the common mosaic’s reference
frame may affect the quality of the mosaic, depending on the
chosen interpolation method. Moreover, we can have errors
due to the differences in reflected light captured in subsequent
images, due to varying lighting conditions. This results in a
tonally misaligned mosaic, where the vignetting effect prevents
a seamless stitching along the overlapping regions. Lastly,
moving objects due to residue of cells or biological matter in
the medium may alter the image content in the shared region of

two subsequent images. In this case, with a blending operation
the mosaic would even undergo ghosting effects.

Table I resumes the contribution of the main errors.

Table I
THE MAIN ERRORS THAT AFFECT THE MOSAIC QUALITY.

Error description
geometric registration error due to feature tracking and model fitting

interpolation warping interpolation error due to discrete images
tonal tonal misalignment of consecutive frames

content fast moving objects (residue) may alter image content

All these errors contribute to the final quality of the generated
mosaic.

IV. ERROR METRICS

Given a Region Of Interest (ROI) R, let RI(x, y) and
RM (x, y) be the pixel values of this ROI in (x, y) in the
original image and in the corresponding part of the mosaic,
accordingly. In order to quantify the quality of final mosaic,
we have evaluated the following error metrics and indexes:

• Mean Square Error (MSE)

MSE =

∑
x

∑
y(RI(x, y)−RM (x, y))2

N
(1)

• Peak Signal to Noise Ratio (PSNR)

PSNR = 10log10
N · (max(RM )−min(RM ))2
∑

x

∑
y(RI(x, y)−RM (x, y))2

(2)

• Universal Quality Index (UQI) as defined in [12].
Also, by registering again the first image at the end of the
sequence, we can analyze the pure geometrical error. In fact,
an error-free registration would give a matrix concatenation
equal to the identity matrix. However, geometric errors will
show non null offsets of δx and δy in the translative model
matrix:

T =
n∏

i=1

Hi =

⎡

⎣
1 0 δx
0 1 δy
0 0 1

⎤

⎦

where n is the total number of images in the sequence. As
for the pure geometric registration error we have used the �2
norm of these offsets.

V. EXPERIMENTAL RESULTS

Two sequences (H9 and C9) of eight different images
taken from histological samples (I) and Mesenchimal Stem
Cells (M), respectively, have been used to build closed path
mosaics. Also, these mosaics have been built with (T) and
without (NT) tonal registration, this accounting altogether
for four evaluated mosaics. In all the generated mosaics, for
measurement purposes the first image is added again at the
end of the registration, therefore the length of the sequences
becomes of 9 images. Accordingly, we need to perform one
more registration than needed and expected. In this way, we
manage to evaluate the pure geometric registration error: since
the first image used as a reference has never been altered, the
last and the first image must coincide.
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Table II shows the error analysis using metrics and indexes
described in Sect. III, while Table III contains the registration
error. Let start by considering the sequence with histological
samples. Its high detail level permits the reader to better detect
the visual quality. Figure 1 shows the mosaic generated by the

sequence H9 without using our tonal registration algorithm.
Several reasons may yield a different illumination field over
the same sample region when it is positioned in different
parts of the microscope’s field of view. As one can see,
stitching artifacts are clearly visible. In Figure 2, the mosaic

generated by the same histological sequence H9 is shown, now
with images preprocessed by our tonal alignment algorithm.
Stitching artifacts have now been disappeared. As one can see,
the quality index UQI increases while both the errors decrease.

Table II
QUALITY METRICS AND INDEXES.

MSE PSNR UQI
H9 NT 136.11 26.32 0.976
H9 T 71.36 29.32 0.986

C9 NT 12.52 33.59 0.820
C9 T 7.52 35.80 0.871

As for the stem cells sequence, these images have very a
low contrast that is yet more evident in the printed copy. This
yields values of MSE lower than in the histological samples.
The lack of reference points makes the visual evaluation
more difficult, thus yielding lower UQI’s. Figure 3(a) shows
the mosaic generated by the sequence C9 without using our
tonal registration algorithm. In Figure 3(b), the benefit of our

(a)

(b)

with our tonal registration method (b).

tonal registration method is quite evident. Again, the values
of Table II shows the same behavior than the previously
examined couple of mosaics. The lack of details also make the
registration process harder. In fact, the stronger the reference
points or structures present in the images, the more reliable the
match found by the registration algorithm. In fact, Table III
confirms that the registration error increase of about 10% with
respect to the histological samples. In general, these metrics
and indexes permit to quantify the diverse improvement intro-
duced in the mosaic algorithm. Accordingly, we can notice that
in percentage the best improvement carried out by our tonal
registration is for UQI with stem cells (7̃%), while it is for
PSNR (1̃1%) and MSE (-̃48%) with the histological section.

As a concluding remark as far as our mosaicing algorithm
is concerned, we can state that all the mosaics present better
values when generated by using our tonal alignment method
and that our registration algorithm always yields geometric
error keeping below half a pixel, this resulting in a very good
geometric alignment.

VI. CONCLUSIONS

This work analyzes the effectiveness of three well known
metrics and indexes to measure the quality of microscopic
image mosaics. Using our mosaicing algorithm as a case

Fig. 1. Mosaic for the sequence H9 NT, without tonal registration.

Fig. 2. Mosaic for the sequence H9 T, with tonal registration.

Fig. 3. Mosaic built with sequence C9, without tonal registration (a) and
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Table III
GEOMETRIC ERRORS.

Geometric error (pixel)
H9 0.31
C9 0.43

study, we come to prove and quantify some general statements.
Images with a higher gradient magnitude and a better defined
contrast, like the histological ones, show a high UQI while
permitting a better sub-pixel alignment than low-contrast im-
ages, like those depicting stem-cells. Nevertheless, a lower
misalignment error can yield higher errors and a lower peak
SNR.

We are now working towards the definition of indexes and
metrics that are as much independent as possible from the
pixel values. In this way, besides achieving reliable differential
measures of mosaics of the same scene build using different
methods, these metrics will become a standardize method for
measuring quality of images with different global photometric
features.
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