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Properties of a stochastic predator-prey system with
Holling II functional response

Xianqing Liu, Shouming Zhong, Fuli Zhong and Zijian Liu

Abstract—In this paper, a stochastic predator-prey system with
Holling II functional response is studied. First, we show that there
is a unique positive solution to the system for any given positive
initial value. Then, stochastically bounded of the positive solution
to the stochastic system is derived. Moreover, sufficient conditions
for global asymptotic stability are also established. In the end, some
simulation figures are carried out to support the analytical findings.

Keywords—stochastically bounded, global stability, Holling II
functional response, white noise, Markovian switching.

I. INTRODUCTION

RECENTLY, more and more scholars pay attention to
the predator-prey system because of its theoretical and

practical significance. The earliest predator-prey system is the
Lotka-Volterra model[1,2], governed by the following differen-
tial equations {

˙x(t) = x(t)(a− by(t)),
˙y(t) = y(t)(−c+ fx(t)).

(1.1)

As a matter of fact, there are many significant elements of
the predator-prey relationship, such as the predator’s functional
response which is the rate of prey consumption by an average
predator. Much works which considering different functional
response types of the original model have been done. And
Holling II functional response is one of the most important
functional responses. In [3], Li and Gao introduced the special
predator-prey system with Holling II functional response,
which also considered the density-dependence of predator
population:⎧⎪⎪⎨

⎪⎪⎩
˙x(t) = b1x

[
1− a11x− a12y

1 + x

]
,

˙y(t) = b2y

[
−1 +

a21x

1 + x
− a22y

]
.

(1.2)

However, we have no choice but to admit that all population
systems are often subject to environmental noises. So, con-
sidering the corresponding stochastic population is necessary
and important. Therefore, many people start to be concerned
about stochastic population systems (see e.g.[4-8]). Lv and
Wang[6] proposed and investigated the stochastic predator-
prey system with Holling II functional response, which taking
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into account the effect of randomly fluctuating environment
in the growth rates. There are two noise sources in [6],
but their coupled mode is very simple. We know one noise
source not only has influence on the growth rate of predator
but also on the prey’s. In many cases, the growth rates are
often subject to environmental noise as well. For example, the
growth rates of many species will be different between the
rainy season and the dry season. Moreover, the changes in
nutrition and food resources also have effect on the carrying
capacities. Generally, we regard the growth rates as Markov
jump process which can modelled by Markov chains. Also, [6]
only considered white noise and ignored Markovian switching.
Therefore, from the argument above, we study the following
form in this paper:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx = x

[
1− a11(ξ(t))x− a12(ξ(t))y

1 + x

] [
b1(ξ(t))dt

+σ1(ξ(t))dB1(t) + μ1(ξ(t))dB2(t)
]
,

dy = y

[
−1 +

a21(ξ(t))x

1 + x
− a22(ξ(t))y

] [
b2(ξ(t))dt

+μ2(ξ(t))dB1(t) + σ2(ξ(t))dB2(t)
]
,

(1.3)
where x(t) and y(t) stand for the population densities of prey
and predator at time t, respectively; bi(·) is called the intrinsic
growth rate; aij(·) is positive parameter function, i, j = 1, 2.
For system (1.3), ξ(t) is a right-continuous Markov chain tak-
ing values in a finite state space S = {1, 2, . . . , N} and Bi(t)
is the 1-dimensional standard Brownian motion. We always
suppose ξ(t) is Ft-adapted but independent of the Brownian
motion Bi(t), i = 1, 2. σ2

i (·) and μ2
i (·) represent the intensities

of the white noises, i = 1, 2. The model (1.3) together with
the initial conditions x(0) = x0 > 0, y(0) = y0 > 0 will be
referred to as model (SBD).

Throughout this paper, we denote by R2
+ the positive

cone in R2, and also denote by X(t) = (x(t), y(t)) and
|X(t)| = (x(t)2 + y(t)2)

1
2 . Let (Ω, F, {Ft}t≥0, P ) be a

complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions, i.e. it is right continuous and increasing
while F0 contains all P−null sets. We also denote f∗ =
sup1≤i≤N f(n) and f∗ = inf1≤i≤N f(n) for any bounded
sequence {f(n)}. What’s more, let {ξ(t), t ≥ 0} be a right-
continuous Markov chain on the probability space (Ω, F,Υ)
and take values in a finite space S = {1, 2, . . . , N} with the
generator Γ = (πij)N×N given by

Γ[ξ(t+Δ) = j|ξ(t) = i] =

{
πijΔ+ o(Δ), if i �= j,
1 + πiiΔ+ o(Δ), if i = j,
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where Δ > 0, limΔ→0
o(Δ)
Δ = 0. Here πij ≥ 0(∀ i, j ∈ S, i �=

j) is the transition rate from mode i to mode j, represents the
expectation of the species which migrate from patch i to patch
j, while

πii = −
N∑

j=1,j �=i
πij .

