
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1167

Abstract—The talks about technological convergence had been

around for almost twenty years. Today Internet made it possible. And
this is not only technical evolution. The way it changed our lives
reflected in variety of applications, services and technologies used in
day-to-day life. Such benefits imposed even more requirements on
heterogeneous and unreliable IP networks.

 Current paper outlines QoS management system developed in the
NetQoS [1] project. It describes an overall architecture of
management system for heterogeneous networks and proposes
automated multi-layer QoS management. Paper focuses on the
structure of the most crucial modules of the system that enable
autonomous and multi-layer provisioning and dynamic adaptation.

Keywords—Automated QoS management, multi-layer
provisioning and adaptation, QoS, QoE.

I. INTRODUCTION
HE incremental and any-purpose usage of Internet
resulted in uncontrollable and degraded performance,

revealing need for reasonable utilization of network resources.
The more heterogeneous and complex the network becomes
the more sophisticated solutions it requires to satisfy the QoS.
Network operators are facing great challenges of diversified
and heterogeneous structure of Future Internet in attempts to
provide capable QoS mechanisms and technologies.

The solution can be found in the open and flexible system
which would reflect preferences of all participants. Moreover
the system should be automated and responsive to changes by
dynamically adjusting the network parameters in case of
violations.

The main requirements to the architecture of such system
would be:

 System heterogeneity and complexity should be
transparent to user and all preferences have to be
effectively expressed and stored.

 It should be as ubiquitous and modular as possible
 It should possess easily extensible and pluggable

structure.

Manuscript received March 30, 2008. The NetQoS Project has received

funding from European Commission.
S. Rao and S. Khavtasi are with Telscom AG, Sandrainstrasse 17, Bern

3007, Switzerland (e-mail: {rao, sophia}@telscom.ch).
C. Chassot, N. Van Wambeke and F. Armando are with LAAS/CNRS;

Université de Toulouse ; 7 Avenue du Colonel Roche, F-31077 Toulouse,
France (e-mail: {chassot, van.wambeke,armando}@laas.fr).

S. P.Romano and T. Castaldi are with Universita' di Napoli Federico II
Computer Science Department (e-mail: {spromano, tobia.castaldi@unina.it).

The main requirements to the functioning of such
management system can be formulated as follows:

 Provision of necessary QoS to a particular
applications based on the actors policies

 Dynamic adaptation in case of violations based on
actors’ preferences and/or policies.

II. BEYOND THE STATE-OF–THE-ART
There has been extensive research and development on QoS

support within each layer of ISO stack. In the context of
complexity of modern networks it often appears that one
particular QoS technique is not sufficient for the desired QoE.
Moreover, the conventional solutions are not flexible and
responsive to changes – therefore they are not dynamic and
adaptive. The NetQoS project advances the state-of-the art by
bringing together multi-layer QoS approach and automated
QoS provisioning and adaptation.

Fig. 1 Architecture of NetQoS system

Fig. 1 illustrates simplified NetQoS architecture with its
main modules: Actor Preference Manager (APM),
Monitoring and Measurement (MOME), Policy Description
Manager (POLD), Policy repository (REPO) and Automated
Policy Adaptor (APA).

APA acts as the central entity of the system. It does not
provide QoS by itself, but is aimed at providing and
dispatching operational network and/or transport level policies

QoS Management in the Future Internet
S. Rao, S. Khavtasi, C. Chassot, N. Van Wambeke, F. Armando, S. P. Romano, and T. Castaldi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1168

that help the QoS-oriented communication system to take into
account the dynamic policies expressed by actors. The APA
derives a set of operational policies, enforces them and
updates them as needed when the system evolves. MOME
contains all the monitoring and measurement activities
associated with the management of the context evolution
(actors policies evolving, end system/network resource
changing), the evaluation of the operational policy efficiency
and the reporting of quality information.

