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pth Moment Exponential Synchronization of a Class
of Chaotic Neural Networks with Mixed Delays

Zixin Liu, Shu Lü, Shouming Zhong, and Mao Ye

Abstract—This paper studies the pth moment exponential synchro-
nization of a class of stochastic neural networks with mixed delays.
Based on Lyapunov stability theory, by establishing a new integro-
differential inequality with mixed delays, several sufficient conditions
have been derived to ensure the pth moment exponential stability for
the error system. The criteria extend and improve some earlier results.
One numerical example is presented to illustrate the validity of the
main results.

Keywords—pth Moment Exponential synchronization; Stochastic;
Neural networks; Mixed time delays.

I. INTRODUCTION

S INCE the seminal works of Pecora and Carroll [1], [2],
chaos synchronization has been intensively researched

because of its potential applications in various fields such
as secure communication, biological systems, information sci-
ence, and so on. On the other hand, delayed neural networks,
as a kind of special complex dynamical systems, have also
been found to exhibit unpredictable behaviors such as periodic
oscillations, bifurcation and attractors. The study on chaos
synchronization of delayed neural networks have also been
proposed (see [3]-[13]).

The idea of synchronization is to construct a response
system and feedback controller for a given chaotic system
such that the error system can be stable in the trivial so-
lution. As a generalized form of mean square exponential
stability, pth moment exponential stability has been received
considerable attention in recent years. In Ref [14], the authors
investigated the exponential stability in pth mean of solutions,
and of convergent Euler-type solutions, of stochastic delay
differential equations with constant time delay. In Ref [15],
Luo improved the corresponding results. By establishing an
L-operator inequality and using the property of M-cone, Yang
and Xu [16] derived some pth moment exponentially stable
criteria for a class of general impulsive stochastic differential
equations with constant delay. Based on the results of Mao
[17], [18], Randjelović, and Janković [19] obtained some
pth moment exponential stability criteria of neutral stochastic
functional differential equations. By using the method of
variation parameter and inequality technique, Sun and Cao
[20] generalized the results obtained in [21] from mean square
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exponential stability to pth moment exponential stability for
a class of stochastic recurrent neural networks with time-
varying delays. For discarding the strict constraint of time
delay, Huang and He [22] established an improved criteria
via the technique of Halanay-type inequality. On the other
hand, the study on p-Moment stability of stochastic differential
equations with Markovian jumps are also received attention in
recent years (see [23]-[25]).

However, to the best of our knowledge, few authors have
considered the problem of pth moment exponential synchro-
nization of stochastic recurrent neural networks (RNNs) with
mixed delays. Motivated by the above discussions, the main
aim of this paper is to study pth moment exponential syn-
chronization of a class of stochastic RNNs with discrete and
distributed time delays. Based on Lyapunov stable theorem,
by establishing a new integro-differential inequality, and using
stochastic analysis technique, some sufficient conditions are
derived to guarantee pth moment exponential synchronization
of the given derive-response systems. These results obtained in
our paper generalize and improve some existing results, which
will be shown by one simulation example later.

The rest of the paper is arranged as follows. In Section
2, related dynamical systems with discrete and distribute
time delays will be presented, then some necessary notations,
assumptions, lemma and definition will be given. The pth mo-
ment exponential synchronization conditions will be given in
Section 3. One simulation example will be provided in Section
4 to demonstrate the validity of our results. Conclusions are
drawn in section 5.

II. PRELIMINARIES

Notations. The notations are used in our paper except
where otherwise specified. E(·) stands for the mathematical
expectation operator; | · | denotes the Euclidean norm; ‖ · ‖
denotes a vector or a matrix norm; The notation ‖ · ‖p is
used to denote a vector norm defined by ‖ · ‖p =

∑n
i=1 |xi|p;

‖ · ‖p
Δ = sup−∞≤t≤0 | · |p, R, R+, Rn are real, positive real

and n-dimension real number sets respectively, I is identity
matrix, L denotes the well-known L-operator given by the
Itô’s formula.

