
International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:8, 2007

497

Protein Graph Partitioning by Mutually
Maximization of cycle-distributions

Frank Emmert Streib

Abstract— The classification of the protein structure is commonly
not performed for the whole protein but for structural domains, i.e.,
compact functional units preserved during evolution. Hence, a first
step to a protein structure classification is the separation of the
protein into its domains. We approach the problem of protein domain
identification by proposing a novel graph theoretical algorithm. We
represent the protein structure as an undirected, unweighted and
unlabeled graph which nodes correspond the secondary structure
elements of the protein. This graph is call the protein graph. The
domains are then identified as partitions of the graph corresponding
to vertices sets obtained by the maximization of an objective function,
which mutually maximizes the cycle distributions found in the
partitions of the graph. Our algorithm does not utilize any other kind
of information besides the cycle-distribution to find the partitions. If
a partition is found, the algorithm is iteratively applied to each of
the resulting subgraphs. As stop criterion, we calculate numerically
a significance level which indicates the stability of the predicted
partition against a random rewiring of the protein graph. Hence,
our algorithm terminates automatically its iterative application. We
present results for one and two domain proteins and compare our
results with the manually assigned domains by the SCOP database
and differences are discussed.

Keywords— Graph partitioning, unweighted graph, protein do-
mains.

I. INTRODUCTION

THE investigation of the structural organization of proteins
is important for understanding the mechanisms of protein

folding and the evolution of the proteins. Direct determination
of protein structures [10], [16], [2] as well as comparative
sequence analysis [8] indicate that proteins have a modular
structure, i.e., that a polypeptide chain may consist of sev-
eral sequence elements that fold independently and may be
inherited as discrete sequence fragments, which recombine
to produce novel sequence and spatial architectures. This
level of protein organization is called domain [17], [13], [4].
A formal definition of a domain is an interesting and still
outstanding problem. In general, the notion of a structural
domain of a protein is associated with its compactness and
thermodynamical stability if excised, see, e.g., [15] for a more
detailed discussion and references. Practically, a good defini-
tion of a protein domain is a prerequisite for any functional
or evolutionary analysis of proteins and proteomes.

In this article, we present a novel algorithm for the au-
tomatic identification of structural domains of proteis which
is based on a graph theoretical approach. In the next section
we introduce this algorithm mathematically. In section III we
present results for one and two domain proteins and compare
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our results with the manually assigned domains from the
SCOP database [9]. We finish this article with a summary
and some concluding remarks in section IV.

II. THE MODEL

The basic idea behind our algorithm for the identification
of protein domains consists in two step. The first is, to
represent a protein as graph. The second, to partition this
graph and identify the partitions as domains. In the following
subsections, we will describe both steps in detail.

A. Representation of Proteins

If one wants to identify the domains of a protein algorith-
mically, one has to represent the protein in a way which is
accessible to mathematical methods. Hence, it is clear that this
representation will inevitably disregard some known properties
of proteins, because up to now there is no mathematical model
for proteins available describing all of their known properties.
We use as course-grained level of description the secondary
structure elements of a protein. More precisely, we distinguish
between three different types of secondary structure elements
- helix, strand and loop. Based on the secondary structure
elements of a protein we transform the information available
about a protein in a PDB file from Protein Data Bank [3] in
a graph by the following algorithm.

Algorithm 1: Representation of a protein as a graph:

1) Determine the secondary structure elements of a pro-
tein by using the information from a PDB file of a
protein and enumerate them in a consecutive order. We
differentiate between three types of secondary structure
elements: helix, strand and loop.

2) Each secondary structure element represents one node
in the protein graph.

3) Two nodes m and n in the protein graph are connected
by an edge e(m, n) = 1, if there exist two Cα-atoms,
one from secondary structure element m and one from
secondary structure element n whose spacial distance is
below a threshold Θ

e(m, n) =

⎧

⎨

⎩

1 : |Cm
α − Cn

α | ≤ Θ

0 : |Cm
α − Cn

α | > Θ
(1)

Additionally, we connect consecutive secondary struc-
ture elements along the backbone

e(m + 1, m) = e(m, m + 1) = 1 (2)

∀ m ∈ {1, . . . , N − 1}
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All other entries in the adjacency matrix e(, ) of the
protein graph remain zero1.