POLD represents a set of ontologies used to specify the
actors' level policies, the operational policies, etc. The APM is
aimed at providing service to users (or external actors) with a
GUI/API allowing them to define actor-level dynamic policies
for the system based on ontologies. These policies
(requirements, preferences, profile, quality reporting) may be
expressed before or during the communication with system
and are stored in REPO [2].

The NetQoS system targets autonomous policy-based QoS
management for heterogeneous networks. As such, it is
necessary that the components are capable to autonomously
manage the network by handling actors’ requests and reacting
to all possible events. Hence, the need arises of a component
that coordinates all the others. In the NetQoS architecture such
a coordinating component is denoted as the Context Manager
(CM) – part of MOME module. The Context Manager is in
charge of identifying the “context”, i.e. the operational status
of the system and all the relevant events. In case an event that
requests actions from other components occurs, the Context
Manager must become aware of it and notify the appropriate
components.

Depending on the event, different modules of NetQoS
system are animated. Fig. 2 illustrates working principle of
CM.

Fig. 2 Working principle of CM

Therefore, the Context manager acts as the main

Publication/Subscription mechanism of the system. It
represents a mediator which is spinning the events from
Publisher to Subscriber, where Publisher/Subscriber can be
any module of the system.

The examples of events that the Context Manager has to be
aware of are the launch of an application, the violation of a
policy, the addition of new policies, etc. Under this

perspective the CM helps the system to become autonomic,
since it provides it with the following properties:

 Automatic: this essentially means being able to self-
control its internal functions and operations. An
autonomic system must in fact be self-contained and able
to operate without any external intervention

 Adaptive: an autonomic system must be able to change
its operation. This allows the system to cope with
temporal and spatial changes in its operational context

 Aware: an autonomic system must be able to monitor its
operational context as well as its internal state in order to
be able to assess if its current operation serves its
purpose. Awareness controls adaptation of its operational
behavior in response to situation or state changes.

The CM is a crucial component in the overall NetQoS
architecture, since it allows correct operation of the
framework through proper connection of the various
components taking part in the dynamic network
configuration/adaptation cycle. The CM makes it possible to
let such interactions be based on an asynchronous paradigm,
thus improving the flexibility of the NetQoS solution and
providing good scalability.

III. MULTI-LAYER PROVISIONING AND ADAPTATION
The objective of the policy-based networking paradigm is

to enable a formulation of operational goals on the level that is
more generic and abstract than the low level configurations
understood by networking devices. These operational goals
are often related to the performance indicators of the network.
The autonomous management dictates that the system must be
able to automatically evaluate whether the performance goals
– as specified in policies – are met. It is therefore required to
map these performance related policies into specifications for
monitoring and measurement activities that can then be
executed by the MOME. Among other reasons, the violation
of performance goals should trigger an adaptation of the
autonomous system. This requires a component that is
capable of dynamically adapting policies: the Automated
Policy Adaptor (APA).

The APA acts as the central engine which performs the
automated policy adaptation process, i.e. to define, adapt and
enforce the operational policies at one or several layers of the
QoS stack (e.g. Network or Transport layers). These policies
define the services to be composed with the aim to satisfy the
policy objectives expressed in terms of QoS goals (delay,
bandwidth, etc).

These functions are performed by the Policy Decision
Manager (PDM), the Policy Adaptation Manager (PAM) and
the Policy Enforcement Manager (PEM) (Fig.3):

 PDM’s decisions act on the services architecture to be
applied by the managed entities; for instance, to satisfy
the QoS goals for a given application, which are
supposed to be expressed in terms of variable delay and
partial reliability, the PDM may decide to select a
partially reliable service at the Transport level on top of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1169

an AF-based differentiated service at the IP level.
 PAM’s decisions act on the value of the parameters of

the services selected by the PDM; for instance, the PAM
may decide to modify the value of the loss rate to be
reached by the partially reliable Transport service,
depending on the effective QoS provided by the AF-
based IP service.

 PEM is in charge of dispatching these decisions toward
Agents that allow interfacing the APA with the managed
entities, typically border routers at the Network level or
Transport entities on the end hosts at the Transport level.
The goal of the Agent is to convert PDM and PAM
generic decisions into specific decisions that depend on
the managed entities [3].

