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Abstract—Protein 3D structure prediction has always been an 

important research area in bioinformatics. In particular, the 
prediction of secondary structure has been a well-studied research 
topic. Despite the recent breakthrough of combining multiple 
sequence alignment information and artificial intelligence algorithms 
to predict protein secondary structure, the Q3 accuracy of various 
computational prediction algorithms rarely has exceeded 75%. In a 
previous paper [1], this research team presented a rule-based method 
called RT-RICO (Relaxed Threshold Rule Induction from Coverings) 
to predict protein secondary structure. The average Q3 accuracy on 
the sample datasets using RT-RICO was 80.3%, an improvement 
over comparable computational methods. Although this demonstrated 
that RT-RICO might be a promising approach for predicting 
secondary structure, the algorithm’s computational complexity and 
program running time limited its use. Herein a parallelized 
implementation of a slightly modified RT-RICO approach is 
presented. This new version of the algorithm facilitated the testing of 
a much larger dataset of 396 protein domains [2]. Parallelized RT-
RICO achieved a Q3 score of 74.6%, which is higher than the 
consensus prediction accuracy of 72.9% that was achieved for the 
same test dataset by a combination of four secondary structure 
prediction methods [2]. 
 

Keywords—data mining, protein secondary structure prediction, 
parallelization.  

I. INTRODUCTION 
REDICTION of 3D structure of a protein from its amino acid 
sequence is a very important bioinformatics research goal 

and has been studied extensively since the 1960s. Protein 
structure prediction is valuable for drug design, enzyme 
design, and many other biotechnology applications. Rost [3] 
suggests that although protein 3D structure prediction from 
sequence still cannot be achieved fully, in general, research 
has continuously improved methods for predicting simplified 
aspects of structure. Particularly in the area of secondary 
structure prediction, accuracy has surpassed the 70% threshold 
for all residues of a protein. That breakthrough was achieved 
by combining multiple sequence alignment information and 
artificial intelligence algorithms. 

It is not an easy task to evaluate the performance of a 
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protein secondary structure prediction method. [2] For 
example, the use of different datasets for training and testing 
each algorithm makes it difficult to find an objective 
comparison of methods. Interestingly, Kabsh and Sanders [4] 
tested some prediction methods using proteins that had not 
been used in the development of the algorithms, and found 
that the reported prediction accuracy of most of those methods 
decreased by 7 to 27%. 

Efforts have been made to develop standard test datasets to 
accurately evaluate the performance of prediction methods. 
Cuff and Barton [2] describe the development of a non-
redundant test set of 396 protein domains (the CB396 set), 
where non-redundancy is defined as no two proteins in the set 
sharing more than 25% sequence identity over a length of 
more than 80 residues [5]. They used the CB396 set to test 
four secondary structure prediction methods, PHD [5], DSC 
[6], PREDATOR [7] and NNSSP [8]. They also combined the 
four methods by a simple majority-wins method, the 
CONSENSUS method [2]. The resulting Q3 scores were 
71.9% (PHD), 68.4% (DSC), 68.6% (PREDATOR), 71.4% 
(NNSSP) and 72.9% for the CONSENSUS method [2].  

An interesting secondary structure prediction method 
described by Fadime, O¨zlem, and Metin [9] uses a two-stage 
approach. In the first stage, the folding type of a protein is 
determined. The second stage utilizes data from the Protein 
Data Bank (PDB) [10] and a probabilistic search algorithm to 
determine the locations of secondary structure elements. The 
resulting average accuracy of their prediction score is 74.1%. 
However, their test dataset is different from the CB396 set. 

We previously reported a new method for predicting the 
secondary structure elements for different folding types [1]. 
That algorithm, RT-RICO (Relaxed Threshold Rule Induction 
from Coverings), generates rules for discovering non-
independent patterns between protein amino acid sequences 
and related secondary structure elements. Those rules are then 
used to predict protein secondary structure. The RT-RICO 
method performed very well with the training and test datasets 
used in [1], with a Q3 accuracy of 80.3%. Although the 
preliminary test datasets and training datasets used in [1] are 
representative (i.e., the datasets were made up of proteins 
selected from different protein families), there was still a need 
to more extensively test the method. Specifically, to make 
objective evaluations, different datasets for training and 
testing needed to be used with RT-RICO.  