This results in an undirected, unweighted and unlabeled graph
for every protein. That means, we neglect the labels of the
nodes representing a helix, a strand or a loop and we do not
consider weights of edges resulting from multiple pairs of Cα-
atoms whose reciprocal spacial distance is below the threshold
Θ. A protein graph has zero entries on the main diagonal
and ones on its first upper and lower diagonal representing
the connections from the backbone. The remaining sites are
sparsely occupied by ones representing, e.g., hydrogen bonds.
We do not check if the connections determined by Eq. 3 are
actually hydrogen bonds because we want to see, whether
this course-grained approach is already appropriate to carry
enough information for the domain identification. To choose
the secondary structure elements of a protein as course-grained
level is in contrast to other contributions dealing with the
domain identification. Normally, the Cα’s of the residues [14]
or even the atoms of the backbone [18], [5] are selected to
extract information for their methods. Our choice has the
advantage to reduce the almost overwhelming complexity of
information available for each protein whose structure has
been chrystalised, provided by a PDB file [3], rigorously.

This leads to the following definition.
Definition 1: We call an unweighted, undirected and unla-

beled graph obtained by the algorithm 1 a protein graph and
denote it by GIII..
Based on this representation of a protein as a graph we will
introduce now a method which partitions a protein graph. The
obtained partitions will then be defined as the domains of a
protein.

B. Partitioning of Protein Graphs

It is believed since a long time that the domains of a
protein are in some form compact [12]. There are several
suggestions to characterize the compactness of a domain in
a more precise way. For example there are hypothesis that
the domain should stay folded if the protein is cut into its
domains or that the number of contacts between domains
should be less than the number of internal domain contacts
[13], [11]. If one takes a look to protein structures one gets
immediately the feeling that the compactness of domains
should not be interpreted in a strict mathematical sense as,
e.g., the compactness of a chemical crystal structures like
NaCl but in a less restrictive way. To make our point clear, we
depicted in Fig. 1 three different domains. The line represents
in all figures the backbone. Apparently, the intuitive notion of
compactness varied between all figures significantly. However,
a common property shared by all schematic domains is that
the backbone has to ’fold back’. Each domain starts with
a backbone piece for which this does not hold. It is clear,
that such a piece can not be a domain at all. The degree to
which the back-folding occurs differs for all three figures. This
makes it from a mathematical point of view difficult to find a
common characteristics. Interestingly, from a graph theoretical

1The Cartesian coordinates are given in a PDB file of a protein

Fig. 1. Schematic domains of a protein. The full line corresponds to the
backbone.

point of view one simple entity which can always distinguish
between a back-folded and a non-backfolded backbone is a
cycle. A cycle is a closed path which returns to its starting
point and, hence, can be seen to represent compactness in
a wider sense. This motivated us to derive an algorithm
which mutually maximizes the cycle-distributions found in two
protein subgraphs resulting from a single cut position of the
backbone. In the following we present this algorithm in detail.

Algorithm 2: Partitioning of a protein graph GIII with N

nodes.

1) Calculate the cycle set CS consisting of all cycles found
in the graph GIII up to a length L.

2) Determine the cycle histograms CHL(i) and CHR(i)
for i ∈ {1, . . . , N − 1} by dividing the cycle set CS in
three non-intersecting sets CSL, CSR and CSLR defined
by

CSL(i) = {c ∈ CS | cj ≤ i , ∀ j ∈ |c|} (3)

CSR(i) = {c ∈ CS | cj > i , ∀ j ∈ |c|} (4)

CSLR(i) = CS \ {CSR(i) ∪ CSL(i)} (5)

We call i the boundary index of part L. The cycle
histograms are now defined for the i-th index by

CHL(i, j) = |{v ∈ CSL(i) | |v| = j}| (6)

CHR(i, j) = |{v ∈ CSR(i) | |v| = j}| (7)

3) Normalize the cycle histograms along the cycle length
index

CHL(i, j) =
CHL(i, j)

∑

i′ CHL(i′, j)
(8)

CHR(i, j) =
CHR(i, j)

∑

i′ CHR(i′, j)
(9)

4) Determine an objective function Eobj(i) for i ∈
{1, . . . , N − 1} by:

Eobj(i) =

L
∑

j

CHL(i, j)CHR(i, j) (10)
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5) Determine the maximum of the objective Function

icut = argmax
i′

Eobj(i
′) (11)

6) Determine a significance level of the cut and accept it,
if

αEobj(icut) > E
r

obj(icut) (12)

with α ∈ [0, 1].