Fig. 3 Architecture of APA

A. PDM
The class diagram of the PDM is given in Fig. 4.
Basically, the PDM is divided into three active parts that it

creates when it is launched (i.e. at the start of the system).
 PDMNotificationManager processes the notification

events coming from the CM and retrieves the
corresponding policy(ies) from the REPO;

 PDMWorkerManager processes the needed provisioning
decision at one or several levels (with the help of the
adequate PolicyDecisioners);

 PDMDispatcher processes the interactions with the
PEM(s) to make it enforced the policy, and stores it in a
local repository (Op_REPO). It also sets to Active the
policy in the REPO.

PDM Internal Components
PDMNotificationManager. The PDMNotificationManager

processes the notification events for which it has subscribed to
(e.g. launch of a new application). Whenever a notification
event occurs, it gets the corresponding policy(ies) to be
processed, stores it(them) in a local database and invokes the
processDecision(Policy) method of the PDMWorkerManager.

package APA PDM Classes {4/5}

PDMNotificationManager

+ notificationReceived(LaunchEvent)

PDMWorkerManager

+ processDecision(Policy)

PDMDispatcher

+ dispatch(OpPolicy)

PDM

part decisioners : IPolicyDecisioner[1 .. *]
shared nm : PDMNotificationManager[1]
shared pwm : PDMWorkerManager[1 .. *]
shared pdispatcher : PDMDispatcher[1]

nm1

nm1

pwm1..*

pwm1..*

pdispatcher1

pdispatcher1

Fig. 4 Class Diagram of the PDM internal components

PDMWorkerManager. When it is asked to process a

decision, the PDMWorkerManager invokes the
takeDecision(OpPolicy) : OpPolicy method of the adequate
Decisioner(s), either at a single level or at several levels
successively from the lowest to the highest one.

To perform this task, the PDMWorkerManager makes use
and coordinates one or several PDMWorkers, whose number
may be defined depending on the criteria such as the
maximum number of policies to be processed in the same
period. This distribution of the work is aimed at allowing the
test of different configurations in front of scalability issues
related (for instance) to the number of application launches
that could occur during the same period. Once retrieved the
operational policy to be applied at one or several levels, a
PDMWorker invokes the dispatch(OpPolicy) method of the
PDMDispatcher (described here after).

<<interface>>

IPolicyDecisioner

+ takeDecision(OpPolicy) : OpPolicy

TDecisioner

NDecisioner

Fig. 5 Class diagram of the Decisioners at Network and Transport

levels

Decisioner[i]. Decisioner contains the provisioning logic

for the level i. Its API offers a single method (called
takeDecicion(OpPolicy): OpPolicy) which returns the
operational policy to be applied at the considered level i. As

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1170

an input, this method takes the operational policy that has
been defined at level i-1.

As an example, next Fig. 5 illustrates the instantiation of
two Decisioners, one at the Network level, one at the
Transport level.

PDMDispatcher. When it is invoked by a PDMWorker, the
PDMDispacher invokes the enforcePolicy(OpPolicy) method
of the PEM, then it stores the operational policy in a local
repository (Op_REPO). It also sets to active the policy in the
REPO.

B. PAM
The class diagram of the PAM is given on Fig. 6.

package APA PAM Classes {5/5}

PAM

PAMNotificationManager

+ notificationReceived(PolViolationEvent)

PAMWorkerManager

+ processDecision(OpPolicy)

PAMDispatcher

+ dispatch(OpPolicy)

nm1

nm1

pwm

pwm

pdispatcher

pdispatcher

Fig. 6 Class Diagram of the PAM internal components

Similarly to the PDM, the PAM is basically divided into

three active parts that it creates when it is launched (i.e. at the
start of the system):

 PAMNotificationManager processes the notification
events coming from the CM and retrieves the
corresponding (intermediate) policy(ies) and operational
policies;

 PAMWorkerManager processes the needed adaptation
decisions at one or several levels (with the help of the
adequate PolicyAdapters);

 PAMDispacher processes the interactions with the
PEM(s) and makes it to enforce the adapted policy.