In this paper, we consider the following chaotic neural
networks8>>>>>>><
>>>>>>>:

dxi(t) = [−cixi(t) +

nX
j=1

aijfj(xj(t)) +

nX
j=1

bijfj(xj(t − τ(t)))

+

nX
j=1

dij

Z t

−∞
kij(t − s)fj(xj(s))ds]dt, t > 0

xi(t) = φi(t), i, j = 1, 2, · · · , n t ≤ 0.
(1)
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where x(t) = (x1(t), x2(t), . . . , xn(t))T is the state vector
associated with the neurons; ci > 0 represents the rate
with which the ith unit will reset its potential to the rest-
ing state in isolation when disconnected from the network
and the external stochastic perturbations; aij , bij and dij

represent the connection weight and the delayed connection
weight, respectively; fi is activation function, f(x(t)) =
(f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T , τ(t) > 0 is transmis-
sion delay, which is bounded and the up-bound is τ , kij(s) ≥ 0
is the kernel function, φi(t) is continuous initial function.

In order to synchronize system (1) via feedback controller,
we introduce the respond system from the directional nonlinear
coupling approach as follows8>>>>>>>>>>>><
>>>>>>>>>>>>:

dyi(t) = [−ciyi(t) +

nX
j=1

aijfj(yj(t)) +

nX
j=1

bijfj(yj(t − τ(t)))

+

nX
j=1

dij

Z t

−∞
kij(t − s)fj(yj(s))ds]dt

+

nX
j=1

σij(t, ej(t), ej(t − τ(t)))dωj(t), t > 0,

yi(t) = ϕi(t), i, j = 1, 2, · · · , n, , t ≤ 0.
(2)

where ωj(t) is a standard Brown motion defined on a
complete probability space (Ω, F, P ) with a natural filtration
Ft≥0(i.e.,Ft = σ{ω(x(s)) : −∞ ≤ s ≤ t}), and σij is
the diffusion coefficient, ui(t) =

∑n
i=1 mij(fj(yj(t)) −

fj(xj(t))) +
∑n

i=1 nij(fj(yj(t − τ(t))) − fj(xj(t − τ(t))). ,
ej(t) = yj(t) − xj(t), ϕi(t) is continuous initial function.

From Eq (1) and (2), we can get the following error system8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

dei(t) = [−ciei(t) +

nX
j=1

(aij + mij)gj(ej(t))

+

nX
j=1

(bij + nij)gj(ej(t − τ(t)))

+

nX
j=1

dij

Z t

−∞
kij(t − s)gj(ej(s))ds]dt

+
nX

j=1

σij(t, ej(t), ej(t − τ(t)))dωj(t), t > 0,

yi(t) = ϕi(t), i, j = 1, 2, · · · , n, , t ≤ 0.

(3)

where gj(ej(t)) = fj(yj(t)) − fj(xj(t)), gj(ej(t − τ(t))) =
fj(yj(t − τ(t))) − fj(xj(t − τ(t))), ψi(t) = ϕi(t) − φi(t).

Throughout this paper, the following standard hypothesis
are needed

(A1) |fi(u) − fi(v)| ≤ li|u − v|, li > 0, ∀u, v ∈ R.

(A2)
Pn

j=1 σ2
ij(t, ej(t), ej(t − τ(t))) ≤ Pn

j=1 μje
2
j (t) +Pn

j=1 νje
2
j (t − τ), μj , νj ∈ R+.

(A3)
R ∞
0

eεskij(s)ds < ∞,
R ∞
0

kij(s)ds = 1 where ε > 0
is a constant scalar.

Remark 1. In previous publications, the variable time delay
τ(t) is always required to be not only positive and bounded but
also differentiable and derivative bounded. In this study, we

only require it to be positive and bounded. It can be derivative
unbounded, and even can be non-differentiable.

For further discussion, we introduce the following definition
and lemmas.

Definition 1. System (1) and (2) are said to be pth moment
exponentially synchronized if for a suitably designed feedback
controller, there exist a pair of positive constants λ and α such
that

E‖e(t)‖p ≤ αE‖ψ‖p
Δe−λ(t−t0), t ≥ 0,

hold for ψ ∈ Lp
Ft0

([−∞, 0], Rn), where e(t) = (e1(t), e2(t),
· · · ,en(t))T , ψ(t) = (ψ1(t), ψ2(t), · · · , ψn(t))T . Especially
when p = 2 they are called to be exponentially synchronized
in mean square.

Lemma 1.(Mao ([26])) Let p ≥ 2 and a > 0, b > 0, then

ap−1b ≤ (p − 1)ap

p
+

bp

p
,

and

ap−2b2 ≤ (p − 2)ap

p
+

2bp

p
.