As underlying visualization one should imagine a graph con-
sisting only of the “backbone” connections given by Eq. 3 dis-
played as straight, horizontal line connecting the N nodes. The
boundary index i determines uniquely two disjunct vertices
sets VL(i) = {1, 2, . . . , i} and VR(i) = {i + 1, i + 2, . . . , N}
separating the nodes on the “backbone” in a left L and right R

part. The boundary index i can be seen as sliding cut-position
along the “backbone” connections which results in VL and
VR. The histograms of the cycle distributions are then given,
e.g., for the left part and boundary index i, as the number of
cycles of length j from CS which contain only vertices from
VL(i). This is denoted by CHL(i, j). Our objective function
Eobj determines the dot product between the normalized cycle
histograms of the left and right part and measures by this their
mutual overlap. We use the normalized cycle histograms along
the cycle length index because the absolute number of cycles
found is not of interest at all but only the relative number
compared to other potential cut positions. The normalization
transforms the absolute values into relative weights between
different cut positions.

The crucial point of our procedure is to decide, if the sug-
gested cut position icut is accepted or rejected. More precisely,
we need to define a significance level of the suggested cut
position. Intuitively, this could be done by calculating the
objective function of a randomized protein graph. The cut
position will then be accepted, if the value of the objective
function of the randomized protein graph is significant lower
than the value for the unperturbed protein graph. To apply
this approach we have to define a randomized protein graph
and a significance level mathematically. We suggest to define
a randomized protein graph by randomly alternating ΘrN

entries of a protein graph of non diagonal and non first off-
diagonal entries. This ensures, that the resulting graph has still
its backbone connections and no self-connections2. By this we
obtain a value Er

obj(icut) for this graph of the randomized
objective function. The predicted cut position can be viewed
as statistically significant, if it is stable against the averaged
randomized objective functions

E
r

obj(icut) =
1

Nr

∑

Er
obj(icut) (13)

of an ensemble of size Nr of randomized protein graphs. The
parameter α in Eq. 12 is introduced as weight because our
suggestion to define a randomized protein graph is plausible
but certainly different to a ’natural’ or ’real’ randomized
protein graph which is actually unknown due to the lack of our
understanding of the organization of protein tertiary structures.

2The alterations of the matrix entries has to be done symmetrically.

If the cut condition in Eq. 12 is fulfilled then the protein is
cut at this position. This cut results in two new protein graphs
to which algorithm 2 is applied iteratively until the procedure
eventually comes to an end. This means, our algorithm does
not rely on prior information about the number of expected
domains but stops automatically.

III. RESULTS

We demonstrate the applicability of our method for the
identification of protein domains for one and two domain
proteins. Our test set consists of 100 one domain and 71 two
domain proteins. The mutual sequence similarity between the
proteins was below 30% to exclude redundancy. Our results are
compared with the manually assigned domains in the SCOP
[9] database. Table I gives the parameter values used for the
following simulations. These values were estimated from the
application of our method to a training set consisting of 20/20
proteins.

TABLE I

OPTIMIZED PARAMETERS OF OUR MODEL FOUND BY THE APPLICATION

OF OUR MODEL TO THE TRAINING SET.

L α Nr Θr

12 0.8 150 0.45

We found, that our method can detect one domain proteins
with an accuracy of 80%. Inspection of the significance ratio
αEobj(icut)

E
r

obj(icut)
for the wrongly cut proteins revealed, that 8 of

these 20 proteins are only less than 5% over our cut criterion.
This means, some slightly additional refinements of our algo-
rithm should easily solve this problem. The results for the 71
two domain proteins are shown in the left Fig. 2. The abscissae
gives the distance, measured in the number of secondary
structure elements, from our predicted cut position to the
assigned position by SCOP. The ordinate gives the percentage
of proteins with a distance #SSE. One can clearly see, that
the center of mass of our predictions is centered arround zero.
More precisely, 78.3% of all two domain proteins within ±6
secondary structure elements were correctly assigned by our
method. We want to mention, that normally, e.g., between
a helix and a strand is a loop. Hence, in average from 6
secondary structure elements 3 will be loops. That means, that
a rescaling of the abscissae in Fig. 2 by a factor 1

2 gives the
distance in coordinates of the significant structure-determining
secondary structure elements. Additionally, we found that 11
proteins were cut two and 2 proteins three times. No protein
occured with more than three or zero cuts. This indicates,
that our significance ciriteria in Eq. 12 which is based on
the randomization of protein graphs works well despite its
simplicity. Our results are comparable well as the results
found by DOMAINPARSER [18], [5] which is currently the
best algorithm available to identify the domains of a protein
[15].