The rest of this paper is organized as follows. In the next
section, we show that the stochastic system (1.3) has a unique
global (no explosion in a finite time) solution for any positive
initial value. The the stochastic boundedness of system (1.3)
is studied in Section 3, and some sufficient conditions which
guarantee the global asymptotic stability of positive solutions
are obtained in Section 4. In the end, numerical simulations
are carried out to support our analytical findings.

II. POSITIVE AND GLOBAL SOLUTION

For x(t) and y(t), we are only interested in the positive
solutions because they are population densities of the prey
and the predator respectively in system (1.3). Furthermore,
the coefficients of the equation satisfying the linear growth
condition and local Lipschitz condition is a guarantee of the
stochastic differential equation to have an unique global (i.e.,
no explosion in a finite time) solution for any given initial
value, (see e.g. [9]).
Lemma 2.1 There is an unique positive local solution
(x(t), y(t)) for t ∈ [0, τe) of system (1.3) almost surely (a.s.)
for any initial value x0 > 0, y0 > 0.
Proof: We consider the equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
{
b1(ξ(t))

[
1− a11(ξ(t))e

u − a12(ξ(t))e
v

1 + eu

]

−σ
2
1(ξ(t)) + μ2

1(ξ(t))

2

[
1− a11(ξ(t))e

u − a12(ξ(t))

1 + eu

×ev
]2}

dt+
[
1− a11(ξ(t))e

u − a12(ξ(t))e
v

1 + eu

]
× [σ1(ξ(t))dB1(t) + μ1(ξ(t))dB2(t)] ,

dv =
{
b2(ξ(t))

[
−1 +

a21(ξ(t))e
u

1 + eu
− a22(ξ(t))e

v

]

−σ
2
2(ξ(t)) + μ2

2(ξ(t))

2

[
− 1 +

a21(ξ(t))e
u

1 + eu
− a22(ξ(t))

×ev
]2}

dt+
[
− 1 +

a21(ξ(t))e
u

1 + eu
− a22(ξ(t))e

v
]

× [μ2(ξ(t))dB1(t) + σ2(ξ(t))dB2(t)] ,
(2.1)

on t ≥ 0 with initial value u(0) = lnx0, v(0) = ln y(0).
Obviously, the coefficients of system (1.3) satisfy the local
Lipschitz condition, then there is an unique local solution
u(t), v(t) on [0, τe). Therefore, by Itôs formula, x(t) =
eu(t), y(t) = ev(t) is the unique positive local solution to (1.3)
with initial value x0 > 0, y0 > 0.

Lemma 2.1 only shows that there is an unique positive
local solution of system (1.3). Next, we show this solution is
global, i.e., τe = ∞. Before giving Theorem 2.1, we assume
that
(A1) b1∗ − (σ∗

1)
2 + (μ∗

1)
2

2
a∗11 > 0;

(A2) b2∗−1

2

[
((σ∗

2)
2 + (μ∗

2)
2)a∗22 + ((σ∗

1)
2 + (μ∗

1)
2)
(a∗12)

2

a22∗

]
>

0.

Theorem 2.1 Assume (A1) and (A2) hold. For any given
initial value X0 = (x0, y0) ∈ R2

+, there is an unique solution
X(t) = (x(t), y(t)) to stochastic differential equation (1.3) on
t ≥ 0 and the solution will remain in R2

+ with probability 1,
where R2

+ = {x ∈ R2|xi > 0, i = 1, 2}.
Proof: The following proof is motivated by the work Luo and
Mao[10]. Let m0 > 0 be sufficiently large for x0 and y0 lying

within the interval [
1

m0
,m0]. For each integer m > m0, define

the stopping times

τm = inf

{
t ∈ [0, τe) : x(t) /∈ (

1

m
,m) or y(t) /∈ (

1

m
,m)

}

where throughout this paper we set inf ∅ = ∞(∅ stands for
the empty set). Clearly, τm is increasing as m → ∞. Let
τ∞ = limm→+∞ τm, whence τ∞ ≤ τe a.s. Now, we only need
to show τ∞ = ∞. If this statement is false, there is a pair of
constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε.
Consequently, there exists an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ε,m ≥ m1. (2.2)