III. MAIN RESULTS

In this section, firstly, we will generalize a integro-
differential inequality established by Xu and Wei (see [27])
from distribute delay to mixed delays, then some sufficient
conditions will be derived to ensure the pth moment exponen-
tial stability for the error system.

Theorem 1 Let P = (pij)n×n and pij ≥ 0 for i �= j,
H(r) = (h(r)

ij )n×n, r = 1, 2, · · · , n, h
(r)
ij ≥ 0, τ(r)(t) ≥ 0,

τ ′ = maxr τ(r)(t) is a bounded constant, K(t) = (kij(t))n×n

are piecewise continuous and satisfy

(A′
3)

∫ ∞

0

eεskij(s)ds < ∞.

where ε > 0 is a constant scalar.Denote K = (kij)n×n =
(
∫ ∞
0

kij(s)ds)n×n and let D = −(P +K +
∑n

r=1 H(r)) be a
nonsingular M-matrix, u(t) = (u1(t), u2(t), · · · , un(t))T ∈
C([0, +∞], Rn) be a solution of the following integro-
differential inequality with the initial condition u(t), t < 0

D+u(t) ≤ Pu(t)+
n∑

r=1

H(r)u(t−τ(r)(t))+
∫ ∞

0

K(s)u(t−s)ds.

(4)
Then

u(t) ≤ ze−δt, t ≥ 0, (5)

if the initial conditions satisfy

u(t) ≤ ze−δt, t ≤ 0,

where z = (z1, z2, · · · , zn)T ∈ ΩM (D) = {z ∈ Rn|Dz >
0, z > 0}, and the constant δ satisfies 0 < δ ≤ ε which is
determined by the following inequality

(δI + P +
n∑

r=1

H(r)eδτ ′
+

∫ ∞

0

K(s)eδsds)z < 0. (6)
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Proof. Since matrix D is a nonsingular M-matrix, in views
of the property of M-matrix, there exists a vector z ∈ ΩM (D)
such that

(P + K +
n∑

r=1

H(r))z < 0.

By using continuity and condition (A′
3), we see that inequality

(6) has at least one positive solution δ ≤ ε.
In what follows, we first prove that for any given positive

scalar ξ > 0 we have

ui(t) < (1 + ξ)zie
−δt = yi(t), t ≥ 0, i = 1, 2, · · · , n, (7)

if u(s) ≤ ze−δs,−∞ < s ≤ 0.
If (7) not true, then there must exist t∗ > 0 and some integer

m such that

um(t∗) = ym(t∗), D+um(t∗) ≥ y′
m(t∗), (8)

ui(t) ≤ yi(t),−∞ < t ≤ t∗, i = 1, 2, · · · , n. (9)

From (4), we can get

D+um(t∗) ≤
nX

j=1

[pmjuj(t
∗) +

nX
r=1

h
(r)
mjuj(t

∗ − τ(r)(t))

+

Z ∞

0

kmj(s)uj(t
∗ − s)ds]

≤
nX

j=1

[pmj(1 + ξ)zje
−δt∗

+

nX
r=1

h
(r)
mj(1 + ξ)zje

−δ(t∗−τ(r)(t))

+

Z ∞

0

kmj(s)(1 + ξ)zje
−δ(t∗−s)ds]

=
nX

j=1

[pmj +

nX
r=1

h
(r)
mje

δτ(r)(t)

+

Z ∞

0

kmj(s)e
δsds](1 + ξ)zje

−δt∗

≤
nX

j=1

[pmj +

nX
r=1

h
(r)
mje

δτ ′

+

Z ∞

0

kmj(s)e
δsds](1 + ξ)zje

−δt∗

≤ −δ(1 + ξ)zme−δt∗ = y′
m(t∗), (10)

which contradicts with inequality (8), namely inequality (7)
holds for all t ≥ 0. On the other hand, in views of the arbitrary
of ξ, we can see that inequality (5) holds, which complete the
proof.

