
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1845

 

 

  
Abstract—Image convolution similar to the receptive fields 

found in mammalian visual pathways has long been used in 
conventional image processing in the form of Gabor masks. 
However, no VLSI implementation of parallel, multi-layered pulsed 
processing has been brought forward which would emulate this 
property. We present a technical realization of such a pulsed image 
processing scheme. The discussed IC also serves as a general testbed 
for VLSI-based pulsed information processing, which is of interest 
especially with regard to the robustness of representing an analog 
signal in the phase or duration of a pulsed, quasi-digital signal, as 
well as the possibility of direct digital manipulation of such an 
analog signal. The network connectivity and processing properties 
are reconfigurable so as to allow adaptation to various processing 
tasks. 
 

Keywords—Neural image processing, pulse computation 
application, pulsed Gabor convolution, VLSI pulse routing.  

I. INTRODUCTION 
HE resurgence in interest concerning pulse-coded neural 
nets has led to various attempts to integrate pulsed 

computation schemes in mixed signal VLSI. Most of these 
technical implementations of neural circuits aim to copy some 
of the image segmentation/analysis/decomposition properties 
exhibited by mammalian visual pathways. VLSI-based spiking 
neurons so far have mainly exploited the synchronization 
patterns of locally coupled spiking neurons using various 
synapse adaptation rules [1,2,3]. However, this type of 
network pattern is relegated to simple image analysis. More 
complicated neurons and synapses, as well as more complex 
connection matrices are needed to achieve high-level, non-
trivial image processing functions [4,5,6]. In Section II.A, a 
neural microcircuit capable of extracting the uncorrelated 
pulses from two pulse streams [7] and its modification for a 
hardware implementation are briefly described. This 
microcircuit is based on several information processing 
schemes postulated from biological evidence. Also, a digital 
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pulse distribution router has been developed, employing an 
Address-Event-Representation (AER) and router engine 
which can route pulse events to arbitrary locations on an IC 
consisting of 128*128 neural circuits, mimicking synapses 
(section II.B). Pulses can be routed to more than one location, 
so multiple connections of biological synapses can be 
emulated. The IC has been enabled for the 3D integration 
technology described in [8], so that pulse events can also be 
routed vertically across an IC stack. The data input to the 
system comes from pulsing pixel cells, described in section 
II.C, which use a simple and area efficient integrator circuit to 
convert CMOS pixel currents to pulse frequencies. In section 
II.D, the system implementation of the complete neural router 
IC is detailed. Finally, section III elaborates on its application 
to image filtering tasks up to the complexity of Gabor masks 
and the relevant processing cascade.  

II. BUILDING BLOCKS OF PULSED NEURAL IC 

A. The Microcircuit and its Implementation 
Recurrent, stereotyped neural microcircuits occurring in 

biological neural networks have been described in [6]. One 
important aspect of these microcircuits is their individual 
simplicity, contrasting with the complex processing functions 
a network of these circuits is capable of. In [2,6], it is 
postulated that extracting correlations between inputs is one of 
the major neural processing functions, which has been 
achieved in [1]. To explore the complex processing possible 
through networks of microcircuits, and to take advantage of 
rapid processing inherent in feed-forward excitatory neural 
structures, [1] has been expanded to the following 
microcircuit consisting of simple leaky Integrate-and-Fire 
(IAF) neurons connected by two types of adaptive synapses 
(Fig.1), which has been introduced in [7].  

 
Fig. 1 The neural microcircuit 
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The dynamics of the IAF neurons are given by multiplying 
the pulses running along the synapses with the respective 
synapse weights and integrating them on the neuron 
membrane. Once the membrane potential reaches a firing 
threshold θ of one, the neuron emits an output pulse, 
immediately resets the integrator and is open for new inputs 
(no refractoriness period, i.e. temporal blocking of the 
membrane integrator). All synapse weights are excitatory, i.e. 
restricted to positive values. 

The adaptation rule of the first two synapses (W31 and W32), 
here called a membrane adaptation, is given in equation (1) 
(Indices are shown for the synapse connecting neurons 1 and 
3, expressed by W31): 

(1) 
 

It is a basic Hebbian learning rule [5, section 13.5.1] 
intended to synchronize pulses with almost constant phase 
relationships [1]. with γ as decay term, μ as learning rate, a3 
denoting the membrane accumulator state, θ the 
positive/negative learning threshold, and χ being the indicator 
function of neuron 1 output X1, one if neuron 1 exhibits a 
pulse, zero otherwise. The decay term ‘forgets’ the learned 
weight if it is not reinforced by pulse activity, while the 
second term acts as correlator between the accumulator state 
of neuron 3 and the pulses exhibited by neuron 1. The 
accumulator of neuron 3 has to be high (i.e. close to its firing 
threshold) when neuron 1 fires, for the weight W31 to increase, 
which reflects the Hebbian aim of increasing a synaptic 
weight if the presynaptic neuron takes part in firing the 
postsynaptic one.  