Define a C2−function V : R2
+ → R+ by V (x, y) = (x−1−

lnx)+(y−1−ln y). The non-negativity of this function can be
observed from m− 1− lnm ≥ 0 on m > 0. If (x(t), y(t)) ∈
R2

+, we obtain that

dV (x, y) = (x− 1)

[
1− a11(ξ(t))x− a12(ξ(t))y

1 + x

]
×

[b1(ξ(t))dt+ σ1(ξ(t))dB1(t) + μ1(ξ(t))dB2(t)]

+(y − 1)

[
−1 +

a21(ξ(t))x

1 + x
− a22(ξ(t))y

]
×

[b2(ξ(t))dt+ μ2(ξ(t))dB1(t) + σ2(ξ(t))dB2(t)]

+
1

2

[
1− a11(ξ(t))x− a12(ξ(t))y

1 + x

]2
×(σ2

1(ξ(t)) + μ2
1(ξ(t)))dt

+
1

2

[
−1 +

a21(ξ(t))x

1 + x
− a22(ξ(t))y

]2
×(σ2

2(ξ(t)) + μ2
2(ξ(t)))dt.

(2.3)
Hence we have

LV (x, y) ≤ b∗1|x− 1|(1− a11∗x) +
(σ∗

1)
2 + (μ∗

1)
2

2
2
[
(1

−a11∗x)2 + (a∗12)
2y2
]
+ b∗2(a

∗
21 − a22∗y)|y − 1|

+
(σ∗

2)
2 + (μ∗

2)
2

2

[
(1 + a∗22y)

2 + (a∗21)
2
]

= b∗1(1− a11∗x)|x− 1|+ [(σ∗
1)

2 + (μ∗
1)

2](1− 2a11∗x
+a11∗x2 + (a∗12)

2y2) + (b∗2a
∗
21 − a22∗)|y − 1|

+
(σ∗

2)
2 + (μ∗

2)
2

2
(1 + 2a∗22y + (a∗22)

2y2 + (a∗21)
2)

≤ K,
(2.4)

where K is positive numbers. That is

dV (x, y) ≤ Kdt+ (x+ 1)

[
1− a11∗x− a12∗y

1 + x

] [
σ∗
1dB1(t)

+μ∗
1dB2(t)

]
+ (y − 1)

[
−1 +

a∗21x
1 + x

− a22∗y
]

× [μ∗
2dB1(t) + σ∗

2dB2(t)] .
(2.5)
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Integrating both sides of the above inequality from 0 to τn∧T
and then taking the expectations leads to

EV (x(τn ∧ T ), y(τn ∧ T )) ≤ V (x0, y0) +KT. (2.6)

Set Ω = {τm ≤ T}, then by inequality (2.2) we obtain
P (Ω) ≥ ε. Note that for every ω ∈ Ωm, there is some i

such that xi(τm, ω) equals either m or
1

m
for i = 1, 2, hence

V (x(τm, ω), y(τm, ω)) is no less than

min

{
(m− 1− lnm),

1

m
− 1− ln

1

m

}
.

From (2.6), we have

V (x0, y0) +KT ≥ E [lΩm(ω)V (x(τm), y(τm))]

≥ εmin

{
(m− 1− lnm), (

1

m
− 1− ln

1

m
)

}
,

where 1Ωm is the indicator function of Ωm. Letting m → ∞
leads to the contradiction

∞ > V (x0, y0) +KT ≥ ∞.

Theorem 2.1 is proved.

III. STOCHASTIC BOUNDEDNESS

Theorem 2.1 tells us the solutions to system (1.3) will
remain in R2

+. Before discussing how the solution varies in
R2

+ in more detail, we first present the definition of stochastic
ultimate boundedness.
Definition 3.1 (see [11]) The solution X(t) = (x(t), y(t)) of
Eq. (1.3) is said to be stochastically ultimately bounded, if for
any ε ∈ (0, 1), there is a positive constant δ = δ(ε), such
that for any given initial value X0 ∈ R2

+, the solution X(t)
to (1.3) has the property that

lim sup
t→∞

P{|X(t)| > δ} < ε.