Theorem 2. Under the assumptions (A1)−(A3), system (1)
and system (2) are pth moment exponentially synchronized
(p ≥ 2), if the following conditions are satisfied

(1) S′ = −(P ′+H ′+K ′) is a nonsingular M-matrix, where
P ′ = (p′ij)n×n, H ′ = (h′

ij)n×n, K ′ = (k′
ij)n×n,

p′ij = |(aij + mij)lj | + μj(p − 1), i �= j,
p′ii = |(aii +mii)li|+μi(p−1)−cip+

∑n
j=1(p−1)|(aij +

mij)lj | +
∑n

j=1(p − 1)|(bij + nij)lj | +
∑n

j=1(p − 1)|dij | +∑n
j=1 μj

(p−1)(p−2)
2 +

∑n
j=1 νj

(p−1)(p−2)
2 ,

h′
ij = |(bij + mij)lj | + νj(p − 1), k′

ij = |dij ||lj |p.

(2) Initial conditions satisfy

E|ei(t)|p ≤ zie
−δt, i = 1, 2, · · · , n, t ∈ (−∞, 0],

where z = (z1, z2, · · · , zn)T ∈ ΩM (S′) and the positive scalar
δ satisfies the following inequality

[δI + P ′ + H ′eδτ +
R ∞
0

K′(s)eδsds]z < 0,
K′(s) = (|dij ||lj |pkij(s))n×n.
Proof. Constructing Lyapunov functional for error sys-

tem (3) asV (e(t)) = (V1(e1(t)), V2(e2(t)), · · · , Vn(en(t)))T ,
where Vi(ei(t)) = |ei(t)|p.

By Itô’s formula and lemma 1, we have

LVi(t, ei(t)) = p|ei(t)|p−1sgn{ei(t)}[−ciei(t)

+

nX
j=1

(aij + mij)gj(ej(t))

+

nX
j=1

(bij + nij)gj(ej(t − τ(t)))

+

nX
j=1

dij

Z t

−∞
kij(t − s)gj(ej(s))ds]

+
1

2
p(p − 1)|ei(t)|p−2

nX
j=1

σ2
ijsgn{ei(t)}

= −cip|ei(t)|p +

nX
j=1

p|ei(t)|p−1sgn{ei(t)}(aij + mij)gj(ej(t))

+

nX
j=1

p|ei(t)|p−1sgn{ei(t)}(bij + nij)gj(ej(t − τ(t)))

+

nX
j=1

p|ei(t)|p−1sgn{ei(t)}dij

Z t

−∞
kij(t − s)gj(ej(s))ds

+
1

2
p(p − 1)|ei(t)|p−2

nX
j=1

σ2
ijsgn{ei(t)}

≤ −cip|ei(t)|p +

nX
j=1

p|(aij + mij)lj ||ei(t)|p−1|ej(t)|

+

nX
j=1

p|(bij + nij)lj ||ei(t)|p−1|ej(t − τ(t))|

+

nX
j=1

|dij |
Z t

−∞
kij(t − s)p|ei(t)|p−1|gj(ej(s))|ds

+
1

2
p(p − 1)|ei(t)|p−2

nX
j=1

(μje
2
j (t) + νje

2
j (t − τ(t)))

= −cip|ei(t)|p +

nX
j=1

p|(aij + mij)lj ||ei(t)|p−1|ej(t)|

+

nX
j=1

p|(bij + nij)lj ||ei(t)|p−1|ej(t − τ(t))|

+

nX
j=1

|dij |
Z t

−∞
kij(t − s)p|ei(t)|p−1|gj(ej(s))|ds

+
p(p − 1)

2

nX
j=1

μj |ei(t)|p−2e2
j (t)

+
p(p − 1)

2

nX
j=1

νj |ei(t)|p−2e2
j (t − τ(t))
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≤ −cip|ei(t)|p +

nX
j=1

|(aij + mij)lj |[(p − 1)|ei(t)|p

+ |ej(t)|p] +

nX
j=1

|(bij + nij)lj |[(p − 1)|ei(t)|p

+ |ej(t − τ(t))|p] +

nX
j=1

|dij |
Z t

−∞
kij(t − s)[(p − 1)|ei(t)|pds

+ |gj(ej(s))|p] +
(p − 1)

2

nX
j=1

μj [(p − 2)|ei(t)|p

+ 2|ej(t)|p] +
(p − 1)

2

nX
j=1

νj [(p − 2)|ei(t)|p + 2|ej(t − τ(t))|p]

