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Abstract—In determining the electromagnetic properties of 

magnetic materials, hysteresis modeling is of high importance. Many 
models are available to investigate those characteristics but they tend 
to be complex and difficult to implement. In this paper a new 
qualitative hysteresis model for ferromagnetic core is presented, 
based on the function approximation capabilities of adaptive neuro 
fuzzy inference system (ANFIS). The proposed ANFIS model 
combined the neural network adaptive capabilities and the fuzzy 
logic qualitative approach can restored the hysteresis curve with a 
little RMS error. The model accuracy is good and can be easily 
adapted to the requirements of the application by extending or 
reducing the network training set and thus the required amount of 
measurement data. 

 
Keywords—ANFIS modeling technique, magnetic hysteresis, 

Jiles-Atherton model, ferromagnetic core. 
 

I. INTRODUCTION 

NALYSIS of electrical machines requires a 
computationally efficient hysteresis model describing the 

nonlinear relation between the magnetic induction and the 
magnetic field strength in the ferromagnetic core of the 
machine. However, there exist many approaches to develop a 
mathematical model to describe the hysteretic relationship 
between the magnetization M and the magnetic field H. the 
first approach was the hysteresis model of Preisach invented in 
the 1935[1] and the second is the Jiles-Atherton (JA) model 
[2]. Artificial intelligence has also been applied to the 
modeling of magnetic hysteresis and parameters identification 
of these models such as neural network and genetic algorithm 
[3]-[13]. Like neural networks, fuzzy logic can be 
conveniently used to approximate any arbitrary functions [14-
16]. Neural networks can learn from data, but knowledge 
learned can be difficult to understand. Models based on fuzzy 
logic are easy to understand, but they do not have learning 
algorithms; learning has to be adapted from other 
technologies. A Neuro-Fuzzy model can be defined as a model 
built using a combination of fuzzy logic and neural networks. 
Recently, there has been a remarkable advance in the 
development of Neuro-Fuzzy models, as it is described in [17-
19]. One of the most popular and well documented Neuro-  
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Fuzzy systems are ANFIS, which has a good software 
support [20]. Jang [21-23] present the ANFIS architecture and 
application examples in modeling a nonlinear function, 
dynamic system identification and a chaotic time series 
prediction. Given its potential in building fuzzy models with 
good prediction capabilities, the ANFIS architecture was 
chosen for modeling magnetic hysteresis in this work. In the 
following sections information is given about adaptive Neuro-
Fuzzy modeling, the JA model for magnetic material testing 
system, the selection of ways to modeling the hysteresis 
phenomena with Neuro-Fuzzy modeling, results and 
conclusions. 
 

II. JILES-ATHERTON HYSTERESIS MODEL 

A. Formulation 

The Jiles-Atherton model is a physically based model that 
includes the different mechanisms that take place at 
magnetization of a ferromagnetic material. The 
magnetization M is represented as the sum of the irreversible 
magnetization Mirr due to domain wall displacement and the 
reversible magnetization Mrev due to domain wall bending 
[2]. The rate of change of the irreversible part of the 
magnetization is given by. 
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The anhysteretic magnetization Man in (1) follows the 
Langevin function [3], which is a nonlinear function of the 
effective field: 
 

He=H+αM                                      (2) 
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The rate of change of the reversible component is proportional 
to the rate of the difference between the hysteretic component 
and the total magnetization [4]. Consequently, the differential 
of the reversible magnetization is: 
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Combining the irreversible and reversible components of 
magnetization, the differential equation for the rate of change 
of the total magnetization is given by: 
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Before using the J-A model, five parameters must be 
determined: 
● α:  a mean field parameter defining the magnetic coupling 
between domains in the material, and is required to calculate 
the effective magnetic field, He (2) composed by the applied 
external field and the internal magnetization. 
● Ms: magnetic saturation 
● a : langevin parameter 
These two parameters defined a Langevin function needed in 
the equation describing anhysteretic curve.  
● k: parameter defining the pinning site density of domain 
walls. It is assumed to be the major contribution to hysteresis. 
●c: parameter defining the amount of reversible magnetization 
due to wall bowing and reversal rotation, included in the 
magnetization process. 
 
δ is a directional parameter and takes  +1 for increasing field 
(dH/dt>0) and -1 for decreasing field (dH/dt<0). 
 

