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Abstract—Using one dimensional Quantum hydrodynamic 

(QHD) model Korteweg de Vries (KdV) solitary excitations of 
electron-acoustic waves (EAWs) have been examined in two-
electron-populated relativistically degenerate super dense plasma. It 
is found that relativistic degeneracy parameter influences the 
conditions of formation and properties of solitary structures.  

 
Keywords—Relativistic Degeneracy, Electron-Acoustic Waves, 

Quantum Plasma, KdV Equation.   

I. INTRODUCTION 

HE Electron acoustic waves (EAWs) are high frequency 
(in comparison with ion plasma frequency) electrostatic 

modes which occur in plasmas containing two distinct groups 
of electrons in which cold electrons provide the inertia and the 
restoring force comes from the hot electron pressure. The 
phase speed of EAWs is much larger than the thermal speed 
of cold electrons but much smaller than the thermal speed of 
hot electrons. Here ions may be regarded as forming a 
uniform neutralizing background. Since plasmas with two 
groups of electrons are known to occur in both space plasmas 
and laboratory experiments the EAWs play an important role 
in these environments. In recent years the study on the 
nonlinear evolution of EAWs has gained momentum with a 
view to explain the observation of moving EAW related 
structures reported by various space-craft missions [1-20]. 
Most of the works on EAWs are for classical nonrelativistic 
plasmas. The matter in some compact astrophysical objects 
(e.g. white dwarfs, neutron stars, magnetars etc.) exists in 
extreme conditions of density. In such situation the average 
inter-Fermion distance is comparable to or less than the 
thermal de Broglie wavelength and hence quantum 
degeneracy effects become important.  

In such extreme conditions of density the electron Fermi 
energy EFe [ ( )3 22 23 2e en mπ= ] may become comparable to 
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the electron rest mass energy [mec2] and the electron speed 
can approach the speed of light (c) in vacuum. At extreme 
high densities the thermal pressure of electrons may be 
negligible as compared to the Fermi degeneracy pressure 
which arises due to implications of Pauli’s exclusion 
principle. So the plasma in the interior of such compact 
astrophysical objects is both degenerate and relativistic. Under 
such conditions quantum and relativistic effects are 
unavoidable. Recently a large number of theoretical 
investigations have been made of the linear and nonlinear 
propagation of various electrostatic modes in degenerate 
quantum plasmas by using the quantum hydrodynamic model 
[21-41]. But to the best of our knowledge no investigation has 
been made of the nonlinear properties of electron-acoustic 
waves in weakly relativistic degenerate quantum plasmas. The 
purpose of the present paper is to investigate the linear and 
nonlinear properties of EAWs in relativistically degenerate 
dense quantum plasma consisting of two distinct groups of 
electrons and stationary ions. The paper is organized in the 
following way: in section II the basic set of quantum 
hydrodynamic equations are presented; in section III the linear 
dispersion characteristics is investigated; in section IV the 
Korteweg deVries equation is derived by using the standard 
perturbation techniques; in section V we discuss the 
dependence of soliton properties on different plasma 
parameters. The paper ends up with some concluding remarks.  

II. BASIC FORMULATION 
Electron-acoustic waves are considered to propagate in an 

unmagnetized three component completely degenerate dense 
plasma consisting of two groups of relativistic electrons at 
different temperatures and stationary cold ions forming a 
uniform neutralizing background. For electrons the thermal 
pressure is assumed to be negligible as compared to the 
degeneracy pressure which arises due to the implications of 
Pauli Exclusion Principle. In degenerate plasmas the rate of 
electron-ion collisions is limited due to the Pauli blocking 
mechanism which allows only degenerate particles with 
energies limited to a narrow range around the Fermi energy to 
interact, hence the plasma may be considered to be almost 
collision-less. Following Chandrasekhar (1939) the electron 
degeneracy pressure in fully degenerate and relativistic 
configuration can be expressed in the following form: 
 

( )4 5 3 2 2 13 (2 3) 1 3sinheh e eh eh eh ehP m c h R R R Rπ −⎡ ⎤= − + +⎣ ⎦
      (1) 
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in which 1 33 3 3 1 3
03 8eh Feh e eh e eh ehR p m c h n m c R nπ⎡ ⎤= = =⎣ ⎦  where 