= −cip|ei(t)|p +

nX
j=1

(p − 1)|(aij + mij)lj ||ei(t)|p

+

nX
j=1

|(aij + mij)lj ||ej(t)|p +

nX
j=1

(p − 1)|(bij + nij)lj ||ei(t)|p

+

nX
j=1

|(bij + nij)lj ||ej(t − τ(t))|p

+

nX
j=1

(p − 1)|dij ||ei(t)|p
Z t

−∞
kij(t − s)ds

+

nX
j=1

|dij |
Z t

−∞
kij(t − s)|gj(ej(s))|pds

+

nX
j=1

μj
(p − 1)(p − 2)

2
|ei(t)|p +

nX
j=1

μj(p − 1)|ej(t)|p

+

nX
j=1

νj
(p − 1)(p − 2)

2
|ei(t)|p +

nX
j=1

νj(p − 1)|ej(t − τ(t))|p}

= [−cip +

nX
j=1

(p − 1)|(aij + mij)lj | +
nX

j=1

(p − 1)|(bij + nij)lj |

+

nX
j=1

(p − 1)|dij | +
nX

j=1

μj
(p − 1)(p − 2)

2

+
nX

j=1

νj
(p − 1)(p − 2)

2
] · |ei(t)|p +

nX
j=1

[|(aij + mij)lj |

+ μj(p − 1)] · |ej(t)|p +

nX
j=1

[|(bij + nij)lj |

+ νj(p − 1)] · |ej(t − τ(t))|p

+

nX
j=1

|dij ||lj |p
Z t

−∞
kij(t − s)|(ej(s))|pds. (11)

That is

LV (e(t)) ≤ P ′V (e(t))+H ′V (e(t−τ(t)))+

Z ∞

0

K′(s)V (e(t−s))ds.

(12)
On the other hand, by Itô’s formula, for all t > 0, we have

dV (e(t)) = LV (e(t))dt+
∂V (e(t))

∂e(t)
σ(t, e(t), e(t−τ))dω(t). (13)

Then for t > 0, integrate both side of equation (13) from t to t+Δt,
we can obtain

V (e(t + Δt)) = V (e(t)) +

Z t+Δt

t

LV (e(s))ds

+

Z t+Δt

t

∂V (e(s))

∂e(s)
σ(s, e(s), e(s − τ))dω(s).(14)

Taking mathematical expectation of the both side of equation (14),we
have

EV (e(t + Δt)) = EV (e(t)) +

Z t+Δt

t

ELV (e(s))ds. (15)

From inequality (12), we get

EV (e(t + Δt)) − EV (e(t)) =

Z t+Δt

t

ELV (e(s))ds

≤
Z t+Δt

t

[P ′EV (e(s)) + H ′EV (e(s − τ(s)))

+

Z +∞

0

K′(ξ)EV (e(s − ξ))dξ]ds,

thus D+EV (e(t)) ≤ P ′EV (e(t)) + H ′EV (e(t − τ(t))) +R +∞
0

K′(s)EV (e(t − s))ds. By Theorem 1, we get

EV (e(t)) ≤ ze−δt ≤ EV (e(0))e−δt, t > 0,

which implies that

EVi(ei(t)) ≤ zie
−δt ≤ EVi(ei(0))e−δt, i = 1, 2, · · · , n, t > 0.

Namely,

E|ei(t)|p ≤ zie
−δt ≤ E|ei(0)|pe−δt, i = 1, 2, · · · , n, t > 0.

Thus we have
E‖e(t)‖p ≤ E‖ψ(0)‖p

Δe−δt,

which complete the proof.

Corollary 1. Under the assumptions (A1) − (A3), system (1)
and system (2) are mean square exponentially synchronized, if the
following conditions are satisfied

(1) S(1) = −(P (1) + H(1) + K(1)) is a nonsingular M-matrix,
where P (1) = (p

(1)
ij )n×n, H(1) = (h

(1)
ij )n×n, K(1) = (k

(1)
ij )n×n,

p
(1)
ij = |(aij + mij)lj | + μj , i �= j,

p
(1)
ii = |(aii + mii)li| + μi − 2ci +

Pn
j=1 |(aij + mij)lj | +Pn

j=1 |(bij + nij)lj | + Pn
j=1 |dij |,

h
(1)
ij = |(bij + mij)lj | + νj , k

(1)
ij = |dij ||lj |2.