B. Parameter Identification      

1.  Anhysteretic Susceptibility 
The anhysteretic susceptibility at the origin, can be used to 

define a relationship between Ms, a and α 
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2.  Initial Susceptibility    
The reversible magnetization component is expressed via 

the parameter c in the hysteresis equation (4) defined by: 
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3.  Coercivity   
The hysteresis loss parameter k can be determined from the 

coercivity Hc and the differential susceptibility at the coercive 
point χan (Hc). 
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4.  Remanence   
The coupling parameter α can be determined independently 

if is known by using the remanence magnetization Mr and the 
differential susceptibility at remanence. 
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III. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 
An adaptive Neuro-Fuzzy inference system is a cross 

between an artificial neural network and a fuzzy inference 
system. An artificial neural network is designed to mimic the 
characteristics of the human brain and consists of a collection 
of artificial neurons. An adaptive network is a multi-layer 
feed-forward network in which each node (neuron) performs a 
particular function on incoming signals. The form of the node 
functions may vary from node to node. In an adaptive 
network, there are two types of nodes: adaptive and fixed. The 
function and the grouping of the neurons are dependent on the 
overall function of the network. . Based on the ability of an 
ANFIS to learn from training data, it is possible to create an 
ANFIS structure from an extremely limited mathematical 
representation of the system. 
 

A.  Architecture of ANFIS     
The ANFIS is a fuzzy Sugeno model put in the framework 

of adaptive systems to facilitate learning and adaptation [18]. 
Such framework makes the ANFIS modeling more systematic 
and less reliant on expert knowledge. To present the ANFIS 
architecture, we suppose that there are two input linguistic 
variables (x, y) and each variable has two fuzzy sets (A1, A2) 
and ( B1,B2) as is indicated in fig.1, in which a circle indicates 
a fixed node, whereas a square indicates an adaptive node. 
Then a Takagi-Sugeno-type fuzzy if-then rule could be set up 
as: 
Rule i: If (x is Ai) and (y is Bi) then (fi = pix + qiy + ri) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 ANFIS architecture 

x 
1ω  1ω  

2ω  2ω  
22. fω  

11. fω  x 

y 

y 

y 

x 

A1 

A2 

B1 

B2 

M 

M 

N 

N 

f  
S 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:12, 2007

587

fi are the outputs within the fuzzy region specified by the fuzzy 
rule. pi, qi and ri are the design parameters that are determined 
during the training process.  
Some layers of ANFIS have the same number of nodes, and 
nodes in the same layer have similar functions. Output of 
nodes in layer-l is denoted as 1

iO , where l is the layer number 
and i is neuron number of the next layer. The function of each 
layer is described as follows: 
 
• Layer 1:  In this layer, all the nodes are adaptive nodes. The 
outputs of layer 1 are the fuzzy membership grade of the 
inputs, which are given by: 
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where ai, bi and ci are the parameters of the membership 
function, governing the bell shaped functions accordingly.  
 
• Layer 2: Each node computes the firing strengths of the 
associated rules. The output of nodes in this layer can be 
presented as: 
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• Layer 3: In this third layer, the nodes are also fixed nodes. 
They play a normalization role to the firing strengths from the 
previous layer. The outputs of this layer can be represented as: 
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which are the so-called normalized firing levels. 
 
• Layer 4: The output of each adaptive node in this layer is 
simply the product of the normalized firing level and a first 
order polynomial (for a first order Sugeno model). Thus, the 
outputs of this layer are given by: 
 

( ) 2,14 =++== iryqxpfO iiiiiii ωω        (16) 
 
• Layer 5: Finally, layer five, consisting of circle node labeled 
with S. is the summation of all incoming signals. Hence , the 
overall output of the model is given by: 
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From the architecture of ANFIS, we can observe that there are 
two adaptive layers the first and the fourth. In the first layer, 
there are three modifiable parameters {ai, bi, ci}, which are 
related to the input membership functions. These parameters 
are the so-called premise parameters. In the fourth layer, there 
are also three modifiable parameters {pi,qi,ri}, pertaining to 
the first order polynomial. These parameters are so-called 
consequent parameters [21-22]. 
 