However, one obstacle to testing RT-RICO with additional 
datasets was the fact that the algorithm has a time complexity 
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of O(m22n), where m is the number of all entities (the number 
of 5-residue segments), and n = |S| (the number of attributes). 
In practice, n is only 5, while m can be fairly large. Hence, m2 
dominates the time complexity in this case [1]. The largest m 
value tested was 137,715. When executed on a computer with 
an Intel Pentium Dual-Core processor, 2 GB of RAM, and 
Windows XP OS, the total program running time was 
approximately 14 days. 

In order to accommodate a larger dataset (e.g., m value 
4,376,003), two new algorithms (Section V, Modified RT-
RICO and Parallelization of Modified RT-RICO) were 
developed. The time complexity of modified RT-RICO is only 
O(m×2n), although it comes at an acceptable sacrifice of space 
complexity (i.e., more main memory space is needed as is 
discussed in Section V). The program was parallelized using 
an NVIDIA Tesla C1060 GPU with 4GB of RAM. The 240 
cores on this GPU each run at 1.3 GHz. The CPU on the same 
test machine is a 4-core Intel Core i7-920 with 8GB of RAM. 
The total program running time improved from days to a few 
minutes. 

The significant improvement of time complexity of the two 
new algorithms and the subsequent decrease in program 
running time has enabled us to effectively train and test the 
RT-RICO method on different available datasets, thereby 
providing a more objective comparison to other prediction 
methods. Herein the preliminary results obtained using the 
improved algorithm are reported.  

II. PROBLEM DESCRIPTION 
In general, the protein secondary structure prediction 

problem can be characterized in terms of the following 
components [11]: 
• Input 
Amino acid sequence, A = a1, a2, … aN 
Data for comparison, D = d1, d2, … dN 
ai is an element of a set of 20 amino acids, {A,R,N…V} 
di is an element of a set of secondary structures, {H,E,C}, 
which represents helix H, sheet E, and coil C. 
• Output 
Prediction result: M = m1, m2, … mN 
mi is an element of a set of secondary structures, {H,E,C} 
• 3-Class Prediction [12] 
This is a characterization of the problem as a multi-class 
prediction problem with 3 classes {H,E,C} in which one 
obtains a 3 × 3 confusion matrix Z = (zij). zij represents the 
number of times the input is predicted to be in class j while 
belonging to class i.  

Q total = 100 ∑i Zii / N 
• Q3 Score 
Accuracy is computed as Q3 = Wαα + Wββ + Wcc 

Wαα = % of helices correctly predicted 
Wββ = % of sheets correctly predicted 
Wcc = % of coils correctly predicted  

In other words, a protein secondary structure data sequence D 

is compared to the prediction result sequence M to calculate 
the Q3 score. It should be noted that in [2], Q3 is defined a bit 
differently as: 

Q3 = ∑(i=H,E,C) predictedi / observedi ×100 

III. RELATED WORK 
In [3], Rost classifies protein secondary structure prediction 

methods into three generations. The first generation methods 
depend on single residue statistics to perform prediction. The 
second generation methods depend on segment statistics. The 
third generation methods use evolutionary information to 
predict secondary structure. For example, PHD [5] is a third 
generation prediction method based on a multiple-level neural 
network approach. It has been the most accurate method for 
many years. 

One of the best secondary structure predictors is Jones’ 
PSIPRED Protein Structure Prediction Server, which was 
developed at University College London [13, 14]. PSIPRED 
uses a two-stage neural network to predict the protein’s 
secondary structure based on position-specific scoring 
matrices. The matrices are generated by PSI-BLAST 
(Position-Specific Iterated BLAST) [15]. There are other 
secondary structure prediction methods that utilize neural 
network prediction algorithms. For example, Jnet, works by 
applying multiple sequence alignments alongside profiles such 
as PSI-BLAST and HMM [16]. 

Levitt and Chotia proposed to classify proteins as four basic 
types according to their α-helix and β-sheet content [17]. “All-
α” class proteins consist almost entirely (at least 90%) of α-
helices. “All-β” class proteins are composed mostly of β-
sheets (at least 90%). The “α/β” class proteins have 
alternating, mainly parallel segments of α-helices and β-
sheets. The “α+β” class proteins have a mixture of all-α and 
all-β regions, mostly in sequential order. Fadime, O¨zlem, and 
Metin developed a two-stage method to predict secondary 
structure of proteins [9]. In the first stage of their method, they 
are able to determine the class of unknown proteins with 
100% accuracy. Given a protein sequence, they use a mixed-
integer linear program (MILP)  approach to decide if the 
protein sequence belongs to one of the four classes (“all-α”, 
“all-β”, “α/β”, or “α+β”). In the second stage of their method, 
they use a probabilistic approach based on their stage one 
results. They decompose the amino acid sequences of the 
training set into overlapping sequence groups of three to seven 
residues. These groups are used to calculate the probability 
statistics for secondary structure. Specifically, the secondary 
structure at a particular sequence location is determined by 
comparing the probabilities that an amino acid residue is a 
particular secondary structure type based on the statistics. 