Theorem 3.1 The solutions of system (1.3) are stochastically
ultimately bounded for any initial value X0 = (x0, y0) ∈ R2

+.
Proof: From theorem 2.1, we know that the solution X(t)
will remain in R2

+ for all t ≥ 0 with probability 1. Define
the functions V1 = etxθ and V2 = etyθ, for (x, y) ∈ R2

+ and
θ > 0. By the Itôs formula, we compute

LV1 ≤ etxθ
{
1 + θb∗1

(
1− a11∗x− a12∗y

1 + x

)
+
θ(θ − 1)

2

×
(
1− a11∗x− a12∗y

1 + x

)2

[(σ∗
1)

2 + (μ∗
1)

2]
}

≤ etxθ
{
1 + θb∗1 (1− a11∗x− a12∗y) + θ(θ − 1)

× [(1− a11∗x)2 + a212∗y
2
]
[(σ∗

1)
2 + (μ∗

1)
2]
}

≤ K1e
t

and

LV2 ≤ etyθ
{
1 + θb∗2

(
−1− a21∗x

1 + x
− a22∗y

)
+
θ(θ − 1)

2

×
(
−1− a21∗x

1 + x
− a22∗y

)2

[(μ∗
2)

2 + (σ∗
2)

2]
}

≤ etyθ
{
1 + θb∗2 (−1 + a∗21 − a22∗y) + θ(θ − 1)

× [(a∗21 − 1)2 + a222∗y
2
]
[((μ∗

2)
2 + σ∗

2)
2]
}

≤ K2e
t.

Therefore,

d(etxθ) = LV1dt+ θetxθ
[
1− a11(ξ(t))x− a12(ξ(t))y

1 + x

]
× [σ1(ξ(t))dB1(t) + μ1(ξ(t))dB2(t)]

≤ K1e
tdt+ θetxθ

[
1− a11∗x− a12∗y

1 + x

]
× [σ∗

1dB1(t) + μ∗
1dB2(t)]

and

d(etyθ) = LV2dt+ θetyθ
[
−1 +

a21(ξ(t))x

1 + x
− a22(ξ(t))y

]
× [μ2(ξ(t))dB1(t) + σ2(ξ(t))dB2(t)]

≤ K2e
tdt+ θetyθ

[
−1− a21∗x

1 + x
− a22∗y

]
× [μ∗

2dB1(t) + σ∗
2dB2(t)] .

Thus, we have etExθ − Exθ0 ≤ K1e
t and etEyθ − Eyθ0 ≤

K2e
t.

Hence obtain that

lim sup
t→∞

Exθ ≤ K1 < +∞, lim sup
t→∞

Eyθ ≤ K2 < +∞.

For X(t) = (x(t), y(t)) ∈ R2
+, we have |X(t)|θ ≤ 2

θ
2 (xθ +

yθ). Consequently,

lim sup
t→∞

E|X(t)|θ ≤ K < +∞.

Applying the Chebyshev inequality, we can obtain the desired
assertion.

IV. GLOBAL ASYMPTOTIC STABILITY

In this section, we show that the equibilbrium positive (x̃, ỹ)
of system(1.3) is stochastically asymptotically stable in the
large. If w = w(t) is the solution of the n−dimensional
stochastic differential equation

d(w(t)) = f(t, w(t))dt+ g(t, w(t))dB(t), (4.1)

where w̃ is the equilibrium positive of (4.1), and

LV (w) = Vw(w)f(t, w)dt+
1

2
trance[gT (t, w)Vwwg(t, w)].

From the theory of stability of stochastic differential equa-
tions, we only need to find a Lyapunov function V (w)
sastisfying LV (w) ≤ 0 and the identity holds if and only
if w = w̃ (see, e.g.[9]).

Now, we give our main result.
Theorem 4.1 Let

c1 =
[
b∗1 − (σ2

1∗ + μ2
1∗)a11∗x̃

]
a∗21(1 + x̃), c2 = b∗2a

∗
21,

P = −a11∗b1∗ + b∗1a
∗
12ỹ

(1 + x̃)
+

((σ∗
1)

2 + (μ∗
1)

2)(a∗11)
2x̃

2

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2x̃(ỹ)2

2(1 + x̃)2
+
c1((σ

∗
2)

2 + (μ∗
2)

2)(a∗21)
2ỹ

2c2(1 + x̃)2
,

Q =
c1
c2

[
−b2∗a22∗ + ((σ∗

2)
2 + (μ∗

2)
2)(a∗22)

2ỹ

2

]

+
((σ∗

1)
2 + (μ∗

1)
2)a212

2
,
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H =
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2x̃ỹ

(1 + x̃)
+
c1((σ

∗
2)

2 + (μ∗
2)

2)a∗21a
∗
22ỹ

c2(1 + x̃)
.