( )1 3
0 0 0eh ehR n n= with 3 3 3 29 3

0 8 3 5.9 10en m c h cmπ −= ≈ × , ‘c’ 

being the speed of light in vacuum.  Fehp  is the electron 
Fermi relativistic momentum.  It is to be noted that in the 
limits of very small and very large values of relativity 
parameter Reh, we obtain:  
 

2 3 2
5 31 3

20eh eh
e

hP n
mπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (for Reh →0) ,             (2a) 

1 3
4 31 3

8eh ehP hcn
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

   (for Reh →∞)         (2b) 

 
Note that the degenerate electron pressure depends only on 

the electron number density but not on the electron 
temperature. The dynamics of such a plasma is governed by 
the following normalized quantum hydrodynamic equations: 
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The normalization has been carried out in the following 

manner:  
0 0/ , , / 2 , / , /c sh c B Fh j j j i i ix x c t t e k T n n n n n nω ω φ φ→ → → → →

and /j j shu u c→  

in which 2
04 /ec ec en e mω π= is the cold electron plasma 

frequency, 2 /sh B Feh ec k T m= is the electron-acoustic speed. 

The charge neutrality at equilibrium reads
1 1δ δ= − . It is to be 

noted that the parameter Reh0 is a measure of the relativistic 
effects and may be called relativistic degeneracy parameter. 
For weakly relativistic case Rj0 << 1. Here 

( )2 2
0 01 3eh eh ehF R Rχ= +

 
is the term arising from relativistic 

pressure in weakly relativistic case, in which 
2 2e B Fehm c k Tχ = ; H is the non-dimensional quantum 

diffraction parameter defined as / 2ec B FehH k Tω= , where TFeh 
is the Fermi temperatures for hot electrons; 

0 0/ec ehn nδ =  and 

1 0 0/i i ehZ n nδ = , in which nec0  , neh0  and ni0 are the equilibrium 

number densities of cold electrons, hot electrons and ions 
respectively. 

III. DISPERSION CHARACTERISTICS 
In order to investigate the nonlinear behaviour of electron-

acoustic waves we make the following perturbation expansion 
for the field quantities neh, ueh,  nec , uec  and φ  about their 
equilibrium values: 

 
(1) (2)

(1) 2 (2)

(1) (2)

1
0 ......
0

j j j

j j j

n n n
u u uε ε
φ φ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦             (8) 

 
Substituting the expansion (8) in Eqs. (3)-(7) and then 

linearizing and assuming that all the field quantities vary as 
( )i kx te ω− , we get for normalized wave frequency ω and wave 

number k, the following linear dispersion relation : 

 2 2 2 2 4
2

2 2 2

( 4)
1 ( 4) 4

eh

eh

k F H k H k
k F H k

δω
δ

+
= +

+ +       
       (9) 

In the long wavelength limit (i.e. k→0): 
  

( ) 1 42
0 03 1eh eh ehk F kR Rω δ δ χ

−
= = +         (10) 

 
The long wave phase speed is: 

 
( ) 1 42

0 0 03 1eh ehV k R Rω δ χ
−

= = +          (11)
 

It 
 
It represents the long wave dispersion character of EAWs 

in a quantum-relativistic plasma composed of inertia less hot 
electrons, inertial cold electrons and stationary ions.  We 
numerically examine the behaviour of the dispersion relation 
(9) with respect to the variations of Reh0, δ and H. Fig. 1(a-c) 
shows the variation of ω with k for different values of the 
relativity parameter Reh0, δ and H respectively. It is shown that 
the wave frequency ω increases with increase in all three of 
them. 

 

 
Fig. 1(a) Dispersion curves for different values of the relativity 

parameter Reh0 keeping δ and H constant 
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Fig. 1(b) Dispersion curves for different values of the equilibrium 

cold to hot electron density δ keeping Reh0 and H constant 

 
Fig. 1(c) Dispersion curves for different values of the quantum 

diffraction parameter H keeping δ and Reh0 constant 

IV. KDV SOLITARY WAVE STRUCTURES 
In order to study the nonlinear behaviour of electron 

acoustic waves we follow the standard reductive perturbation 
technique we obtain the desired Korteweg de Vries (KdV) 
equation: 