Their results are impressive. They achieved a 100% 
accuracy for classifying proteins into one of the four protein 
type classes (“all-α”, “all-β”, “α/β”, or “α+β”). This greatly 
simplifies part of the protein secondary structure prediction 
problem. That is, given a protein amino acid sequence, if it 
can be determined which one of the four classes this protein 
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belongs to, then other approaches can be applied to predict the 
secondary structure elements within these four classes. In 
contrast, our method, RT-RICO, (discussed in detail in [1]) 
uses a rule-based approach as an alternative way to make the 
prediction. 

A study by Maglia, Leopold and Ghatti [18] implemented a 
data mining approach based on rule induction from coverings 
in order to identify non-independence in phylogenetic data. 
Although rule induction from coverings appeared to be a 
promising solution for the phylogenetic data non-
independence problem, it suffered from exponential 
computational complexity (which was in part addressed by a 
parallelized implementation that was tailored for the 
phylogenetic data by Leopold et al. [19]) as well as the 
strictness required for the resulting rules (i.e., all rules had to 
be correct for all instances in the dataset). The restrictive 
requirement for the rules was addressed in [1], and this 
allowed the research team to discover meaningful 
relationships in protein datasets. 

IV. RT-RICO APPROACH 
RT-RICO (Relaxed Threshold Rule Induction from 

Coverings) is an implementation of a prediction method given 
in [1] for solving the protein secondary structure prediction 
problem. The detailed definitions and algorithms are covered 
in [1], and hence are not repeated in this paper. In this section, 
a brief summary of the RT-RICO approach is introduced. 

 

 
A. RT-RICO Step 1, Data Preparation  
As test data, protein names and corresponding folding types 

of each protein were obtained from the SCOP database [20, 
21]. The protein sequences and secondary structure sequences 
were retrieved from the PDB database [10]. Four databases of 
proteins (with their amino acid sequences and secondary 
structure sequences) of different protein types (“all-α”, “all-
β”, “α/β”, and “α+β”) were built in [1].  Proteins from 

different protein families were selected to form the training 
datasets and the test datasets. See Table I for the number of 
proteins in each training dataset. 

For the first three classes (“all-α”, “all-β”, and “α/β”), 
approximately 2.5% of all the available proteins (from SCOP) 
were chosen as training data. For the “α+β” class, 
approximately 5% of all the available proteins were chosen as 
training data. 5% for the last class were chosen mainly 
because enough 5-residue segments for the “α+β” class were 
needed. If only 2.5% had been chosen, the number of 5-
residue segments for the “α+β” class would be much less than 
that for the “α/β” class. The PDB IDs for all protein sequences 
used for training and testing can be found on the following 
webpage: http://www.leeleong.com/rt-rico/. 

The protein secondary structure sequences from PDB are 
formed by elements of eight states of secondary structure, {H, 
G, I, E, B, T, S, -}. The eight states were converted to four 
states to facilitate rule generation as follows: 

(G, H, I) => Helix H 
(E, B) => Sheet E 
(T, S) => Coil C 
(-) => “-” 
Note that rule generation uses a four-state decision 

attribute. The final Q3 score calculation uses a three-state 
decision attribute: 

(G, H, I) => Helix H 
(E, B) => Sheet E 
(Rest) => Coil C 
The basis for our approach is to first search segments of 

amino acid sequences of known protein secondary structures, 
and then find the rules that relate amino acid residues to 
secondary structure elements. The generated rules are 
subsequently used to predict the secondary structure. Klepeis 
and Floudas showed that the use of overlapping segments of 
five residues is very effective in predicting the helical 
segments of proteins [23]. Thus, the overlapping 5-residue 
segments approach was used to prepare the training data 
records. As shown in Fig. 1, for each secondary structure 
element, five “neighboring” amino acid residues were 
extracted to form a segment of five amino acid residues, plus 
one secondary structure element. These segments were used as 
input to the RT-RICO rule generation algorithm to generate 
rules. The numbers of 5-residue segments generated for the 
four protein type classes are shown in Table I. 