If

b1 − (σ2
1 + μ2

1)a11x̃ > 0 (4.2)

and

P < 0, (4.3)

as well as

4PQ−H2 > 0. (4.4)

Then the equilibrium position (x̃, ỹ) of system(1.3) is stochas-
tically asymptotically stable in the large, i.e., for any initial
data (x(0), y(0)), the solution of system(1.3) has the property
that

lim
t→+∞x(t) = x̃, lim

t→+∞ y(t) = ỹ (4.5)

almost surely.
Proof: Now, we define Lyapunov functions

V1(x) = x− x̃− x̃ ln(
x

x̃
), V2(y) = y − ỹ − ỹ ln(

y

ỹ
).

The nonnegativity of this function can be observed from m−
1 − lnm ≥ 0 on m > 0. If (x(t), y(t)) ∈ R2, by applying
It0̂s formula we compute

LV1(x) = b1(ξ(t))(x− x̃)

[
1− a11(ξ(t))x− a12(ξ(t))y

1 + x

]

+
((σ1(ξ(t)))

2 + (μ1(ξ(t)))
2)x̃

2

[
1− a11(ξ(t))x

−a12(ξ(t))y
1 + x

]2
= b1(ξ(t))(x− x̃)

[
a11(ξ(t))x̃− a11(ξ(t))x

+
a12(ξ(t))ỹ

1 + x̃
− a12(ξ(t))y

1 + x

]
+
((σ1(ξ(t)))

2 + (μ1(ξ(t)))
2)x̃

2

[
a11(ξ(t))x̃

−a11(ξ(t))x+
a12(ξ(t))ỹ

1 + x̃
− a12(ξ(t))y

1 + x

]2
=
{
− a11(ξ(t))b1(ξ(t)) +

b1(ξ(t))a12(ξ(t))ỹ

(1 + x)(1 + x̃)

+
((σ1(ξ(t)))

2 + (μ1(ξ(t)))
2)(a11(ξ(t)))

2x̃

2

− ((σ1(ξ(t)))
2 + (μ1(ξ(t)))

2)a11(ξ(t))a12(ξ(t))x̃ỹ

(1 + x)(1 + x̃)

+
((σ1(ξ(t)))

2 + (μ1(ξ(t)))
2)(a12(ξ(t)))

2x̃(ỹ)2

2(1 + x)2(1 + x̃)2

}

×(x− x̃)2 + (y − ỹ)2

× ((σ1(ξ(t))
2 + μ1(ξ(t))

2)(a12(ξ(t))
2(1 + x̃)2

2(1 + x)2(1 + x̃)2

− [b1(ξ(t))− ((σ1(ξ(t)))
2 + (μ1(ξ(t)))

2)a11(ξ(t))x̃]

(1 + x)(1 + x̃)
×a12(ξ(t))(1 + x̃)(x− x̃)(y − ỹ)− (x− x̃)(y − ỹ)

× ((σ1(ξ(t)))
2 + (μ1(ξ(t)))

2)(a12(ξ(t)))
2x̃ỹ(1 + x̃)

(1 + x)2(1 + x̃)2
.

(4.6)

It is easy to see that 1 + x ≥ 1, hence we obtain

LV1(x) ≤
{
− a11∗b1∗ +

b∗1a
∗
12ỹ

(1 + x̃)
+

((σ∗
1)

2 + (μ∗
1)

2)a211x̃

2

+
((σ∗

1)
2 + (μ∗

1)
2)a212x̃(ỹ)

2

2(1 + x̃)2

}
(x− x̃)2

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2

2
(y − ỹ)2

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2x̃ỹ

(1 + x̃)
|x− x̃||y − ỹ|

−
[
b1∗ − ((σ∗

1)
2 + (μ∗

1)
2)a∗11x̃

]
a12∗(1 + x̃)

(1 + x)(1 + x̃)
×(x− x̃)(y − ỹ).

(4.7)
Similarly, we can derive that

LV2(y) ≤
[
−b2∗a22∗ + ((σ∗

1)
2 + (μ∗

1)
2)(a∗22)

2ỹ

2

]
(y − ỹ)2

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗21)

2ỹ

2(1 + x̃)2
× (x− x̃)2

+
((σ∗

1)
2 + (μ∗

1)
2)a∗21a

∗
22ỹ

(1 + x̃)
|x− x̃||y − ỹ|

+
b∗2a

∗
21

(1 + x̃)(1 + x)
(x− x̃)(y − ỹ).