In this particular application, (1) is employed to extract 
correlated pulses from the output pulse streams of neurons 1 
and 2. To illustrate the correlation function of neurons 1 
through 3 governed by (1), let’s assume neuron 3 has just 
emitted a pulse and has a membrane potential a3 close to zero. 
If neuron 2 emits a pulse next, the corresponding weight W32 
is increased (μ<0 and a3-θ/2<0) and a3 pushed above θ/2. If 
neuron 1 emits a pulse next, its corresponding weight is also 
increased (μ>0 and a3-θ/2>0) and neuron 3 is pushed above 
the firing threshold. Only this particular phase relationship 
(i.e. a pulse of neuron 2 followed by a pulse of neuron 1) 
results in neuron 3 emitting pulses, thus neuron 3 emits only 
pulses correlated between neurons 1 and 2. 

The second adaptation rule acting on synapse W41, the 
dendrite adaptation, is given as: 

 
(2) 

 
which works in such a way that, with no pulses present, the 

first term draws W41 asymptotically to W∞, letting pulses from 
neuron 1 pass to neuron 4. If, however, the second term is 
added through a pulse event χ(X1), with Iθ=0.02<X3•W43, the 
weight W41 is decreased. This means, that if a pulse is 
detected further up the dendritic tree (W43 or W42), this pulse 
blocks any that would be transmitted by W41 to neuron 4. 

Compared to the membrane adaptation the dendritic 
adaptation acts very fast, as is evident by the differing 
adaptation parameters μ given in Fig. 1. This type of 
adaptation operates on single pulses, producing a quasi-digital 
gating function [5, section 19.3.2]. W42 is entered into the 
circuit to precharge the dendritic adaptation, also mitigating 
the delay inherent in propagating the correlated pulse across 
neuron 3. 

The net effect of theses rules and synapses is a one-way 
pulse subtraction, i.e. if there are uncorrelated pulses from 
neuron 1, these are transmitted across the neural microcircuit, 
uncorrelated (super numerous) pulses from neuron 2 are 
ignored. For a more detailed discussion of the neural 
microcircuit, please see [7]. 

One of the adaptation rules, the membrane adaptation, has 
been implemented in analog hardware for a different 
application, exhibiting its veracity compared to the simulation 
[1]. However, for the IC implementation of the microcircuit, 
due to size and design time constraints, a pulsed pseudo-
digital representation of the microcircuit has been carried out, 
exhibiting the same behavior. This microcircuit is part of a 
neural processing unit (NPU, Fig. 2), with additional functions 
for pulse weighting and a digitally realized neuron, both 
carried out by the same digital accumulator, which either 
transmits the weighted signal (synapse function) or a single 
pulse if the accumulator reaches a certain threshold (neuron 
function). The weighting can be governed by external 
configuration signals, i.e. further adaptation rules carried out 
in digital computation in an external FPGA. 

 
Fig. 2 Block diagram of the Neural Processing Unit with neural 

microcircuit, digital neuron, and 3D connectivity 
 
The NPU receives the pulses from the router, enters them to 

the appropriate inputs of the neural circuits, and the output 
pulses of the NPU are then either transmitted to the bottom or 
top 3D contacts [8] or to the AER on the same IC. Also, the 
3D-contacts can be directly linked, transmitting pulses 
vertically across the IC stack, and/or the pulses from either top 
or bottom 3D contact can be encoded by the AER for lateral 

)()( 1233131 XaWWdt
d χμγ θ ⋅−⋅+⋅−=

)()()( 1414224334141 XWIWXWXWWWdt
d χμγ θ ⋅⋅−⋅+⋅⋅−−⋅−= ∞
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transmission via the router on the current IC. Pulsed 
processing, e.g. based on neurons, is especially well suited to 
mixed signal transmission across the 3D contacts, since their 
resistance and leakage current vary across wide ranges [8,9], 
so direct transmission of analog currents or voltages cannot be 
realized. PWM or phase signals such as those resulting from 
presenting e.g. a photo current to the input of an Integrate-
and-Fire neuron are better suited for transmission across the 
3D contacts. Also, compensation for faulty 3D contacts is 
generally more easily accomplished if only pseudo-digital (i.e. 
two-level) signals are considered 