 
3

3 0A Bφ φ φφ
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To find the solution of Eq. (12) we transform the 
independent variables ξ and τ into one variable η = ξ - M τ 
where M is the normalized constant speed of the wave frame. 
Applying the boundary conditions that as η → ± ∞; 

, ,
2

2

φ φφ
η η

∂ ∂
∂ ∂

→0 the possible stationary solution of Eq. (12) is 

obtained as: 
 

sec 2
m h ηφ φ

Δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                   (14) 

 
where the amplitude mφ   and width ∆ of the solution are given 
by: 

   
m 3 M Aφ =                     (15a) 

 
and   4B MΔ =                        (15b) 

 
The solitary wave structure is formed due to a delicate 

balance between dispersive and nonlinear effects. Relative 
strength of these two effects determines the characteristic of 
such solitary wave structure. The coefficients A and B, 
corresponding to the nonlinear effect and dispersive effect 
play a crucial role in determining the solitary wave structure. 
So it is important to study the dependence of these coefficients 
on different physical parameters. From Eqs. (13a) and (13b) it 
is clear that both the nonlinear and dispersion coefficients get 
modified due to the inclusion of relativistic effect whereas the 
quantum effect enters only into the dispersion coefficient. 
Both these coefficients depend on δ, the equilibrium cold-to-
hot electron concentration ratio. For a given H and δ there 
exists a critical value of the relativity parameter Reh0 at which 
the dispersion coefficient vanishes. This critical value of Reh0  
is given by:  

 

( )
( )

2 4 2
2 2 2

0 2 2

9(1 ) 81 36 (1 )14 16 4
2eh c

H H H

R
δ δ χ δδ

δ χ

+ + + ++
=       (16) 

 
No solitary structure is possible for ( )0 0eh eh c

R R< . Note that 

the critical value of the relativity parameter depends on both δ 
and H. From Eqs. (13)- (15) it is obvious that the degenerate 
plasma under consideration supports only rarefactive solitary 
wave structures which are associated with negative potentials. 
Fig. 2(a) shows electron-acoustic solitary profiles for different 
values of the relativistic degeneracy parameter Reh0 (which is 
directly proportional to the plasma number density) for fixed 
values of M, δ and H. It shows that both the amplitude and 
width of the soliton increase with increase of Reh0.  
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Fig. 2(a) Electron-acoustic solitary profiles for different values of the 
relativistic degeneracy parameter Reh0 for fixed values of M, δ and H 

 
Fig. 2(b) Electron-acoustic solitary profiles for different values of the 
equilibrium cold-to-hot electron concentration ratio δ for fixed values 

of Reh0 , M and H 
 

 
Fig. 2(c) Electron-acoustic solitary profiles for different values of the 

quantum diffraction parameter H for fixed values of M, δ and Reh0 
 

Fig.  2(b) shows solitary structures for different values of δ 
keeping Reh0, M and H constant. It is observed that with 
increase in δ both the amplitude and width of the soliton 
increase. Fig. 2(c) shows solitary structures for different 

values of H keeping other parameters fixed. It shows that the 
soliton width increases with increase in the value of H but its 
amplitude is independent of H. The amplitude of electron-
acoustic solitary structure increases with increase in Reh0 and 
δ, but it is independent of H. On the other hand the width of 
the soliton increases with increase in Reh0 , δ or H. 

V.   DISCUSSION AND CONCLUSION 
Using QHD model the linear and nonlinear propagation 

characteristics of EAWs are investigated in a relativistic 
degenerate dense plasma consisting of two distinct groups of 
electrons and stationary ions. It is shown that the plasma 
under consideration can support only rarefactive solitary 
waves under certain restricted regions of plasma parameters. 
The soliton properties are shown to depend significantly on 
the relativistic degeneracy parameter Reh0, the equilibrium 
cold-to-hot electron density ratio δ and also the quantum 
diffraction parameter H. The present investigation may be 
helpful in understanding the basic features of electron-
acoustic waves in super dense astrophysical objects like white 
dwarfs, neutron stars as well as in the future intense laser-
solid plasma experiments where the relativistic electron 
degeneracy effects become important. Finally we would like 
to point out that the investigation presented here may be 
helpful in the understanding of the basic features of long 
wavelength electron plasma waves in dense plasmas such as 
can be found in white dwarfs, neutron stars and intense laser-
solid plasma experiments. 
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