The inputs to RT-RICO are in the form of 6-tuples. The 
first five elements of a 6-tuple are formed by amino acid 
residues, {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 
W, Y}. The last element of a 6-tuple is formed by one of four 
secondary structure states {H, E, C, -}. The last element is 
considered the decision attribute. In other words, the input to 
RT-RICO Step 2, Rule Generation, are in the form of an 
m×(n+1) matrix, where m is the number of all entities (the 
number of 5-residue plus one secondary structure element 
segments), and n = |S| (the number of attributes, n = 5 in this 
case). 

TABLE I 
RESULTS FOR PROTEIN SECONDARY STRUCTURE PREDICTION [1] 

  Training 
Set   

Folding 
Type 

Classes 

Total 
Number of 

Proteins 
(SCOP) 

Number of 
Proteins 

Number of 
5-Residue 
Segments 

Number of 
Rules (at 

90% 
threshold) 

All-α 7,999 199 47,955 203,636 
All-β 12,968 323 83,187 257,911 
α/β 12,199 304 107,900 319,361 
α+β 11,425 567 137,715 346,379 
     
  Test Set   
Folding 
Type 
Classes 

 Number of 
Proteins 

Number of 
Residues 

Q3 (%) 

All-α  40 10,151 88.7 
All-β  65 17,627 80.2 
α/β  61 20,810 77.0 
α+β  57 12,379 78.9 
Total  223 60,967 80.3 
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B. RT-RICO Step 2, Rule Generation 
RT-RICO generates rules based on the segments in the 

form of an m×(n+1) matrix. Some examples of these rules are 
shown in Fig. 2 in two separate formats. The first format is 
intended to be read by the computer programs at the later 
prediction stage (i.e., the computer rule format). The second 
format is intended to be read by the user (i.e., the human rule 
format). The first rule (in human rule format) is interpreted as 
follows: if the fourth position attribute (or “3” as interpreted 
by program) is “H”, and the fifth position attribute (or “4” as 
interpreted by program) is “C”, then the sixth attribute 
(decision attribute, or “5” as interpreted by program) is “H” 
with a confidence of 92% and a support of 0.04796163%. The 
definitions of confidence and support can be found in [24]. 

 

The corresponding first rule (in computer rule format) is 
interpreted as follows: if the first position attribute is “+” 
(representing any amino acid element), the second position 
attribute is “+”, the third position attribute is “+”, the fourth 
position attribute is “H”, and the fifth position attribute is “C”, 
then the sixth attribute  (i.e., the decision attribute) is “H”. The 
number of occurrences of the fourth position attribute (which 
is “H”), the fifth position attribute (which is “C”), and the 

sixth attribute (which is “H”), equals 25 among all inputs to 
RT-RICO. The number of occurrences of the fourth position 
attribute (which is “H”) and the fifth position attribute (which 
is “C”) equals 23 among all inputs to RT-RICO. The support 
is 0.04796163%. 

C. RT-RICO Step 3, Prediction  
Finally RT-RICO loads protein primary structures from the 

test dataset, and predicts the secondary structure elements. As 
shown in Fig. 3, for each secondary structure element 
prediction position, five “neighboring” amino acid residues 
are extracted to form a segment of five amino acid residues. 
Each of these segments is compared with the generated rules. 
If a segment matches a rule, the support value of the rule is 
taken into consideration for the prediction of the related 
secondary structure element. The algorithm first searches for 
matching rules with 100% confidence value.  If no matching 
rule exists among 100% confidence value rules, the algorithm 
then searches for other matching rules. The secondary 
structure element with the highest total support value is 
selected as the predicted secondary structure element for that 
specific position. The number of proteins used in the test 
datasets, and the final Q3 scores are shown in Table I. 

The reported “all-α” proteins have the highest Q3 score of 
88.7%. The “all-β” and “α+β” proteins have Q3 scores of 
80.2% and 78.9% respectively. The “α/β” proteins have the 
lowest prediction accuracy of 77.0%. 

 
D. RT-RICO Rule Generation Algorithm 
Although the RT-RICO protein secondary structure 

prediction method consists of the above mentioned three 
steps, the most computationally intensive part is in the second 
step - rule generation. Here is a summary of the rule 
generation algorithm. For detailed definitions used in the 
algorithm, please refer to [1]. 

