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 
Abstract—Some properties of approximation sets are studied in 

multi-granulation optimist model in rough set theory using maximal 
compatible classes. The relationships between or among lower and 
upper approximations in single and multiple granulation are compared 
and discussed. Through designing Boolean functions and 
discernibility matrices in incomplete information systems, the lower 
and upper approximation sets and reduction in multi-granulation 
environments can be found. By using examples, the correctness of 
computation approach is consolidated. The related conclusions 
obtained are suitable for further investigating in multiple granulation 
RSM. 
 

Keywords—Incomplete information system, maximal compatible 
class, multi-granulation rough set model, reduction. 

I. INTRODUCTION 

OUGH set theory is a useful tool for analyzing and 
studying information systems concerning imprecise, 

vague, undetermined knowledge. Since rough set model was 
proposed by Pawlak in 1982s, it has been widely applied in 
many scientific areas such as knowledge inference, decision 
making and pattern classification [1]-[3]. Because the 
phenomenon of missing attribute values for any object does not 
exist in complete information systems, an indiscernibility 
relation or equivalence relation is easy to be built and used to 
process complete information systems. The results obtained are 
also intuitive and ideal. But for an incomplete information 
system (IIS), such an equivalence relation is not conveniently 
constructed since missing values are not allowed to be 
compared with real existed values. Some people fill the missing 
value or null value by statistics or other methods, transforming 
it into complete system, called indirect method. Other people 
construct new relations between objects to deal with IIS. These 
relations may not be equivalence relations. These approaches 
are called direct methods; for example, tolerance relation [4]; 
non-symmetric similarity relation [5]; limited tolerant relation 
[6]. With the granular view of points, maximal consistent block 
technique for rule acquisition is put forward in [7]; some 
algorithms for lower and upper approximation sets with 
maximal compatible classes as primitive granules in IIS are 
designed in [8]. Other approaches can be read in [9]-[11]. 
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Nowadays, direct approaches to dispose IIS have been become 
a hot topic in RSM field because complete information system 
can be regarded as a special case of IIS [12]. Furthermore, 
experts now study granule computing and multi-granulation 
RSM from different viewpoints. Multi-granulation rough set 
model is suggested in [13]-[15]. The lower and upper 
assignment reductions in incomplete and inconsistent decision 
tables are introduced in [16]. Researches on knowledge 
reductions in inconsistent system using tolerance relation and 
tolerance classes are also done in [16]. Combining 
multi-granulation RSM with similarity relation in incomplete 
information table is also discussed by [17]. So studying on their 
mixture forms has become an interesting topic in the RSM 
field. In addition to discussing relationships between or among 
tolerance relation, non-symmetric similarity relation, limited 
relation and etc., constructing useful relations on the universe 
from incomplete information systems by exerting strict 
condition on them becomes current development tendencies. A 
chief aim is at breaking through the limitation of traditional 
RSM and extending study of tolerance relation instead of using 
generalized decision rules [4]. 

The present paper engages some work in defining lower and 
upper approximation sets (to some extent, it is a kind of 
optimistic multi-granulation RSM) in the case of one subset of 
attributes and those in the multi-granulation RSM (MGRSM) 
using maximal compatible classes as granules of tolerance 
relation to enhance the processing ability for IIS. The solving 
approaches for lower and upper approximation distribution 
reductions in MGRSM view are suggested. Properties of 
distribution approximations and relationships between single 
and multi-granulation RSM are investigated. The main goal of 
it is to obtain some useful and related results through analyzing 
the lower and upper approximation distribution law in 
MGRSM. A method to acquire decision rules from consistent 
IIS is presented. Through proofs, examples and experiments, 
the method is verified to be correct. So this knowledge 
acquisition approach is meaningful.  

II. DEFINITIONS AND CONCEPTS 

Maximal compatible classes as primitive granules and 
multi-granulation approach are our important concepts, so we 
first give some related definitions and explain some 
terminology, and then introduce models. 

A quadruple ( , , , )IIS U AV f  is called an IIS (see the 

definitions in [4]) where all elements are defined.  
 