B. Learning Algorithm of ANFIS  
The task of training algorithm for this architecture is tuning 

all the modifiable parameters to make the ANFIS output 
match the training data. Note here that ai, bi and ci describe 
the sigma, slope and the center of the bell MF’s, respectively. 
If these parameters are fixed, the output of the network 
becomes: 
 

 2
21

2
1

21

1 fff
ωω

ω
ωω

ω
+

+
+

=              (18) 

 
Substituting Eq. (15) into Eq. (18) yields: 
 

2211 fff ωω +=                                (19) 
 
Substituting the fuzzy if-then rules into equation (19), it 
becomes: 
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After rearrangement, the output can be expressed as: 
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This is a linear combination of the modifiable parameters. For 
this observation, we can divide the parameter set S into two 
sets: 
 
S=S1⊕  S2 
S=set of total parameters,  
S1=set of premise (nonlinear) parameters,  
S2=set of consequent (linear) parameters  
⊕  : Direct sum 
 
For the forward path (see Fig 1), we can apply least square 
method to identify the consequent parameters. Now for a 
given set of values of S1, we can plug training data and obtain 
a matrix equation: 
 

yA =Θ                                    (22) 
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where Θ contains the unknown parameters in S2. This is a 
linear square problem, and the solution for Θ, which is 
minimizes yA =Θ , is the least square estimator: 
 

( ) yAAA TT 1−∗ =Θ                             (23) 
 
we can use also recursive least square estimator in case of on-
line training. For the backward path (see Fig. 1), the error 
signals propagate backward. The premise parameters are 
updated by descent method, through minimising the overall 
quadratic cost function 

( ) [ ]∑
=

Θ−=Θ
N

N

kykyJ
1

2),()(
2
1

               (24) 

in a recursive manner with respect Θ(S2). The update of the 
parameters in the ith node in layer Lth layer can be written as: 
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where η is the learning rate and the gradient vector 
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iLz ,ˆ∂  being the node’s output and iL,ε  is the backpropagated 
error signal. Fig. 2 presents the ANFIS training algorithm for 
adjusting production rules parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 ANFIS training algorithm for adjusting production rules 
parameters 

IV.  APPROXIMATING MAGNETIC HYSTERESIS  

A. Simulation 
The differential equation (5), which in its original form has 

derivatives with respect to H , was reformulated into a 
differential equation in time by multiplying the left and the 
right sides by dtdH , thus resulting in: 
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This reformulation allows for the determination of 
magnetization by use of Runge Kutta method in Matlab 
environment. 

To calculate the magnetic flux density B from M and H, the 
following constitutive law of the magnetic material property is 
used. 
 

( )MHHHB r +=== 00. μμμμ                    (28)   
 
Where μ0=4.π.10-7 (H/m) is the permeability of free space and 
μr is the relative permeability. 

The B(H) curve result of simulation of the Jiles-Atherton 
model will be used as ‘experimental data’ to be approximate 
by proposed Neuro-Fuzzy model. 
 

B. Proposed Model  
In this section, the learning ability of ANFIS is verified by 

approximating a hysteresis of magnetic material. The data set 
used as input/output pairs for Anfis was generated by Jiles 
Atherton model for ferrite core described in [24] with 
sinusoidal magnetic field as an input H(t) and magnetic field 
B(t) as output Fig. (3a & b).  
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(b) 

Fig. 3 a- Normalized magnetic field and magnetic versus time b- 
Normalized magnetic induction versus time 

 
Our purpose is to predict the magnetic hysteresis cycles 

using 12 candidate inputs to ANFIS:  B(t-i) for i=1 :5, and 
H(t-j) for j=1 :7. Converted from the original data sets 
containing 353 [H(t) B(t)]  pairs. 

In the first time, we suppose that there are two inputs for 
ANFIS and we have to construct 35 ANFIS models (5x7) with 
various input combinations, and then select the one with the 
smallest training error for further parameter-level fine tuning. 
In table.I we can see that the ANFIS with B4 and H1 (in red) 
as inputs has the smallest training error, so it is reasonable to 
choose this ANFIS for further parameter tuning. Note that 
each ANFIS has four rules, and the training took only one 
epoch each to identify linear parameters. Let us note that the 
computing time for selecting the good model is 3.6250s. 
 
 