(4.8)

From (4.2), we have
c1
c2
> 0. Define

V (x, y) = V1(x) +
c1
c2
V2(y)

= V1(x) +
[b1(ξ(t))− ((σ1(ξ(t)))

2

b2(ξ(t))a21(ξ(t))

+
(μ1(ξ(t)))

2)a11(ξ(t))x̃

b2(ξ(t))a21(ξ(t))

]
a21(ξ(t))(1 + x̃)V2(y).

Then, we compute

LV (x, y) = LV1(x) +
c1
c2
LV2(y)

≤
{
− a11∗b1∗ +

b∗1a
∗
12ỹ

(1 + x̃)
+

((σ∗
1)

2 + (μ∗
1)

2)

2

×(a∗11)
2x̃+

((σ∗
1)

2 + (μ∗
1)

2)(a∗12)
2x̃(ỹ)2

2(1 + x̃)2

}
×(x− x̃)2 +

((σ∗
1)

2 + (μ∗
1)

2)(a∗12)
2

2
(y − ỹ)2

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2x̃ỹ

(1 + x̃)
|x− x̃||y − ỹ|

+
c1
c2

b∗2a
∗
21

(1 + x̃)(1 + x)
(x− x̃)(y − ỹ)− (y − ỹ)

× [b1∗ − ((σ∗
1)

2 + (μ∗
1)

2)a∗11(1 + x̃)]

(1 + x)(1 + x̃)
(x− x̃)

+
c1
c2

[
−b2∗a22∗ + ((σ∗

2)
2 + (μ∗

2)
2)(a∗22)

2ỹ

2

]

×(y − ỹ)2 +
c1((σ

∗
2)

2 + (μ∗
2)

2)(a∗21)
2ỹ

2c2(1 + x̃)2
(x− x̃)2

+
c1((σ

∗
2)

2 + (μ∗
2)

2)a∗21a
∗
22ỹ

c2(1 + x̃)
|x− x̃||y − ỹ|
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=
{
− a11∗b1∗ +

b∗1a
∗
12ỹ

(1 + x̃)
+

((σ∗
1)

2 + (μ∗
1)

2)

2

×(a∗11)
2x̃+

((σ∗
1)

2 + (μ∗
1)

2)(a∗12)
2x̃(ỹ)2

2(1 + x̃)2

}
+
c1((σ

∗
2)

2 + (μ∗
2)

2)(a∗21)
2ỹ

2c2(1 + x̃)2

}
(x− x̃)2

+
{c1
c2

[
−b2∗a22∗ + ((σ∗

2)
2 + (μ∗

2)
2)(a∗22)

2ỹ

2

]

+
((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2

2

}
(y − ỹ)2

+
{ ((σ∗

1)
2 + (μ∗

1)
2)(a∗12)

2x̃ỹ

(1 + x̃)

+
c1((σ

∗
2)

2 + (μ∗
2)

2)a∗21a
∗
22ỹ

c2(1 + x̃)

}
|x− x̃||y − ỹ|

= P (x− x̃)2 +Q(y − ỹ)2 +H|x− x̃||y − ỹ|.
(4.9)

Let |w − w̃| = (|x− x̃|, |y − ỹ|)T , thus we have

LV (x, y) ≤ 1

2
|w − w̃|T

⎛
⎜⎝ P

1

2
H

1

2
H Q

⎞
⎟⎠ |w − w̃|.

Obviously, if (4.3) and (4.4) hold then the above inequality
implies LV (x, y) < 0 along all trajectories in the first quadrant
except (x̃, ỹ). This completes the proof.

V. NUMERICAL EXPERIMENTS

To substantiate the analytical findings, we let ξ(t) which
is a right-continuous Markov chain take value in a two-state
space S = {1, 2}. We will use the Mistein method mentioned
in Higham[12]. Consider the discretization equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + b1(i)xk

[
1− a11(i)xk − a12(i)yk

1 + xk

]
Δt

+xk

[
1− a11(i)xk − a12(i)yk

1 + xk

][
σ1(i)ζk + μ1(i)ηk

]
×√

Δt+
1

2
x2k

[
1− a11(i)xk − a12(i)yk

1 + xk

]2
×[σ2

1(i)(ζ
2
k − 1) + μ2

1(i)(η
2
k − 1)]Δt,

yk+1 = yk + b2(i)xk

[
−1 +

a21(i)xk
1 + xk

− a22(i)yk

]
Δt

+yk

[
− 1 +

a21(i)xk
1 + xk

− a22(i)yk

][
μ2(i)ζk + σ2(i)ηk

]
×√

Δt+
1

2
y2k

[
−1 +

a21(i)xk
1 + xk

− a22(i)yk

]2
×[μ2

2(i)(ζ
2
k − 1) + σ2

2(i)(η
2
k − 1)]Δt.

where ζk and ηk, k = 1, 2, . . . , n are the Gaussian random
variables N(0, 1), and i = 1, 2.