The RT-RICO rule generation algorithm finds the set C of 
all relaxed coverings of R in S (and the related rules), with 
threshold probability t (0 < t ≤ 1), where S is the set of all 
attributes, and R is the set of all decisions. The set of all 

 
 
 
Fig. 3.  Protein primary structure 5-residue segments and related 
secondary structure elements prediction. mi is an element of set 
{H,E,C,-}. It is then converted to an element of the set {H, E, C}. 
Note: The first and second positions at the beginning of the sequence 
are represented (predicted) by 3 residue, and 4 residue segments, 
respectively. Their related prediction is handled slightly differently. 
 

 
Note: The first and second positions at the beginning of the sequence 
are represented by 3 residues + 1, and 4 residues + 1 segments, 
respectively. They form separate training datasets.  
 
Fig. 1.  Protein primary structure 5-residue segments and related 
secondary structure elements representation. 

+,+,+,H,C,H,92.00,25,23,0.04796163 
F,Y,A,+,+,H,100.00,6,6,0.01251173 
Y,A,N,+,+,H,100.00,7,7,0.01459702 
…… 
(3,H)(4,C) -> (5, H), 92.00%,  
occurrences of ((3,H)(4,C)) = 25,   
occurrences of ((3,H)(4,C) -> (5, H)) = 23, 
Support % = 0.04796163 
(0,F)(1,Y)(2,A) -> (5, H), 100.00%, 
occurrences of ((0,F)(1,Y)(2,A)) = 6, 
occurrences of ((0,F)(1,Y)(2,A) -> (5, H)) = 6,  
Support % = 0.01251173 
(0,Y)(1,A)(2,N) -> (5, H), 100.00%,  
occurrences of ((0,Y)(1,A)(2,N)) = 7,  occurrences 
of ((0,Y)(1,A)(2,N) -> (5, H)) = 7, Support % = 
0.01459702 

…… 
 
Fig. 2.  Sample rules generated by RT-RICO  
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subsets of the same cardinality k of the set S is denoted Pk = 
{{xi1, xi2, … , xik} | xi1, xi2, … , xik ∈ S}. 

 
Algorithm 1: RT-RICO 
begin 

for each attribute x in S do 
compute [x]*; 

compute partition R* 
k:=1 
while k ≤ |S| do 

for each set P in Pk do 
if (∏x∈P [x]* ≤ r,t R*) then  
begin 

find values of attributes from the entities that are 
in the region (B ∩ B’) such that (|B ∩ B’| / |B|) ≥  
t; 
add rule to output file; 

end 
k := k+1 

end-while; 
end-algorithm. 

 
The time complexity of the RT-RICO algorithm is 

exponential with respect to |S|, the number of attributes in the 
dataset. The time complexity is O(m22n), where m is the 
number of all entities (the number of 5-residue segments), and 
n = |S| (the number of attributes). 2n normally dominates the 
time complexity. But for our training datasets, n is only 5, 
while m is considerably larger. Hence, m2 dominates the time 
complexity in this case. 

As mentioned in Section IV(C), the rules generated by the 
RT-RICO algorithm are then compared with the proteins in 
the test dataset to predict the secondary structure elements. 

E. RT-RICO Running Time Limitations 
To more comprehensively evaluate the RT-RICO prediction 

method, much larger training and test datasets needed to be 
used to generate rules. In order to improve the RT-RICO time 
complexity and the program running time, the original rule 
generation algorithm was modified, and a parallelized strategy 
was implemented. 

V. PARALLELIZED/MODIFIED RT-RICO ALGORITHMS 
The focus of the parallelization of RT-RICO was the rule 

generation step. It is the most expensive part of the algorithm 
since it involves generating rules from each segment, counting 
the frequency of each rule, and finally calculating the 
confidence and support of each rule. As mentioned earlier, in 
the sequential implementation of RT-RICO, the complexity of 
this step is O(m2×2n), where m is the number of segments and 
n the number of amino acid residues in a segment. Usually n is 
fixed at 5, but m could range from a few thousand to the 
millions. To reduce the complexity, and hence improve its 
running time, it was essential to reduce the factor of m in the 
RT-RICO algorithm. 