To demonstrate, that the predictions with a distance > 10
secondary structure elements from the position assigned by
SCOP are not necessarily wrong we present in Fig. 3 two
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Fig. 2. Top: Normalized histogram for the predicted cut position of two
domain proteins in relation to the assigned cut position by SCOP. Bottom:
Objective Function Eobj for 1FTR chain A, shown in the right Fig. 3.

such examples. The left Fig. 3 shows 1QSA chain A. The
cut position assigned by SCOP is indicated by a white our
predicted cut position by a black ball for clarity. One can
see, that the helices are circularly arranged and our predicted
cut position divides the circle roughly in two equal pieces
separating the more loosely connected part on the left hand
side of the figure from the more tangled helices on the
righ hand side. This assignment, solely based on our graph
theoretical measure is plausible. In contrast, the assigment by
SCOP to cut the backbone in the tangled region can certainly
not be found by our method because this cut destroys a huge
amount of cycles as can be seen from Eobj (not shown). We
think, the reason for this choice are beyond graph theoretical
considerations and incorporate knowledge from biochemistry.

The second example in the right Fig. 3 shows 1FTR chain A.
This case is interesting because the assigned cut position by

SCOP dissects a beta-sheet. Again, our assigment is plausible
and even preserves normally beta-sheets without the need of
an explicite rule in opposite to other approaches for the protein
domain identification, e.g., [14]. The reason therefore is, that
the case shown in the right Fig. 3 namely a strand followed
by a loop (or turn) followed by a strand results in a protein

Fig. 3. Left: 1QSA chain A (soluble lytic transglycosylase SLT70). The
assigned cut position by SCOP is indicated by the white ball, the predicted
cut positon form our methode by a black ball. This figure was produced with
Molscript [7].

Fig. 4. 1FTR chain A (formylmethanofuran tetrahydomethanopterin formyl-
tranferase). The assigned cut position by SCOP is indicated by the white ball,
the predicted cut positon form our methode by a black ball. This figure was
produced with Molscript [7].

graph in a triangle connecting the corresponding secondary
structure elements. A triangle is the smallest entity which can
contain a cycle. Depending on the further progression of the
backbone this triangle can be involved in a small or large
number of cycles of different lengths within the protein graph.
Again, there is no explicite rule preventing the cut of a beta-
sheet but implicitely the dissection of a triangle will result in
average in a loss of a certain number of cycles and, hence,
the objective function in Eq. 10 which maximizes mutually
the cycle-distributions found in both domains, will decrease.
This can be see in the bottom Fig. 2 where we ploted Eobj

for 1FTR chain A. This plot displays an interessting result.
One can see, that the second highest Eobj value corresponds
to the position of the SCOP assignment. The interpretation of
this difference is enlightening because apparently the cut of the
beta-sheet makes also sense for our graph-theoretical measure,
however, as explained above this cut destroys inviteable a
certain number of cycles and, hence, another position is
favoured by our method which is difficult to find by visual
inspection. This demonstrates a possible application of our
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method assisting people to assin the domains of proteins,
because our method provides in an objective way suggestions
for such partitions.

IV. CONCLUSIONS

In this paper we introduced a novel algorithm for the identi-
fication of protein domains which design was data-driven. Our
method is based on two steps. First, we represent each protein
as undirected, unweighted and unlabeled graph which nodes
correspond to the secondary structure elements of the protein.
We call this graph the protein graph GIII. of a protein, because
we distinguish between three types of secondary structure
elements - helix, strand and loop. Second, we partition the
protein graph by searching the cut position along the backbone
which mutually maximizes the cycle-distributions found for
this cut position for the remaining two protein subgraphs.
The final decision, if this tentative cut position is accepted
or rejected is made by comaring the value of the objective
function for this position with a randomized objective function
which is based on an ensemble of randomized protein graphs.
This gives us a statistically significant decision criterion which
accepts tentative cut positions only, if they are stable against a
random rewiring of the protein graph under consideration. The
algorithm we proposed is purely based on a graph theoretical
entity namely a cycle. We want to mention explicitely, that
we do not utilize other geometrical or physical parameters
serving as additional rules to select cut positions as, e.g., in
[18], [5]. Xu et al. proposed DOMAINPARSER [18] which
is also based on a graph theoretical idea namely to find
the minimum number of (weighted) cuts which separate a
graph in two pieces. Due to the fact, that DOMAINPARSER

needs to utilize half a dozen additional rules the merit of
the graph theretical idea remains unclear. To our knowledge
our approach is the only one which is soley based on a
graph theoretical principle. This demonstrates not only that
we found an algorithm which yields very good results but
also that a treatment of the identification of protein domains
is possible within the framework of graph theory enriched
by a computational procedure. Hence, our proposed algorithm
to approach the outstanding problem of the identification of
protein domains is from a mathematical point of view even
elegant.
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