( ) {( , ) : , ( , ) ( , )SIM B x y U U a B f x a f y a       
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( , ) * ( , ) *}f x a f y a    is called a tolerance relation, where 

B A . 2( ) { : max{ ( )}}O B X U X SIM B    is called 

complete cover with compatible classes, where max means 
conclusion  . ( )O B  is also called a knowledge expression 

system over U . 2( ) max{ : , ( )}BO x X x X X SIM B    is called 

compatible class(es) containing x where x U . 
( )C O B  is viewed as primitive granule presently. 

Arbitrarily, two elements in ( )C O B are mutually 

compatible, not like in tolerance class in [4], maybe not 

mutually compatible. ( ) ( )x U BO B O x  is obvious. 

Definition 1. Let ( , , , )IIS U A V f  be an IIS, B A , 

X U . Then 
 

( ),( ) C O B C XB X C    ,
( ),( ) C O B C XB X C   

 
are called upper and lower approximations for X  in 
knowledge expression system ( )O B  respectively.  

( ) | ( ) | / | ( ) |B X B X B X   is called the approximation 

precision. 
In [13]-[15], Qian et al. propose optimistic and pessimistic 

multi-granulation rough set models (MGRSM). Combined with 
the above compatible granules, we can introduce the above 
definition and concepts into MGRSMs using complete cover 

( )O B  and then get some related new results. 

Definition 2. Let ( , , , )IIS U A V f be an IIS, 
1 2, ,..., mB B B A  

be m attribute subsets, {1,2,..., }M m , X U . Then the 

optimistic multi-granulation lower approximation of X is 
referred to 
 

1
( )

m

ii
B X


 { : ( ( ))}ix U i M x B X    ; 

 

 the upper is 
1 1

( ) ( )
m m

i ii i
B X B X

 
   . 

1
1

( ) ( )
m Bii

m

ii
Bn X B X

 


 1
( )

m

ii
B X


  is called the 

optimistic multi-granulation boundary region of X . 

1 1
| ( ) | / | ( ) |

m m

i ii i
B X B X

    is called approximation 

precision. 

III. MAIN FEATURES AND RELATIONSHIPS 

An equivalent calculation method of lower and upper 
approximations in Definition 1 is given in the following 
theorem. 
Theorem 1. Let ( , , , )IIS U A V f  be an IIS, B A . Then  

1. ( ) { : ( )( ( ))}B X x U C O B x C C X        ; 

2. ( ) { : ( )( )}B X x U C O B x C C X       .  

Proof.  

(1) y{ : ( )( )}x U C O B x C C X         

 y ( ),C O B C X C   . Thus { : ( )x U C O B    

( ),C O B C X C    ( )}x C C X     

y ( ),C O B C X C    ( )( ).C O B C X       

So y C . Therefore, 
 

{ : ( )( )}y x U C O B x C C X         
 

( ),C O B C X C    { : ( )( )}.x U C O B x C C X         
 

Hence  

( ),C O B C X C    { : ( )(x U C O B x C     

)} ( ).C X B X     So 
 

( ) { : ( )( ( ))}B X x U C O B x C C X        .  
 

(2) y ( ) { : ( )( )}B X x U C O B x C C X        

 ( )( )C O B y C C X     y ( ),C O B C X C  . 

Thus 
( ),{ : ( )( )} C O B C Xx U C O B x C C X C        . 

( ), ( ) ( )C O B C Xy C C O B C X       such that y C . 

Thus y { : ( )( )} ( )x U C O B x C C X B X       . That is, 

( ), { : ( )( )}C V B C X C x U C O B x C C X         . 

So ( ), { : ( )( )} ( )C C A C XC x U C O B x C C X B X          . 

This theorem means that ( )B X  can be expressed by  
 

( ) { : ( )( )}B X x U C O B x C C X        
 
The upper approximation of a subset X can be calculated by 

lower approximation as in the following theorem. 

Theorem 2. Let ( , , , )IIS U AV f  be IIS, ,B A X U  . 

Then ~ (~ ) ( )B X B X . 

Proof. ( ),~ (~ ) ( )C O B C Xy B X y C B X      . 

Lemma. ( ),~ (~ ) ( )C O B C Xy B X y C B X      .  

The upper approximation of X U also complies with the 
following theorem. 