B. Pulse Encoding and Distribution 
In the following, a brief overview of the AER developed in 

[3] is given. The AER was originally intended as a method for 
analyzing the pulse outputs of a locally coupled Hebbian 
adaptive neural net [1], and has been adapted for the use in 
this pulse router. It is collision free, using an arbiter to detect 
overlapping pulses. The pulse encoding and compression is 
locally oriented, i.e. pulses are transmitted most economically 
if coincidental ones are located in close neighborhood to each 
other. Fig. 3 details the system as well as the encoding 
scheme. The AER control clocks the corresponding AER 
circuitry at 120-200 MHz (task dependent, user selectable), 
making this the average number of pulses that the AER can 
transmit. This gives an average timing precision of 5-8.3 ns, 
which is accurate enough to analyze the wave activity 
expected in [1] with neurons operating at 10 kHz. 

 
Fig. 3 Coding protocol and arbitrated pulse capture of AER 

 
The arbiter selects among overlapping pulses the order of 

transmission, and the AER coder encodes the pulses selected 
by the arbiter according to the coding scheme detailed in Fig. 
3. The coding scheme encodes the activity in a 128*128 
network of neural circuits, with 5 Bit each encoding the 
column and row of a 4*4 block, and the remaining Bits either 
coding a single pulse with 2 Bit each for the column and row 
in the block (12 and 16 Bit code word) or the complete 
activity of the 4*4 block (24 and 28 Bit code word), with each 

bit representing a spike of the corresponding neuron in the 
current timeslot. Also, if the activity occurs in the same row as 
the last transmitted code word, only the column is transmitted 
in the new code word (12 and 24 Bit), otherwise column and 
row of the block showing activity are transmitted. Following 
the AER coder, the router and readout are situated, which give 
the ability to analyze or retransmit the pulses occurring across 
the network. These components are both implemented as a 
FIFO memory to buffer short burst activities, but will loose 
pulses if the network stays above mean activity levels for too 
long. This is done as a compromise between pulse loss and 
pulse timing accuracy, since especially in the pulse 
redistribution case, the pulse timing may be critical to 
information processing. If pulses enter a full FIFO, and have 
to ripple completely through it, they will probably only 
contain obsolete information, especially if that information is 
inherent in, e.g., phase information [5,6]. Economic usage of 
the localized nature of the AER coding can be ensured in the 
router IC if closely correlated pulse processing tasks are 
situated next to each other. 

The pulse distribution is done in the form of a RAM lookup 
table, i.e. the pulses received from the NPUs, once they have 
passed the AER encoding and FIFO memory, are decoded into 
RAM addresses of the lookup table, and the corresponding 
target NPUs are identified. So-called target-on-target 
information is also extracted from the RAM, i.e. which input 
of the NPU the pulse is meant for (see Fig. 2). The pulse is 
then redistributed to the targets by a 1 from 128 decoder 
network operating at the same frequency as the AER, which 
gives the same 120 to 200 million pulses that the router can 
redistribute across the network, aligning the rates of pulses 
captured and routed. 

Fig. 4 takes a closer look at the organization of the router 
RAM, with the pulses entering from the AER being assigned a 
base address and offset in the lookup RAM according to their 
location in the network, i.e. the lookup RAM is directly linked 
to each individual NPU. The base address gives the place in 
the target RAM where the target addresses for this pulse are 
stored, and the offset controls how many of the following 
places in the target RAM also contain targets for this pulse. 
This means, that a single pulse can be distributed to up to 32 
targets (corresponding to an offset of 5 Bit). The control 
CTRL selects the target RAM content according to base 
address and offset. The content of the target RAM is divided 
into the target address (2*7 Bit, the 128*128 address of the 
target NPU), and the two Bit code identifying the input of the 
NPU the pulse is routed to, with A being the positive input of 
the neural microcircuit (‘1’ in Fig. 2), B the negative input 
(‘2’ in Fig. 2), and C is the input to the accumulator/digital 
neuron. The target RAM, in contrast to the lookup RAM, is 
therefore dynamically proportioned in accordance with the 
routing/processing task at hand and its connectivity. This way, 
the RAM realizes virtual dendrites linking arbitrary NPUs 
across the IC.  

Also, pulses can be fed to the router from sources off-chip 
at the full router data rate (equivalent to the AER data rate), so 
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pulsed processing functions completely independent of the 
pulsing pixel cells can be realized.  

 
Fig. 4 Organization of router RAM as directly linked lookup RAM 

and routing-dependently proportioned target RAM 
 

This type of routing is constant, as long as the router RAM 
is left unchanged, the network activity is distributed in the 
same way across the board, regardless of the activity on the 
corresponding virtual dendrites. However, the RAM can be 
reconfigured very rapidly, so by monitoring the output of the 
AER and enacting certain learning rules for network 
connectivity e.g. governed by pulse rates, dynamic routing 
could also be realized via an external, supervisory FPGA 
board. 