The m2 in O(m2×2n) is a result of counting the occurrences 

of each rule. After generating a rule from a segment, the 
algorithm has to iterate through the list of m segments to count 
how many times that rule has been seen. This has to be 
repeated for each of the m×2n rules that can be generated. 
Hence the complexity is O(m2×2n). 

But RT-RICO can skip the iteration through the list m times 
per rule if it simply increments a rule-specific counter every 
time a rule is generated. The drawback is that there needs to 
be a counter for every possible rule that can be generated, and 
this requires an immense amount of main memory. A worst-
case calculation of the required space complexity is 
O(20n×2n), which translates to approximately 99 Megabytes 
for 5aa segments, and 163 Gigabytes for 7aa segments. This 
increases exponentially with an increase in n. The calculation 
of space complexity is illustrated in Fig. 4. 

 
Despite the exponential space complexity, 5aa segments 

only require 99 Megabytes of memory. This was further 
reduced to just 4 Megabytes, by accounting for the duplicate 
rules that two different segments can generate. For example, 
the two 5aa segments [S,L,F,E,Q] and [E,L,S,E,Q] can 
generate the same rule for [+,L,+,E,Q]. The mathematics 
behind this space optimization is rather complex and is not 
discussed here, because the 99 Megabytes, or the 4 Megabytes 
required by the modified algorithm are both trivial amounts on 
the newer test machine that was used (which has 8192 
Megabytes of memory). 

A. Modified algorithm for rule generation 
In essence, the modified RT-RICO algorithm compromises 

on space complexity for the sake of reducing time complexity. 
Algorithm 2 describes this modification is more detail. 

Consider a 5AA segment [0,1,2,3,4] and its 
corresponding secondary structure [5] 
 

0  1  2  3  4  5 
20  20  20  20  20  4 

 
Positions 0 thru 4 can each have 20 possible 
amino acids, and position 5 has 4 possible 
secondary structures. This brings the total 
number of combinations to 4×20n. Each of these 
segments can generate rules by masking the 5 
amino acids in different ways. For example: 
 

        4 
      3   
      3  4 
    2     
    2    4 
    2  3   
    2  3  4 
  1       
  1      4 
  1    3   
  1    3  4 

...and so on 

Notice how the 
masking of the 
amino acids is the 
same as the binary 
numerals for 1 thru 
2n. 
 
This means that 2n-
1 rules can be 
generated from each 
segment (excluding 
zero). 

 
The space required for every possible rule is: 
4 × 20n × (2n-1) i.e. O(20n × 2n) 
 
Fig. 4.  The number of all possible rules from 5aa segments 
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Algorithm 2: Modified  RT-RICO 
begin 

Allocate counters for every possible rule (initialize to 0) 
for each segment 

for each 2n-1 rules from this segment 
Calculate the memory location of the counter 
corresponding to this rule, and increment it by 1 

end-for 
end-for 
Read each counter and calculate the confidence and 
support for those rules that pass the relaxed threshold 

end-algorithm. 
 
The complexity of this algorithm is just O(m×2n) because 

the algorithm does not need to count the reoccurrence of each 
rule. The generated rules simply increment a counter 
whenever they are generated. There is an additional amount of 
time required to calculate the memory location of the counter 
that corresponds to a rule. However, this is negligible, and as 
a constant, it does not affect the overall complexity of the 
algorithm. 

B. Parallelization of rule generation 
The modified RT-RICO rule generation algorithm places no 

restrictions on the order in which rules are generated. So 
parallelizing the algorithm involves a straightforward 
distribution of the input data among processing units. Each 
processing unit calculates the memory location of the counter 
corresponding to the rule that it generates from a given 
segment, and increments that counter. These operations can be 
performed in parallel by any number of concurrent processing 
units. However, for performance reasons (e.g., to minimize 
potentially conflicting concurrent updates of shared memory 
locations), the number of concurrent processing units is kept 
under a predetermined threshold. 

C. Massively Parallel computation using GPUs 
Compute Unified Device Architecture (CUDA) is a 

programming interface for developing general purpose 
applications on Graphics Processing Units (GPUs). GPUs are 
conventionally used for graphics acceleration, which typically 
involves repeatedly performing the same computational 
operation on multiple input data, also known as SIMD 
operations (single instruction multiple data). Because of the 
constraints placed on SIMD operations, GPU hardware is 
designed with features such as massively parallel processing 
and pipelining to accelerate the execution of these operations. 
With CUDA, GPUs can be directly programmed using the C 
programming language to process any kind of general purpose 
operation, which would normally be tasked to CPUs. 
However, because the GPU hardware remains the same, they 
are still ideally suited for SIMD operations, and more complex 
operations are likely to run faster sequentially on a CPU. 