Theorem 3. ( ) { : ( )(B X x U C O B x C      

)}C X   .  

Proof. y ~ (~ ) ( )( )B X C O B y C C X      . So 

( )B X  { : ( )( )}x U C O B x C C X       . 

We can obtain properties of lower and upper approximation 
for the union or intersection of a series of subsets as follows. 
Theorem 4. Let ( , , , )IIS U A V f be an IIS, 

, 1,2,..., ;B A M k   iX U  ( )i M . Then 
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1. 
1 1( ) ( )k k

i i i iB X B X    ;  

2. 
1 1( ) ( )k k

i i i iB X B X    ; 

3. 
1 1( ) ( )k k

i i i iB X B X   ;  

4. 1 1( ) ( )k k
i i i iB X B X     

Proof.  
(1) 

1
1 ( ),

( ) k
i i

k
i i C O B C X

y B X y C


  
      

 1 ( )k
i iy B X . Thus 1 1( ) ( )k k

i i i iB X B X    . 

 

(2) 
1 ( )k

i iy B X   , ( )ii M y B X    

 1( )k
i iy B X  . Thus 

1 1( ) ( )k k
i i i iB X B X    . 

 

 (3) 
1

1 ( ), ( )
( ) k

i i

k
i i C O B C X

B X C


    
  , so  

1( ), ( )k
i iC O B C X

y C
   

   1 ( )k
i iy B X .  

So 
1 1( ) ( )k k

i i i iB X B X   . 

 

(4) 
1 ( )k

i iy B X  1( )k
i iy B X  .  

Thus 
1 1( ) ( )k k

i i i iB X B X    .  

1( )k
i iy B X   1 ( )k

i iy B X  .  

Thus 
i=1 i=1( ) ( )k k

i iB X B X  .  

So i=1 i=1( ) ( )k k
i iB X B X   . 

An equivalent expression about the upper approximation of a 
subset in MGRSM is as follows: 

Theorem 5. 
1

( )
m

ii
B X


 { : ( ( )ix U i M C O B      

( ))}x C C X     

Proof. 
1

( )
m

ii
B X


 1

( )
m

ii
B X

  , so y
1

( )
m

ii
B X

  

1
( )

m

ii
y B X y


       

{ : ( ( )( ( )))}ix U i M C O B x C C X         .  

Since ( ( )( ( )))ii M C O B y C C X         

 ( ( )( ))ii M C O B y C C X        . 

Thus,
1

~ (~ )
m

ii
B X

  = { : ( ( )ix U i M C O B      

(x C ))}C X   . 

Another equivalent expression about the upper 
approximation in MGRSM is illustrated as follows. 

Theorem 6. 
1

( )
m

ii
B X


 { : ( ( ))}ix U i M x B X     

Proof. 
1 1

( ) ( )
m m

i ii i
B X B X

 
   , so we have y 

1 1
( ) ( )

m m

i ii i
B X y B X

 
     

 { : ( ( ))}ix U i M x B X     . 

( ( )) ( ( ))i ii M x B X i M x B X      .  

 
Thus, 

1
( )

m

ii
y B X


  y{ : ( ( ))}ix U i M x B X    . 

  
So  

1
( )

m

ii
B X


 { : ( ( ))}ix U i M x B X    . 

 
The lower approximation of a subset in MGRSM can be 

computed by the union of the lower approximations of it in 
single granulation models, while the upper approximation can 
be calculated by the intersection of the upper approximations. 

Theorem 7. Let ( , , , )IIS U AV f be an IIS, iB A  

( 1,2,..., ),i m X U . Then  

1. 11
( ) ( )

m m
i i ii

B X B X
  ;  

2. 11
( ) ( )

m m
i i ii

B X B X
  . 

Proof. 

(1) 
1

( ) { : ( ( )
m

i ii
B X x U i M C O B


       

( ( )))}x C C X   . 

1
( )

m

ii
y B X


 y 1 ( )m

i iB X .  

1 ( )m
i iy B X    y

1
( )

m

ii
B X

 .  

So, 11
( ) ( )

m m
i i ii

B X B X
  . 

(2)
1

( ) { : ( ( ))}.
m

i ii
B X x U i M x B X


     So,  

11
( ) ( )

m m
i i ii

B X B X
  .  