C. Pulsing Pixel Cell 
Also, a pixel cell converting pixel current to a pulsed output 

signal has been implemented and measured. Fig. 5 shows the 
circuit of the pulsing pixel cell. The circuit is very simple, 
made up of an integrator, threshold and reset. The integrator 
consists of the photo diode D1, with the diffusion capacity 
acting as the integration capacitor, whose charge is decreased 
through the (negative) photo current. The resulting output 
voltage is fed to a differential pair M1/M2 (with M5 providing 
the biasing tail current and M3/M4 the necessary current 
mirror). 

 
Fig. 5 Circuit of the pulsing pixel cell 

 
The differential pair switches if the integrator voltage falls 

below Vref, and the resulting Vout is fed to a digital buffer (not 
shown), which in turn activates the reset inverter M6/M7. This 

low-active reset inverter ordinarily keeps the anode of D2 at 
ground potential, so no current can flow through this diode. 
With Vreset¯¯      low, however, the anode of D2 is pulled to VDD, 
resulting in a current flow through D2 which charges the 
integration capacitor of D1 to VDD minus the forward voltage 
of D2, thus resetting D1. Fig. 6 details measurement data 
taken from a VLSI implementation of the pulsing pixel cell in 
a 130 nm CMOS technology. 

 
Fig. 6 Digital output (upper curve) and integrator voltage (lower 

curve) of the pulsing pixel cell for a single reset event 
 

The upper curve shows a single output pulse (negative 
logic) of the pixel cell, the lower curve displays the voltage 
across the integrating diode capacity. As can be seen prior to 
the reset event the integrator voltage rises linearly due to the 
constant photo current. After the reset has been applied, the 
voltage reaches its resting potential within approximately 4 us. 
Please note, due to circuit constraints the integrator voltage 
has been buffered by an inverting OTA for measurement off-
chip, so the integrator voltage curve in figure 6 shows positive 
charging, while in the actual circuit of figure 5 the charging is 
negative, as explained above. 

When tested at illumination levels comparable to room 
lighting (about 72 lux), the pulse frequency is approximately 
800 Hz, for very dark illumination of 9 lux, the frequency is 
140 Hz. Bright daylight (200-300 lux) would put the 
frequency at 2-4 kHz. The measured power draw of the 
pulsing pixel cell is 50nA at 2.2V, independent of pixel 
frequency, since this constitutes the bias current of the 
differential pair, the (frequency-dependent) power draw by the 
reset inverter is negligible. 

D. System Implementation 
The router IC has been implemented in a 130 nm Infineon 

technology, realized as full custom digital design with auto 
generated RAM blocks and mixed-signal insets. The NPUs 
have been implemented from high-level descriptions via a 
place and route tool, with the analog pulsing pixel cells as 
hand-layout inserted in placeholder spaces. The IC is currently 
undergoing production. Fig. 8 depicts the floor plan of the 
router IC, divided into the various building blocks. The floor 
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plan is not to scale, for a size orientation, see the dimensions 
indicated at the borders. The router array shows the column 
and row decoders transmitting a pulse from the router to a 
pulse processing element. Also demonstrated is the block 
structure of the AER coder. The configuration of the NPUs, 
i.e. what kind of processing is performed on the pulses, is 
done via a JTAG interface contained in the block 
CHIP_INTERFACE. Simulated power consumption at a mean 
pulse distribution rate of 160*106 pulses/s is about 2 W for the 
router and periphery, additional power demand for the NPUs 
is 0.7 W. 

 
Fig. 8 Floor plan of the router IC 

III. PULSED IMAGE CONVOLUTION 
On a general note, the results presented in  Figs. 9 and 10 

are based on system-level Mentor ModelSim simulations of 
VHDL/AHDL code of the IC. Major components of the IC, 
however, have been implemented and verified previously, like 
the Adress-Event-Representation employed for pulse 
communication [3], the adapting synapses [1], or the pulsing 
pixel cell (detailed above). Where applicable, the 
VHDL/AHDL code has been augmented by measurement 
results to enhance its veracity. 