The modified RT-RICO rule generation algorithm is an 
ideal SIMD operation. The calculation of the memory location 
of the counter that corresponds to a rule extracted from a 

segment, is performed over and over again for all the given 
segments in the input file. This SIMD operation was 
parallelized using an NVIDIA Tesla C1060 GPU with 4GB of 
RAM. The 240 cores on this GPU each run at 1.3 GHz. The 
CPU on the same test machine was a 4-core Intel Core i7-920 
with 8GB of RAM. The total program running time was 
approximately 3 minutes and 33 seconds for rule generation of 
the dataset in Table II, which is much larger than the dataset 
of Table I. 

VI. RESULTS 
A standard test dataset of 396 protein domains (the CB396 

set developed by Cuff and Barton [2]) was used to evaluate 
the performance of the new parallelized, modified RT-RICO 
rule generation algorithm, and also the overall RT-RICO 
prediction performance. See Table II for the number of 
proteins in each training dataset, and the performance of RT-
RICO prediction method on CB396 test dataset. 

 
The CB396 dataset is a specially developed non-redundant 

test dataset created with the objective of comparing different 
protein secondary structure prediction methods. In [2], the 
CB396 set was applied to four secondary structure prediction 
methods and a CONSENSUS method. Respectively, the Q3 
scores were 71.9% (PHD [5]), 68.4% (DSC [6]), 68.6% 
(PREDATOR [7]), 71.4% (NNSSP [8]) and 72.9% for the 
CONSENSUS method (which combined the above four 
methods) [2]. The parallelization of RT-RICO enabled us to 
test our approach using the CB396 test dataset.  

The final Q3 scores of RT-RICO prediction of CB396 test 
dataset are shown in Table II. The “all-α” protein domains 
have the highest Q3 score of 82.6%. The “all-β” and “α/β” 
protein domains have Q3 scores of 77.4% and 72.9% 
respectively. The “α+β” and “Others” protein domains have 

 
TABLE II 

PROTEIN SECONDARY STRUCTURE PREDICTION USING PARALLELIZED RT-
RICO RULE GENERATION ON CB396 TEST DATASET 

  Training 
Set   

Folding 
Type 

Classes 

 Number of 
Proteins 

Number of 5-
Residue 

Segments 

Number of 
Rules (at 90% 

threshold) 
All-α  7,919 1,914,430 602,195 
All-β  12,881 3,375,084 649,996 
α/β  12,064 4,376,003 750,679 
α+β  11,294 2,824,396 643,487 
Others  5,691 1,166,849 468,202 
     
    CB396 Test Set  

(396 Protein Domains) 
Folding 
Type 
Classes 

  Number of 
Residues 

Q3 (%) 

All-α   9,270 82.6 
All-β   11,555 77.4 
α/β   25,682 72.9 
α+β   11,077 71.3 
Others   5,205 69.5 
Total   62,789 74.6 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:12, 2009

2782

 

 

the prediction accuracy of 71.3% and 69.5%. On average, RT-
RICO has a Q3 score of 74.6%, which is higher than the Q3 
score generated by other methods using the same test dataset 
(as reported in [2]). 

VII. CONCLUSION 
Despite the large amount of available protein data, applying 

the originally developed RT-RICO prediction method [1] to 
predict protein secondary structure was difficult. The lengthy 
program running time primarily was the result of the O(m22n) 
time complexity of the rule generation step. Therefore, two 
new algorithms were developed (Section V, Modified RT-
RICO and Parallelization of Modified RT-RICO). The time 
complexity of modified RT-RICO is only O(m×2n), although 
it comes at an acceptable sacrifice of space complexity. The 
resulting faster running time of the program facilitated the use 
of the CB396 test dataset to test the RT-RICO prediction 
method. For that dataset the average Q3 accuracy of the RT-
RICO predictions was 74.6%, which is higher than the Q3 
scores generated by other prediction methods using the same 
dataset (as reported in [2]). In the future, the research team 
plans to use other available standard test datasets to further 
objectively evaluate the performance of this new, promising 
prediction method, as well as to continue to look for ways to 
improve the accuracy of the predictions.  
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