Theorem 8. Let ( , , , )IIS U AV f  be an IIS and Bi 

A(i=1,2,…,m), XU. Then 

(1) 
1 1

( ) ( );
m m

i ii i
B X X B X

 
    

(2)
1 1

( ) ( ) ,
m m

i ii i
B B

 
       

 
1 1

( ) ( ) ;
m m

i ii i
B U B U U

 
    

(3) 
1 1 1

( ( )) ( ),
m m m

i i ii i i
B B X B X

  
    

1 1 1
( ( ))  ( )

m m m

i i ii i i
B B X B X

  
     

Proof. Here we only prove (3). 

Because 
1

( )
m

ii
B X X


  for any X U , 
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1 1 1
( ( )) ( )

m m m

i i ii i i
B B X B X

  
   . So, we just need to 

prove 
1 1 1

( ) ( ( ))
m m m

i i ii i i
B X B B X

  
   .  

For 
1 1

( ( ))
m m

i ii i
x B B X

 
   , we have  

 

1
( )( ( ))

m

i ii
i C O B x C C B X


      .C X   

 
Thus, 

1
( )

m

ii
x B X


 . 

 

1 1 1
( ) ( ( ))

m m m

i i ii i i
B X B B X

  
   .  

 
Conclusively,  

1 1 1
( ( )) ( )

m m m

i i ii i i
B B X B X

  
   . 

 

Next, since
1

( )
m

ii
X B X


  , thus

1
 ( )

m

ii
B X

  

1 1
( ( ))

m m

i ii i
B B X

 
  . For 

1 1
( ( )) 

m m

i ii i
x B B X

 
   , 

it follows 
1 1

( ( ))
m m

i ii i
x B B X

 
     

1
( )

m

ii
x B X


  . 

Therefore, 
1 1

( ( ))
m m

i ii i
B B X

    
1

 ( )
m

ii
B X


  . 

 
TABLE I 

AN IIS FOR CARS 

U P M S X D 

1 high low full low good 

2 low * full low good 

3 * * compact low poor 

4 high * full high good 

5 * * full high excellent 

6 low high full * good 

 
The lower and upper approximations of a set of subsets in 

MGRSM have relationships between their lower and upper 
approximations in single granulation model as follows. 
Theorem 9. Let ( , , , )IIS U AV f be an IIS, 

( 1,2,..., ), ( 1,2,..., )i jB A i m X U j k    . Then  

(1) 1 1 1 1 11
( ) ( ) ( ( ))

m k m k m k
i j j i i j j i j i ji

B X B X B X    
     ; 

(2) 1 1 1 1 11
( ) ( ) ( ( ))

m k m k m k
i j j i i j j i j i ji

B X B X B X    
      

 (3) 1 1 1 1 11
( ) ( ) ( ( ))

m k m k m k
i j j i i j j i j i ji

B X B X B X    
     ; 

(4) 1 1 1 1 11
( ) ( ) ( ( ))

m k m k m k
i j j i i j j i j i ji

B X B X B X    
     . 

This theorem can be proven according to theorem 4 and 
theorem 7. Here the proof is omitted for saving space.  

Example 1. Table I shows an IIS, in which Price, Mileage, 
Size, Max-Speed are all condition attributes, d =D is a decision 
attribute. Use P, M, S, X to denote Price, Mileage, Size, 
Max-Speed respectively in Table I [4].  

Let B={P,M,S,X}. O(B)={{1},{2,6},{3},{4,5},{5,6}}}. 
OB(1)={{1}}, OB(2)={{2,6}}, OB(3)={{3}}, OB(4)={{4,5}}, 
OB(5)= {{4, 5},{5,6}}, OB(6)={{2,6}, {5,6}}. X=dgood= {1,2,4, 

6}. We obtain: ( ) {1,2,6}B X  , ( ) {1,2,4,5,6}B X  .  
 

( ) | ( ) | / | ( ) |B X B X B X  =3/5=0.5. 