PAM Internal Components
PAMNotificationManager. The PAMNotificationManager

processes the notification events for which it has subscribed
(e.g. a policy violation). Whenever a notification event occurs,
it gets the corresponding intermediate policy(ies) and
operational policy to be considered and adapted, stores them
in a local database and invokes the
processDecision(OpPolicy) method of the
PAMWorkerManager.

PAMWorkerManager. When it is asked to process an
adaptation, the PAMWorkerManager invokes the
adaptPolicy(OpPolicy) : boolean method of the adequate
Adapter(s), either at a single level or at several levels
successively from the lowest to the highest one.

Similarly to the PDMWorkerManager, to perform this task,
the PAMWorkerManager makes use and coordinates one or
several PAMWorkers, whose number may be defined
depending on the criteria such as the maximum number of

policies to be adapted in the same period. If the result of the
adaptation is positive, the PAMWorkerManager invokes the
dispatch(OpPolicy) method of the PAMDispatcher. If the
adaptation is not possible, the PDM is informed by an alarm
that a re-provisioning as to be done.

Adapter[i]. Adapter[i] contains the adaptation logic for
level i. Its API offers a single method (called
adaptPolicy(OpPolicy) : boolean) which returns if the
adaptation has succeeded.

As an example, next Fig. 7 illustrates the instantiation of
two Decisioners, one at the Network level, one at the
Transport level.

<<interface>>

IPolicyAdapter

+ adaptPolicy(OpPolicy) : Boolean

TAdapter

NAdapter

Fig. 7 Class diagram of the Decisioners at Network and Transport

levels

PAMDispatcher. When it is invoked by a PAMWorker, the
PAMDispacher invokes the enforce(OpPolicy) method of the
PEM, then it stores the operational policy in a local repository
(Op_REPO).

C. PEM
The class diagram of the PEM is given on Figure 8. The

Policy Enforcement Manager is responsible for contacting the
required Agent component once the operational policy to be
enforced has been defined by the PDM or PAM.

package APA PEM Classes {6/6}

PEM

+ enforce (op_policy : OpPolicy)

PEMEnforcementManager

+ PEMEnforcementManager(OpPolicy)

manager0..*

manager0..*

Fig. 8 Class Diagram of the PAM internal components

For each operational policy that is received by the PEM, an

instance of the PEMEnforcementManager is constructed. This
instance is then responsible for handling the request. By using
active classes for these instances, multiple policies
enforcements can take plan concurrently.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1171

PEM Internal Components
In order to perform the enforcement, the

PEMEnforcementManager instances that are created by the
PEM for each policy to be enforced are detailed on the class
diagram presented on Fig. 9.

package APA PEM Classes {6/6}

PEM

+ enforce (op_policy : OpPolicy)

PEMEnforcementManager

+ PEMEnforcementManager(OpPolicy)

manager0..*

manager0..*

enforcers0..*

enforcers0..*

NEnforcer

TEnforcer
<<interface>>

IPolicyEnforcer

+ enforcePolicy (OpPolicy)

Fig. 9 Class Diagram of the PEM internal components

A PEMEnforcementManager is an internal component of

the PEM that will, depending on the different policy levels
included in the operational policy to be deployed, delegate the
enforcement of the policy for each of these levels to the
corresponding IPolicyEnforcer instance.

For example, an operational policy that contains
information to be enforced both at the Transport and Network
layer will be handled to both the instance of IPolicyEnforcer
specialized in Transport Enforcement (TEnforcer) and
Network Enforcement (NEnforcer).

IV. NETQOS MANAGEMENT EXAMPLE
The multi-layered approach towards QoS management can

be demonstrated against two scenarios (illustrated on Fig. 10)
in which:

 first one deals with the policy provisioning after an
application launch;

 second one deals with a policy adaptation when the
policy violation occurs [4].