In Theorem 4.1, we know if
c1
c2

> 0, P < 0 and

4PQ − H2 > 0, then the positive equilibrium position
(x̃, ỹ) is stochastically asymptotically stable in the large.
In Fig.1, Fig.2 and Fig.3, we choose a11(1) = a12(1) =
a22(1) = 1, a21(1) = 3, b1(1) = 0.8, b2(1) = 0.7, then
a21(1)/a11(1)

1 + 1/a11(1)
> 1 holds and x̃ = 0.8105, ỹ = 0.3430. The

only difference between conditions of Fig.1, Fig.2, and Fig.3 is
that the values of σ2

1(1), σ
2
2(1) and μ2

1(1), μ
2
2(1) are different.

We choose σ2
1(1) = σ2

2(1) = μ2
1(1) = μ2

2(1) = 0 in Fig.1,
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Fig. 1. is with σ2
1(1) = σ2

2(1) = 0, μ2
1(1) = μ2

2(1) = 0.
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Fig. 2. is with σ2
1(1) = σ2

2(1) = 0.1, μ2
1(1) = 0.13, μ2

2(1) = 0.15.

then the conditions of (4.2), (4.3) and (4.4) are satisfied. That
is to say that the equilibrium position (x̃, ỹ) is asymptotically
stable. In Fig.2, we choose σ2

1(1) = σ2
2(1) = 0.1 and

μ2
1(1) = 0.13, μ2

2(1) = 0.15 then the conditions of (4.2), (4.3)
and (4.4) are fulfilled. In other words, the equilibrium position
(x̃, ỹ) is stochastically asymptotically stable in the large. In
Fig.3, we choose σ2

1(1) = 0.1, σ2
2(1) = 30 and μ2

1(1) =
0.2, μ2

2(1) = 30 which violates conditions (4.2). We can find
that the population y will die out while limt→+∞ x(t) = 1.
That is to say, when condition (4.2) is not satisfied the positive
equilibrium (x̃, ỹ) is no longer globally stable. By comparing
Fig.1 with Fig.2, when the noise is not very large, we can see
the positive equilibrium of the stochastic model is globally
stable if the deterministic model has this property.

Obviously, we observe Fig.4, Fig.5 and Fig.6, when the
continuous time Markov chain ξ(t) takes values in another
state space, i.e., i = 2. In Fig.4, Fig.5 and Fig.6, we choose
a11(2) = 1.02, a12(2) = 0.95, a22(2) = 1.01, a21(2) =
2.97, b1(2) = 0.82, b2(2) = 0.73. We can obtain the same
conclusions as in Fig.1, Fig.2 and Fig.3. Here it is omitted.

VI. CONCLUSION

In recent years, the predator and prey model has increas-
ingly won attention as an important and fundament model
in biomathematics. However, population systems are often
affected by environmental noise in reality. Although, Lv and
Wang[6] took into account two noise sources, the coupled mode
of the two noise sources is simple. Our work is the first attempt
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Fig. 3. is with σ2
1(1) = 0.1, σ2

2(1) = 30, μ2
1(1) = 0.2, μ2

2(1) = 30.
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Fig. 4. is with σ2
1(1) = σ2

2(1) = μ2
1(1) = μ2

2(1) = 0.
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Fig. 5. is with σ2
1(1) = σ2

2(1) = 0.1, μ2
1(1) = 0.13, μ2

2(1) = 0.15.
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Fig. 6. is with σ2
1(1) = 0.1, σ2

2(1) = 30, μ2
1(1) = 0.2, μ2

2(1) = 30.

to consider the more complex coupled mode of the two noise
sources. Moreover, Lv and Wang did not consider Markovian
switching and they did not discuss the global stability which
is one of the important properties.

In this paper, for any given positive initial value, we
show that there is a unique positive solution to the system
(1.3). What’s more, we point out that the positive solution is
stochastically bounded. At last, sufficient conditions for global
stability are obtained. Some interesting questions deserve
further investigation. One may consider other parameters such
as aij , i, j = 1, 2 are made stochastic. Another is to study the
permanence and extinction of system (1.3).