 
Example 2. In Table I, let B1={P,M}, B2={S,X}, B3={M,X}. 
Then O(B1)={{1,3,4,5},{2,3,5,6}}, O(B2)={{1,2,6},{3},{4,5, 

6}}, O(B3)={{1,2,3},{2,3,6},{4,5,6}}.
1

( )
m

ii
B X

 ( )iB X  

={1,2,6}, 11
( ) ( )

m m
i i ii

B X B X
   ={1,2,3,4, 5,6}. 

The optimistic approximation precision in MGRSM is 

1 1
| ( ) | / | ( ) |

m m

i ii i
B X B X

   =3/6=0.5. 

IV. APPROXIMATION DISTRIBUTION REDUCTION 

Now we discuss approximation distribution reduction in 
MGRSM based on our granules--maximal compatible classes 
and suggest upper and lower approximation distribution 
reductions and then solve simplest certain and possible decision 
rules in incomplete decision table. 
Definition 4. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, B={b1,b2,…,bm}A. Then 
 

1 21 1 1
({ }) { ( ), ( ),..., ( )}

m m m

i i i li i i
B d b X b X b X

  
    , 

1 21 1 1
({ }) { ( ), ( ),..., ( )}

m m m

i i i li i i
B d b X b X b X

  
     

 
are called forming the lower and upper approximations of 
decision class family referring to B in MGRSM respectively. If 
B={c1, c2,…,cn}, then: 
 

1 21 1 1
({ }) { ( ), ( ),..., ( )}

n n n

i i i li i i
B d c X c X c X

  
    , 

1 21 1 1
({ }) { ( ), ( ),..., ( )}

n n n

i i i li i i
B d c X c X c X

  
    . 

 
The lower and upper approximation distribution reductions 

in MGRSM are defined in the following definitions, 
respectively. 
Definition 5. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, 1 2{ , ,..., }mB b b b A  , then B is called a 

lower approximation distribution reduction in MGRSM if, and 
only if ({ }) ({ })B d A d , ,C B   ({ })C d ({ })A d . B is 

called a upper approximation distribution reduction if, and only 

if ({ }) ({ })B d A d , ,C B   ({ }) ({ })C d A d .  
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Definition 6. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, 1 2{ , ,..., }mB b b b A  , xU. Then 

 

1
( ) { / ({ }) : ( )}

m

ii
B x X U IND d x b X


   , and 

1
( ) { / ({ }) : ( )}

m

ii
B x X U IND d x b X


   . 

 
Theorem 10. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, BA. Then  
 (1) ({ }) ({ })B d A d  iff xU( ( )B x = ( )A x ); 

 (2) ({ }) ({ })B d A d  iff xU( ( )B x = ( )A x ). 

Proof. 
 (1) “ ”: Since ({ }) ({ })B d A d , / ({ })kX U IND d  , 

1 1
( ) ( )

m n

i k i kj i
b X c X

 
  , that is, x U  , 

1 1
( ) ( )

m n

i k i kj i
x b X x c X

 
     and 

1 1
( ) ( )

m n

i k i kj i
x b X x c X

 
     . Thus 

( ) ( )B x A x  for x U  . “ ”: Since ( ) ( )B x A x  for 

,x U   
1

( )
m

i kj
b X

  
1

( )
n

i ki
c X


   for 

/ ({ })kX U IND d  , thus ({ }) ({ })B d A d . 

 
The proof of (2) is similar to that of (1). 
Theorem 10 is useful for finding the lower and upper 

distribution reduction of x. But it is not so easy. Now we give an 
easier method. 
Theorem 11. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, BA. Then 
(1) xU( ( )B x = ( )A x )aB( ( )A x  ( )A y  

→ ({ }), , , ({ }), ,C O a x C c A C O c y C C C          ) 

(2) xU( ( )B x = ( )A x )aB( ( ) ( )A y A x   

({ }), , , ({ }), ,C O a x C c A C O c y C C C          ),

( ) ({ })(kX B x a A C O a x C       )kC X    

Proof. 
(1) “  ”: From ( ) ( )A x A y , there exists   

/ ({ })kX U IND d such that ( )kX A x  and ( )kX A y . 