For this purpose the APA is subscribed for 2 events from
CM: Application Launch and Policy Violation.

1) Scenario 1: Policy provisioning
This scenario describes sequence of actions occurring in

the system to meet the preferences of the actors. The
interaction chain in this case is as follows:

1) APA subscribes to an Application Launch event via CM.
2) The application is launched.
3) The application launch is detected by the Traffic

Identification Engine (TIE) of the MOME.
4) TIE informs the APA of this event, providing it with

information related to the application type (e.g. VoIP,

VoD) and connection identifiers (destination and source
port numbers, IP addresses, etc).

5) Using this information, the APA retrieves (from the
REPO) the intermediate policies (i.e. QoS goals and
priority) associated to this application.

6) The APA elaborates the operational policy to be applied
at the Network (resp. Transport level), and enforces it at
the managed Network (resp. Transport) entities, via the
Network (resp. Transport) Agents.

7) APA informs the MOME of the activation of a new
operational policy for the identified connection. It also
provides the MOME with the success criteria to be
monitored. Finally, it sets to “active” the intermediate
policy stored in the REPO.

8) The MOME installs the necessary elements on the
involved hosts, in order to monitor the success criteria
associated with the activated policy.

Fig. 10 Two scenarios for QoS management: provisioning and

adaptation

2) Scenario 2: Policy adaptation driven by a policy

violation
This scenario shows the sequence of actions that occur in

case when the policy violation is observed and immediate
reaction of system is required.

The interaction flow is as follows:
1) Once a policy violation for an active policy has been

observed by the MOME tools, the MOME informs the
APA about the event (via CM).

2) Using this information, the APA retrieves from the
REPO the intermediate policies (i.e. QoS goals and
priority) associated to this application.

3) The APA elaborates the adaptation to be applied at the
Network (resp. Transport level), and makes enforces it
at the managed Network (resp. Transport) entities via
Network (resp. Transport) Agent.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1172

4) APA informs the MOME (via CM) of the activation of
a new operational policy for a given and identified
connection. It also provides the MOME with the new
success criteria to be monitored.

In the NetQoS example multi-layer APA consists from
DataLink, Network and Transport layer Adaptors
interconnected with the corresponding Agents in the network
as illustrated on Fig. 11.

Fig. 11 Simplified functioning schema of APA

The Data-Link, Network and Transport layer provisioning

and adaptation techniques considered and implemented in
NetQoS are summarized below and describe state-of–the–art
techniques used for QoS management.

A. Provisioning and Adaptation at the Transport Level
For transport layer provisioning/adaptation NetQoS has

investigated Enhanced Transport Protocol (ETP) [5], [6] as
the modular approach and effective way to satisfy a wide
variety of applicable requirements by composing and fine-
tuning different well identified building blocks (rate control,
shaping, congestion control, flow control).

The ETP combines both, the strengths of hierarchical and
non-hierarchical frameworks, and proposes hybrid approach
where a hierarchical plane is defined to implement QoS
control functions and a non-hierarchical plane aimed at
performing QoS management functions. In other words, per
packet actions are performed following a hierarchical model
while operations related to the management of the connection
follow the event driven paradigm. This approach clearly
separates the different planes that contribute in providing a
given transport’s service.

Given the highly demanding applications that evolve on
heterogeneous networks (multimedia, VoIP etc) the transport
service must be able to render a service that totally satisfies
the applications’ requirements. The modular approach of ETP
seems to fulfil these criteria.

B. Provisioning and Adaptation at the Network Level
The provisioning and adaptation rules on the Network level

are stipulated by the recommendation of ITU G10.10 [7],
where the main criteria like loss and delay parameters are

specified.
Considering scalability issues the NetQoS focused on

Differentiated Services approach, where the provisioning and
adaptation on the network level can be done by exploiting the
Differentiated Services Code Point (DSCP) marking. The
advantages of such marking allow specifying high, medium
and low loss priority for different applications, while the
adoption of different queues allows specifying different delay
metrics. Simplest implementation of such solution requires
Linux IPtables and traffic control (TC) utilities.