(2) Initial conditions satisfy

E|ei(t)|2 ≤ zie
−δt, i = 1, 2, · · · , n, t ∈ (−∞, 0]

where z = (z1, z2, · · · , zn)T ∈ ΩM (S(1)) and the positive scalar δ
satisfies the following inequality

[δI + P (1) + H(1)eδτ +
R ∞
0

K(1)(s)eδsds]z < 0,
K(1)(s) = (|dij ||lj |2kij(s))n×n.

Remark 2. When matrix D = (dij)n×n = 0, similar to the proof
of Theorem 2, we can get the following result.

Corollary 2. Under the assumptions (A1) − (A2), system (1)
and system (2) are pth moment exponentially synchronized, if the
following conditions are satisfied

(1) S(2) = −(P (2) + H(2)) is a nonsingular M-matrix, where
P (2) = (p

(2)
ij )n×n, H(2) = (h

(2)
ij )n×n,

p
(2)
ij = |(aij + mij)lj | + μj(p − 1), i �= j,

p
(2)
ii = |(aii + mii)li| + μi(p − 1) − cip +

Pn
j=1(p − 1)|(aij +

mij)lj | +
Pn

j=1(p − 1)|(bij + nij)lj | +
Pn

j=1 μj
(p−1)(p−2)

2
+Pn

j=1 νj
(p−1)(p−2)

2
,

h
(2)
ij = |(bij + mij)lj | + νj(p − 1).
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(2) Initial conditions satisfy

E|ei(t)|p ≤ zie
−δt, i = 1, 2, · · · , n, t ∈ (−∞, 0]

where z = (z1, z2, · · · , zn)T ∈ ΩM (S(2)) and the positive scalar δ
satisfies the following inequality

[δI + P (2) + H(2)eδτ ]z < 0.
Similarly, in all kinds of special cases such as matrix B =

(bij)n×n = 0, p = 2, τ(t) is a constant, et al., respectively, we
can get the corresponding results, which are omitted here.

IV. SIMULATION EXAMPLE

In this section, one numerical example will be presented to show
the validity of the main results derived above.

Example 1. Consider a chaotic neural networks(see figure 1) as
system (1), the response system as system (2), and the error system
as system (3), where C = (cij)2×2, A = (aij)2×2, B = (bij)2×2,
D = (dij)2×2 , σ(t, e(t), e(t−τ)) = (σij)2×2, K(t) = (kij(t))2×2,
and

C =

»
1 0
0 1

–
, A =

»
2.0 −0.1
−5.0 3.0

–
, B =

» −1.5 −0.1
−0.2 −2.5

–
,

D =

» −0.001 0
0 −0.001

–
, K(t) =

»
e−t e−t

e−t e−t

–

σ(t, e(t), e(t − τ)) =

» √
0.1e1(t)

√
0.1e2(t − τ)√

0.1e1(t − τ)
√

0.1e2(t)

–
,

f(x(t)) = tanh(x(t)), τ(t) = 1.
Then we have l1 = l2 = 1, μ1 = μ2 = 0.1, ν1 = ν2 = 0.1. Set

p = 3, and if we take the controller matrix as

M = (mij)2×2 =

» −2.0 0.1
5.0 −3.0

–
, N = (nij)2×2 =

»
1.5 0.1
0.2 2.5

–

By direct calculation, we can get S′ =

»
1.599 −1
−1 1.599

–
is a M-

matrix, and if the given the initial condition satisfied (2) in theorem
2, then we can see that all of the conditions in theorem 2 are satisfied,
so we can say that the given drive-response system are synchronized
in 3th moment exponentially. Fig 2 shows that the trajectories of the
error system converge to trivial solution exponentially. When D =» −0.1 0

0 −0.1

–
, we get S′ =

»
1, 5 −1
−1 1.5

–
is a M-matrix, the

trajectory of the drive system become the form as shows in Fig 3,
and the conditions in theorem 2 are also satisfied, thus we can say
that the given drive-response system are synchronized in 3th moment
exponentially. Fig 4 shows that the trajectories of the error system
converge to trivial solution exponentially.

V. CONCLUSIONS

In this paper, we consider the pth moment exponential syn-
chronization problems of a class of chaotic neural networks with
mixed delays, by establishing a new integro-differential inequality,
some sufficient synchronization conditions have been derived. These
conditions extend and improve some earlier results cited therein.
Simulation example shows that our results are valid.
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Fig. 1. State trajectories of drive system
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Fig. 3. State trajectories of drive system
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