Because ( ) ( )B x A x  for ,x U   then 

1
( ) { / ({ }) : ( )}

m

k ii
X B x X U IND d x b X


    and 

1
( ) { / ({ }): ( )}

m

k ii
X B y X U IND d y b X


    . Therefore 

a B  , ( )kx a X  and , ( )kc B y c X     a B  , 

({ }), ,C O a x C    ,c B   C    ({ }), ,O c y C C C   . 

“  ”: Since 1 2 1 2{ , , , } { , , , }m nB b b b A a a a    , 

/ ({ })kX U IND d  , we have 
1

( )
m

j kj
b X


  

{ : {1,2,..., }, ({ }, , },j kx U j m C O b x C C X     

1
( ) { : {1,2,..., }, ({ },

n

i k ji
c X x U j n C O c


      

, }.kx C C X  Because 1 2{ , , , }mB b b b  1 2{ , ,a a  

..., }na A ,
1 1

( ) ( ).
m n

j k i kj i
b X c X

 
   Therefore, we 

have ( ) ( )B x A x  for x U  . So in the following we only 

have to prove that ( ) ( )B x A x  for x U  . 

Due to the given condition, we have  
 

, ({ }), ,a B C O a x C     , ({ }),c B C O c     
,y C C C  

, ({ }), , , ({ }),a B C O a x C c A C O c          
,y C C C   . 

 

( , ({ }), , , ({ }),a B C O a x C c A C O c         
, )y C C C   , ({ }), ,a B C O a x C       
, ({ }),c A C O c    ,y C C C   ( ) ( )A x A y  . 

For 1
( ) { / ({ }) : ( )}

n

k ii
X A x X U IND d x c X


      

( )kX Ay  ' , ({ '}), , kc A C O c y C C X       
. 

, ({ }), , , ({ }),a B C O a x C c A C O c        
,y C C C    

, ({ }), , ' , ({ '}),a B C O a x C c A C O c          
, ky C C C X     ( )kx B X  ( )kX B x

. 
 

(2) “”: Suppose ( ) ( )A y A x . Then there must exist 

an / ({ })kX U IND d such that ( )kX A y  and ( )kX A x . 

Because ( ) ( )B x A x  for ,x U   thus ( )kX B y  and 

( )kX B x . 

 

( ) { / ({ }) : ( )}kX B y X U IND d y B X     

={ / ({ }) : ( )}a AX U IND d y a X   

 ({ })( )ka B C O a y C C X         
 

( ) { / ({ }) : ( )}kX B x X U IND d x B X     
 ({ })( )ka B C O a x C C X        . 

 
So, summing up the above two results, we have 
 

 
({ }) ({ })( ).a B C O a C O a x C y C C C            

 
 

For ( ) ( )kX B x A x    

 

({ })( )ka A C O a x C C X       
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“  ”: For , ( ) { / ({ }) : ( )}k kB A B x X U IND d x B X     

{ / ({ }) : ( )},k a A kX U IND d x a X    

( ) { / ({ }) : ( )}k kA x X U IND d x A X    

{ / ({ }) : ( )},k a A kX U IND d x a X   ( )a A ka X  

( )a B ka X  , therefore, ( ) ( )A x B x  for x U  .  

 

In the following we are going to prove ( ) ( )B x A x  for 

x U  under given condition. From given condition, we 

have:  
 

({ }) ({ })( )a B C O a C O a x C y C C C            

( ) ( )A y A x  , i.e. ({ }) ({ })a B C O a C O a       

( )x C y C C C      ( ) ( )A y A x   
 

({ })O a  is a complete cover, so a B   ({ })C O a   

({ })( )C O a x C y C C C         equals to 

({ }) ({ })(a B C O a C O a x C y C          )C C  . 

Thus, ( ) ( )B x B y . 

If ( )kX B x , then ( )kX A x . 

 

( )kX B x ({ })( )ka B C O a x C C X        . 

( )kX A x  
{ / ({ }) : ( )}kX X U IND d x A X     
({ })( )ka A C O a x C C X       

. 
 
From ({ }) ({ })a B C O a C O a       

( )x C y C C C      , we obtain ( ) ( )B x B y . So, 

({ })( )ka B C O a x C C X         implies that 

we do not have ({ })a B C O a     ( )kx C C X    , 

but only have a A B    

({ })( )kC O a y C C X        .  