Note that in the case of network provisioning/adaptation
network devices remain transparent for APA. It just sends a
generic request to Agent which is responsible to translate the
request into format acceptable for particular router.

C. Provisioning and Adaptation at the Data Link Level
The provisioning and adaptation rules at the Data link level

aim to guarantee the behavior defined at the network level,
where packets are marked with different code-points. The
behavior corresponding to such code-point needs to be
mapped onto the mechanisms made available by the particular
data link technology. The rules at the data link level thus aim
to translate the behavior defined by network level policies
depending on the mechanisms available at the data link level.

In the context of 802.11 wireless networks, the challenge is
to properly configure the Wireless Termination Point (WTP)
agents residing in the devices holding the radio transceiver.
Assuming the case when implementation of the WMM
(Wireless MultiMedia) extensions is in the WTPs hardware,
four different classes of services can be defined: Voice,
Video, Best Effort and Background.

The behaviour associated with each class of service can be
specified by means of four parameters: the Arbitration
InterFrame Spaces (AIFS), the Minimum and the Maximum
Contention Windows (CWmin and CWmax, respectively) and
the Transmission Opportunity Limits (TXOPlimit).

Provisioning rules can be determined on the basis of a
template approach. A rule is necessary to translate a specific
code-point at the network level into a corresponding class of
service at the data link level. The rules defining the four
parameters of each service class may also be based on a
template.

Adaptation rules are needed in case a violation of QoS
guarantees occurs. Reacting to such a failure may consist of
two steps. In a first step, a new rule can be defined to
associate the flow(s) involved with a different service class. In
case such a countermeasure fails and a new violation occurs,
another new policy may be necessary to modify the
parameters associated with the service classes. Such a rule
may apply either to selected nodes crossed by the flow(s)
involved or to all the nodes along the path followed by the
flow(s).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1173

V. CONCLUSION
 The concept presented in this paper aims at providing

automated QoS management in heterogeneous networks. The
investigated and implemented approach is outlined by the
following features:

 Multi-layer provisioning/adaptation possibility which
makes it flexible and ubiquitous solution.

 Smooth delivery of service due to dynamic adaptation.
 Improved user experience and enhanced end-to-end

QoS.
 Platform is modular and open – providing the possibility

to add other provision/adaptation modules through
publishing/subscribing mechanism.

The process of provisioning/adaptation is not self-centric
and involves participation of other modules of NetQoS
system. Further information can be found on the project
website [1].

ACKNOWLEDGMENT
This paper reflects the ongoing progress of the project

which is the result of collaboration of different organizations,
therefore special thanks are addressed to NetQoS partners and
this paper is based on the deliverables produced during work
cycle of the project.

REFERENCES
[1] Project NetQoS website: http://www.netqos.eu.
[2] NetQoS project deliverable 2.2 NetQoS functional architecture
[3] NetQoS project deliverable 3.2 NetQoS system integration
[4] NetQoS project deliverable 2.5 Policy Implementation
[5] Nicolas Van Wambeke, Francois Armando, Christophe Chassot, Ernesto

Exposito, “A model-based approach for self-adaptive Transport
protocols”, In Press, Elsevier Computer Communication's Special Issue
on End-to-end Support over Heterogeneous Wired-Wireless Networks,
2008. doi:10.1016/j.comcom.2008.02.026.

[6] Christophe Chassot, K.arim Guennoun, Khalil Drira, François Armando,
Ernesto Exposito and André Lozes, “Towards Autonomous Management
of QoS through Model-Driven Adaptability in Communication-Centric
Systems”, International Transactions on Systems Science and
Applications, Volume 2 Number 3 (2006), p. 255-264.

[7] ITU recommendation G.1010 available for download:
ftp://ftp.tiaonline.org/TR30/TR303/Public/0312%20Lake%20Buena%20
Vista/G1010%20-%2011-01.doc