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
the anonymous reviewers for their detailed comments and
suggestions.

REFERENCES

[1] A. Lotka, Elements of Physical Biology, Baltimore, USA: Williams
and Wilkins, 1925.

[2] V. Volterra, Variazioni e fluttuazioni del numero dindividui in specie
danimali conviventi, Mem. Acad. Lincei, 1926, 2, 31-113.

[3] Y. Li and H. Gao, Existence, uniqueness and global asymptotic stability
of positive solutions of a predator-prey system with Holling II functional
response with random perturbation, Nonlinear Anal, 2008, 68, 1694-
1705.

[4] M. Liu and K. Wang, Global stability of a nonlinear stochastic predator-
prey system with Beddington-DeAngelis functional response, Commun.
Nonlinear Sci. Numer. Simulat, 2011, 16, 1114-1121.

[5] C. Ji, D. Q. Jiang and X. Li, Qualitative analysis of a stochastic ratio-
dependent predator-prey system, Journal of Computational and Applied
Mathematics, 2011, 235, 1326-1341.

[6] J. Lv and K. Wang, Asymptotic properties of a stochastic predator-prey
system with Holling II functional response, Commun Nonlinear Sci
Numer Simulat, 2011, 16, 4037-4048.

[7] D. Q. Jiang, N. Shi and X. Li, Global stability and stochastic permanence
of a non-autonomous logistic equation with random perturbation, J.
Math. Anal. Appl, 2008, 340, 588-597.

[8] C. Ji, D. Q. Jiang and N. Jiang, Analysis of a predator-prey model
with modified Leslie-Gower and Holling-type II schemes with stochastic
perturbation, J Math Anal Appl, 2009, 359, 482-498.

[9] X. Mao, Stochastic differential equations and applications, Chichester,
England: Horwood Publishing, 1997.

[10] Q. Luo and X. Mao, Stochastic population dynamics under regime
switching, J Math Anal Appl, 2007, 334, 69-84.

[11] X. Li and X. Mao, Population dynamical behavior of non-autonomous
Lotka-Volterra competitive system with random perturbation, Discrete
Contin Dyn Syst, 2009, 24, 523-545.

[12] D. Higham, An algorithmic introduction to numerical simulation of
stochastic differential equations, SIAM Rev, 2001, 43, 525-546.

Xianqing Liu was born in Hubei Province, China, in 1987. She received
the B.S. degree from Hubei University for Nationalities, Enshi, in 2011, in
applied mathematics. She is currently pursuing the M.S. degree with School
of Mathematical Science, University of Electronic Science and Technology
of China. Her research interests include stochastically and delay dynamic
systems.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:4, 2013

741

Shouming Zhong was born in 1955 in Sichuan, China. He received B.S.
degree in applied mathematics from UESTC, Chengdu, China, in 1982.
From 1984 to 1986, he studied at the Department of Mathematics in Sun
Yatsen University, Guangzhou, China. From 2005 to 2006, he was a visiting
research associate with the Department of Mathematics in University of
Waterloo, Waterloo, Canada. He is currently as a full professor with School
of Applied Mathematics, UESTC. His current research interests include
differential equations, neural networks, biomathematics and robust control. He
has authored more than 80 papers in reputed journals such as the International
Journal of Systems Science, Applied Mathematics and Computation, Chaos,
Solitons and Fractals, Dynamics of Continuous, Discrete and Impulsive
Systems, Acta Automatica Sinica, Journal of Control Theory and Applications,
Acta Electronica Sinica, Control and Decision, and Journal of Engineering
Mathematics

Fuli Zhong was born in Guangxi Province, China, in 1986. He received the
B.S. degree from the University of Electronic Science and Technology of
China, Chengdu, China, in 2011. He is currently pursuing the M.S. degree in
Pattern Recognition and Intelligent system, University of Electronic Science
and Technology of China. His research interests include dynamic systems and
signal processing.

Zijian Liu was born in Hebei Province, China, in 1982. He received the
B.S. degree from Xinjiang University, Urumqi, in 2003, the M.S. degree
from Xinjiang University, in 2009, and the Ph.D.degree from University
of Electronic Science and Technology of China, Sichuan in 2012, both in
applied mathematics. He is currently in Hangzhou Normal University. His
research interests include partial differential equations, Markovian switching
and stochastically dynamic systems.