From ( ) ({ })( )k kX B x a A C O a x C C X          , 

we get a contradiction. This means ( )kX A x . Therefore, 

( )kX A x . So ( ) ( )B x A x . Conclusively, we obtain 

( ) ( )B x A x .  

V. FINDING APPROXIMATION REDUCTIONS 

So as to solve the lower or upper distribution approximation 
reductions from MGRSM with granules maximal compatible 
classes, we build discernibility matrices first and then choose 
discernible attributes.  
Definition 7. Let ( , , , )IIS U AV f  be an incomplete decision 

table. We define 
 

2{( , ) : ( ) ( )}MLWR x y U A x A y   , 

{ : , ({ })(

( , )     ) ( , ) }

,                                      otherwise
MLW MLW

a A C C O a x C

D x y y C C C x y R

   
        
   

 

{ ( , ) : , }MLW MLWM D x y x y U 
 

 
2{( , ) : ( ) ( )}MUPR x y U A y A x   , 

{ : , ({ })(

), ( )

( , ) ({ })(

),  ( , ) }

,                                o therw ise

k

M U P

k M U P

a A C C O a x C

y C C C X A x

D x y a A C V a x C

C X x y R

   
            
     
  

{ ( , ) : , }MUP MUPM D x y x y U 
 

 

( , )MLWD x y is called the lower discernible attribute subset 

and ( , )MUPD x y is the upper one; MLWM  is called the lower 

approximation distribution discernible matrix and MUPM is the 

upper one. 
Theorem 12. Let ( , { }, , )IIS U A d V f   be an IIS, BA. Then 

(i) ({ }) ({ })B d A d   if ( , ) ,  MLWD x y   then 

( , )MLWB D x y  ; 

(ii) ({ }) ({ })B d A d   if ( , ) ,  MUPD x y   then 

( , )MUPB D x y 
. 

Proof.  
(i) Since ({ }) ({ })B d A d , we have x U  , ( ) ( )B x A x . 

Since  ( , ) MLWx y R , we have ( ) ( )A x A y  and 

({ }),a B C O a     

, , ({ }), ,x C c B C O c y C C C        . Therefore 

( , )MLWa D x y   means that ( , )MLWB D x y  . 

If ( , )MLWD x y  , then we have ( ) ( )A x A y . It 

follows that a B  , ,C  

({ })( )C O a x C y C C C        . Thus, x U  , 

( ) ( )B x A x . So ({ }) ({ })B d A d . 

The proof of (ii) is the same as that of (i). 
Definition 8. Let S=(U,AT,V,f) be an incomplete decision table. 
We respectively define  
 

( , )
( , )

MLW
MLW MLW

x y R
D x y


    ; 

( , )
( , )

MUP
MUP MUPx y R

D x y


    . 

 

MLW  is called the lower approximation distribution 
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discernibility function, MUP  is the upper one in MGRSM, 

where  is the conjunction, and  is the disjunction. 
Theorem 13. Let ( , { }, , )IIS U A d V f   be an incomplete 

decision table, BA. Then 

(1) if, and only if  B is a necessity term of MLW , B is a 

lower approximation distribution reduction of the 
incomplete decision table; 

(2) if, and only if  B is a necessity term of MUP , B is an 

upper approximation distribution reduction of the 
incomplete decision table. 

The proof of it is similar to that of Theorem 15 in [14]. 
Theorem 14. Let IIS  be a consistent incomplete decision 

table. ( , ),
ii at a v   { }( , ), ds d j j V  . Then 

(1) If B is a lower approximation distribution reduction, then 
for any xU, rx: t→s is a certain decision rule; 

(2) If B is an upper approximation distribution reduction, then 
for any xU, rx: t→s is a possible decision rule. 