TABLE I 
TRAINING AND CHECKING ERROR FOR ALL MODELS 

Model Training error Checking error 
B1 H1 0.00003501930205 0.00005237387113 
B1 H2 0.01007440714157 0.00800225277619 
B1 H3 0.01752470640605 0.01198431179800 
B1 H4 0.02426970100209 0.01536326214534 
B1 H5 0.03081731046969 0.01927371816614 
B1 H6 0.03748876601555 0.02457067414985 
B1 H7 0.04436386215981 0.03166533456145 
B2 H1 0.00003762707899 0.00004451505598 
B2 H2 0.01376365775729 0.01540601381771 
B2 H3 0.01934001717874 0.01439440856647 
B2 H4 0.02538261513892 0.01671041089325 
B2 H5 0.03139732428427 0.02005410243223 
B2 H6 0.03756279016798 0.02477985332016 
B2 H7 0.04401096250169 0.03141151576432 
B3 H1 0.00003246300868 0.00003736685372 
B3 H2 0.01067960934829 0.01890881385189 
B3 H3 0.02674500025744 0.02918359625911 
B3 H4 0.02785874502310 0.01994937304432 
B3 H5 0.03281732981992 0.02186208656381 
B3 H6 0.03831184619918 0.02609472281251 
B3 H7 0.04411128584929 0.03227491110643 
B4 H1 0.00002571202168 0.00003254290855 
B4 H2 0.00948091974762 0.01022982236350 
B4 H3 0.02157909185014 0.03958605040899 
B4 H4 0.03886365068660 0.04253883911318 
B4 H5 0.03576665521093 0.02568298961189 
B4 H6 0.04004473971704 0.02826405796018 
B4 H7 0.04507868818210 0.03399955457224 
B5 H1 0.00003396289474 0.00003924291522 
B5 H2 0.00910245284031 0.00666069608720 

B5 H3 0.01676944380416 0.01102022047559 
B5 H4 0.02386189227013 0.01483177779224 
B5 H5 0.03077981552004 0.01932591344086 
B5 H6 0.03774316641094 0.02536369036347 
B5 H7 0.04473822577434 0.03453095956642 

 
After selection of the good and adapted model, we made train 
the network 100 epochs, for this purpose we have used 173 
pairs as training data and 173 pairs for checking, shown in Fig. 
3.  
 

 
Fig. 4 Data distribution 

 
The number of MFs assigned to each input of the ANFIS was 
set to two bell type, so the number of rules is 04. The training 
was run for 100 iterations, the network performance were 
evaluated on the checking set after every iteration, by 
calculating the root-mean-square errors (RMSE): 
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Where k is the pattern number, k=1,…K. The RMSE was also 
evaluated on training data set in every iteration. The optimal 
number of iteration was obtained when checking RMSE has 
reached its minimum value 0.0069 after 11 epochs. See Fig. 5. 
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Fig. 5 Error curves 
 

Fig. 6 depicts the initial and final membership functions for 
each input variable. The anfis used here contains a total of 24. 
Fitting parameters of which 12  are presmise (nonlinear) 
parameters and 12 are consequent (linear) parameters. Table II 
summarize all characteristics of the network used. 
 
 
 
 
 
 
 
 

(a) Initial and final MFs on x 
 
 
 
 
 
 
 
 
 
 

(b) Initial and final MFs on y 
 
Fig. 6 Initial and  final generalized bell-shaped membership function 

of input 1 and 2 for the Best model 
 
 

TABLE II 
ANFIS CARACTERISTICS 

Number of nodes 21 
Number of linear parameters 12 
Number of nonlinear parameters 12 
Total number of parameters 24 
Number of training data pairs 173 
Number of checking data pairs 173 
Number of fuzzy rules 04 

 
The ANFIS shown in Fig.1 was implemented by using 

MATLAB software package ( MATLAB version 6.5 with 

fuzzy logic toolbox), it uses 346 training data in 100 training 
periods and the step size for parameter adaptation had an 
initial value of 0.1. The steps of parameter adaptation of the 
ANFIS are shown in Fig. 7.  
 

 
 

Fig. 7 Adaptation of parameter steps of ANFIS 
 
The obtained ANFIS network was evaluated on, the complete 
data set using Ts=0.76 s and resulted in a good prediction (Fig. 
8) with RMSE= 0.0026. 
 

 
 

Fig. 8 Hysteresis curves 

V. CONCLUSION 
We have successfully developed, implemented and tested a 

neurofuzzy system for predicting the magnetic hysteresis of 
ferromagnetic core. It is clear that the system output closely 
approximates the required hysteresis output by Jiles-Atherton 
model.  

The proposed model is an alternative and less complicated 
approach in determining the magnetic properties of 
ferromagnetic materials with good accuracy. The collection of 
well-distributed, sufficient, and accurately measured input data 
is the basic requirement to obtain an accurate model. The 
adequate functioning of ANFIS depends on the sizes of the 
training set and test set. Simulation result revealed that neuro-
fuzzy model was capable of closely reproducing the optimal 
performance. In the future studies, we will incorporate this 
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model on the finite element procedure for modeling 
electromagnetic devices. 
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