A. Simple Gabor Edge Filtering  
A group of the neural microcircuits can be used to construct 

a simple Gabor convolution mask approximation [4] by 
stacking them according to Fig. 9 (top left), where gray scale 
values lighter than the mean denote positive 1 (+) inputs of the 
neural microcircuits, while gray scale values darker than mean 
denote negative 2 (-) inputs. To achieve the different 
coefficients inherent in a Gabor convolution mask, the mask is 
discretized, and the discretized levels are converted to a 
corresponding multiple access of neural microcircuits to the 
same pixel, thus achieving a weighting function of the input 
image in accordance with the Gabor coefficients. The 
respective input neurons 1 (+) and 2 (-) of the neural 

microcircuit are then fed with pulsed representations of the 
grayscale image by the pulsing pixel cells, and their outputs 
are summed. Fig. 9 shows the (simulated) summed output of 
such a Gabor mask if a rotating edge is presented to it. The 
pulsed greyscale images are obtained by supplying an AHDL 
representation of the pulsing pixel cell presented earlier with 
input current linearly based on pixel brightness (greyscale 
value).  

 
Fig. 9 Representation of discretized Gabor mask and response to a 

rotating edge 
 

The deviation between ideal and pulsed Gabor response e.g. 
between 100° and 150° is caused by the one-way subtraction, 
i.e. the outer edges of the Gabor mask produce spurious 
results which would normally be suppressed by the large 
negative response of the central Gabor mask. This one-
sidedness of the NPU subtraction obstructs the use of such a 
one-stage Gabor filter as a true spatial frequency filter, since 
such a filter must match the positive as well as the negative 
portions of a spatial grayscale wave pattern. 

B. Pulsed Processing for Gabor Decomposition 
By setting up a processing pyramid, i.e. several ordered 

processing steps, of these microcircuits and introducing 
pathways to the neurons in the extended neighborhood, more 
complex image filtering functions can be accomplished, in 
particular, true wavelet (i.e. localized spatial frequency) 
decomposition of an image as postulated from biological 
evidence [4] can be realized as a pulsed image computation. 

A first step would be the suppression of errors such as the 
one evident in Fig. 9. This can be done by correcting the mask 
response with an adjustment signal delivered by the exactly 
opposite mask. Consider for example, a 1D convolution with 
mask (1 –2 1), which could be realized with a pair of NPUs in 
the form (+ -- +), where both negative inputs (-) access the 
same pixel. If an input pattern of (3 2 1) were presented to the 
ideal mask, the response would of course be 0. Using the 
neural microcircuits, however, the first NPU would deliver 3-
2=1, whereas the result for the second NPU is 1-2=0, because 
of the one-sidedness of its subtraction (section 2.1), so the 
summed response of the NPU mask would be 1. If we 
introduce a second, negative mask (- ++ -), its result would be 
1 as well, so we get the correct result of 0 by subtracting the 
result for the negative mask (- ++ -) from the positive mask 
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response. This procedure will not alter the response for a 
perfect fit to the positive mask, since the negative mask 
responds with 0 in such a case. This correction is not perfect, 
an input pattern of (2 2 1) will result in –1 for the ideal mask, 
whereas even the corrected signal (pos-neg) for the NPUs is 0. 
The second step would be computing the absolute value 
Gabor response Rabs from the corrected mask response R+ − R−   
obtained from the summed responses R+ and R − to the positive 
and negative Gabor masks, respectively. This absolute value is 
of course defined as: 
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If we input R+ and R − once in every direction to a neural 
microcircuit and sum the results, the one-sided subtraction 
results in the same computation:  
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Fig. 10 illustrates the accuracy of this pulsed convolution 
method as compared to conventional image convolution. The 
vertical stripes evident in Fig. 10c are caused by the non-ideal 
correction described above. 

 
Fig. 10 Comparison of original image (a), amplitude response of an 
ideal Gabor image filter (b), and pulsed realization using the NPUs 

and router (c) 

IV. CONCLUSION 
We have presented a VLSI implementation of a pulsed 

image processing scheme. This processing starts out with 
pulse-stream representations of grayscale images, generated 
by a pulsing CMOS pixel sensor, and employs pulse 
processing based on biological evidence, contained in a 
Neural Processing Unit. The neural microcircuit is based on 
two information processing principles postulated from 
biological evidence, Hebbian pulse correlation [5, section 
13.5.1] and dendritic pulse gating [5, section 19.3.2]. While 
performing a simple pulse correlation/decorrelation 
individually, suitably shaped networks of these microcircuits 
are capable of realizing complex image filtering tasks such as 
Gabor wavelet decomposition as pulse-based computation. 
These networks employ some of the principles postulated 
from biological evidence, e.g. the building of complex masks 
through several simpler interim steps in a layered 
configuration, and the use of directly opposing masks at the 
same image location (similar to On/Off centers [4,5,7]) to 
cover the whole spectrum of convolution mask responses to a 

given image.  
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