 
TABLE II 

( , )MLWD x y WITH ( , ) ( )x y SIM A  

 1 2 3 4 5 6 

1   S X X  

2   X  X  

3 S S  SX SX S 

6   S    

VI. AN EXAMPLE REDUCTION IN MGRSM 

In order to illustrate how to solve a reduction in MGRSM in 
incomplete decision table with our suggested method, here we 
give an example. 
Example 3. Use the incomplete decision table shown in Table 
I. We can easily obtain / ({ }U IND d 1 2 3{ , , },X X X  where 

1 {1,2,4,6},X  2 {3},X  3 {5}.X  1( )A X  {1,2,6},  

2( ) {3},A X  1 2 3({ }) { ( ), ( ), ( )}A d A X A X A X 

{ ({1,2,4,6}), ({3}), ({5})} {{1,2,6},{3}, }.A A A  
( ) {{1},{2,6},{3},{4,5},{5,6}}.O A  (1) {{1}},AO   (2)AO   

{{2,6}}, (3) {{3}},AO  (4) {{4,5}},AO   (5) {{5,6}},AO   

(6) {{2,6},{5,6}}.AO   

 

(1)A   1{ / ({ }):1 ( )} { },X U IND d A X X    

1 2(2) { }, (3) { },A X A X   (4) , (5) ,A A  1(6) { }.A X  

/ ({ } {{1,3,4,5},{2,3,4,6}},U IND P   

/ ({ } {{1,2,3,4,5},{2,3,4,5,6}},U IND M   

/ ({ } {{1,3,4,5,6},{3}},U IND S   

/ ({ } {{1,2,3,6},{4,5}}.U IND X   

{( , ) : ( ) ( )}MLWR x y A x A y 
 

={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,1),  

(3, 2), (3, 4), (3,5), (3,6), (6,3), (6, 4), (6,5)}.  

( , )MLWD x y ( ( , ) ( )x y SIM A ) with different pairs of x 

and y are shown in Table II. A blank means an empty. 
 

TABLE III 

( , )MUPD x y WITH ( , ) ( )x y SIM A  

 1 2 3 4 5 6 

1   S  X  

2   X  X  

3 S S  SX SX S 

4   SX    

5   SX    

6   S    

 

( )MLW S X X P X X S S        
 

( ) ( )S X S X S S      S X  . 
 
So, {S,X} is the lower approximation distribution reduct of 

IIS. ({ })S X d  {{1,2,6},{3}, } ({ }).A d   This result 

is identical to that in [4]. 
 

1( ) ({1,2,4,6}) ( {1,2,4,6}) ({3,5})A X A A A    

{3} {1,2,4,5,6},  2( ) {3},A X   3( ) {4,5}.A X   ({ })A d  

1 2 3{ ( ), ( ), ( )}A X A X A X {{1,2,4,5,6},{3},{4,5}} .

(1) { / ({ }) :A X U IND d   11 ( )} { },A X X   

1 2(2) { }, (3) { },A X A X   1(4) { },A X  3(5) { },A X  

1(6) { }.A X  
{( , ) : ( ) ( )}MUPR x y A y A x  ={(1,3),(1,5),(2,3),  

(2,5), (3,1), (3, 2), (3, 4), (3,5), (3,6), (4,3),(4,5), (5,1),  
(5, 2), (5,3), (5, 4), (5,6), (6,3), (6,5)}.  

 

( , )MUPD x y with different pair ( , ) ( )x y SIM A  are 

shown in Table III. ( ) .MUP S X S X S X       So, 

{S, X} is the upper approximation distribution reduct of IIS. 
 

1 2({ }) { ( ), ( ),S X d S X X S X X   
 

3( )} {{1,2,4,5,6},{3},{4,5}} ({ }).S X X S X d   
 

  
This result is also identical to the one in [4]. 

VII.  CONCLUSIONS 

Using the knowledge representing system ( )O B  (B is any 

subset of attribute set), a maximal compatible class set, as a 
primitive granule, the present paper defines the lower 
approximation distribution reduction and the upper one. It 
extends definitions of them from single granulation RSM to 
MGRSM. It discusses properties of the lower and upper 
approximations and reductions in single and multiple 
granulation models, and the relationships between both models. 
Disjunction and conjunction operations of subsets are also 
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explored. Under certain conditions, the lower and upper 
approximation in multi-granulation model is related to the 
lower and upper approximation distribution reductions in single 
models (see Theorems 10 and 11). It designs discernibility 
matrices and Boolean functions to find upper and lower 
approximation distribution reductions. It verifies the 
correctness of them through examples. This granular approach 
supplies us a view to study MGRSM in processing IIS. 
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