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 
Abstract—Face recognition is a technique to automatically 

identify or verify individuals. It receives great attention in 
identification, authentication, security and many more applications. 
Diverse methods had been proposed for this purpose and also a lot of 
comparative studies were performed. However, researchers could not 
reach unified conclusion. In this paper, we are reporting an extensive 
quantitative accuracy analysis of four most widely used face 
recognition algorithms: Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), Linear Discriminant 
Analysis (LDA) and Support Vector Machine (SVM) using AT&T, 
Sheffield and Bangladeshi people face databases under diverse 
situations such as illumination, alignment and pose variations. 
 

Keywords—PCA, ICA, LDA, SVM, face recognition, noise.  

I. INTRODUCTION 

DENTIFICATION of human from face images is very 
necessary as it is very easy to convey identity and emotion. 

Still human identification is not completely perfect in various 
situations such as scale, orientation, illumination, emotion, and 
noise variations [1]. A good number of methods had been 
proposed for this purpose and also a lot of comparative studies 
were performed by the researchers to evaluate the best 
algorithm for recognition [2]-[8]. But it is interesting that there 
are often contradictory and confusing claims being made in 
these comparisons. For example, Bartlett et al [9] and Liu et 
al. [10] state that Independent Component Analysis (ICA) 
outperforms Principal Component Analysis (PCA), while 
Baek et al. [11] state that PCA is better. But Moghaddam [12] 
states that there is no significant difference. Beveridge et al. 
[13] states that Linear Discriminant Analysis (LDA) 
performed worse than PCA, Martinez [14] states that LDA is 
better for some tasks, Belhumeur et al. [15] and Navarrete et 
al. [8] state that LDA outperforms PCA. Becker et al [16] 
states that Support Vector Machine (SVM) performs well 
compared to above-mentioned algorithms. All these 
conclusions hold a good degree of truth, but different factors 
surrounding each conclusion i.e. the actual task statement, the 
subspace distance metrics, dimensionality retention and the 
non-standardized database choices etc. Hence these produced 
too much debate and confusion over the years, particularly for 
an individual who is new in the field of face or object 
recognition and who seeks a good comparative understanding 
of the available techniques. This paper tries to remove these 
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contradictions through an extensive experimentation. Four 
most widely used methods such as PCA, ICA, LDA, SVM are 
taken into consideration.  

The remainder of the paper is organized as follows. The 
recognition methodologies are described in Section II. Section 
III contains the experimental results and discussions. Finally 
conclusions are drawn in Section IV. 

II. RECOGNITION METHODS 

A generic schematic flow diagram of a face recognition 
algorithm is shown in Fig. 1.  
 

 

Fig. 1 Schematic diagram of face recognition 
 

A brief explanation of the investigated face recognition 
algorithms is given below. 

A. Principal Component Analysis (PCA)  

PCA [8] is one of the oldest face recognition methods. It 
finds t-dimensional subspace from an n-dimensional vector of 
each face in a training set of M images, where t < n. The 
dimensionality reduction is based on the basis vectors 
correspond to the maximum variance direction in the original 
image space. All the images of known (training) faces are 
projected onto the face space to find a set of weights that 
describes the contribution of each vector. To identify an 
unknown (test) face, it is projected onto the face space to 
obtain its set of weights. By comparing set of weights for the 
unknown face to set of weights of known face, the face is 
identified. The PCA basis vectors are defined as eigenvectors 
of the scatter matrix ST defined as: 

 

ST ൌ ∑ ሺݔ௜ െ  μሻெ
௞ୀ଴ ሺݔ௜ െ  μሻ்               (1) 

 
where µ is the mean of all faces of the training set and xi is the 
i-th face. 

B. Independent Component Analysis (ICA) 

Independent component analysis [9] is a technique to find a 
linear transform for the input data using a basis as statistically 
independent as possible. Hence, ICA can be considered as a 
special case of PCA. 
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