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Abstract—Considering toxicity of heavy metals and their 

accumulation in domestic wastes, immobilization of lead and 
cadmium is envisaged inside glass-ceramics. We particularly 
focused this work on calcium-rich phases embedded in a 
glassy matrix. 

Glass-ceramics were synthesized from glasses doped with 
12 wt% and 16 wt% of PbO or CdO. They were observed and 
analyzed by Electron MicroProbe Analysis (EMPA) and 
Analytical Scanning Electron Microscopy (ASEM). Structural 
characterization of the samples was performed by powder X-
Ray Diffraction.  
 Diopside crystals of CaMgSi2O6 composition are shown to 
incorporate significant amounts of cadmium (up to 9 wt% of 
CdO). Two new crystalline phases are observed with very 
high Cd or Pb contents: about 40 wt% CdO for the cadmium-
rich phase and near 60 wt% PbO for the lead-rich phase.  We 
present complete chemical and structural characterization of 
these phases. They represent a promising way for the 
immobilization of toxic elements like Cd or Pb since glass 
ceramics are known to propose a “double barrier” protection 
(metal-rich crystals embedded in a glass matrix) against metal 
release in the environment.  
 

Keywords—Cadmium, Calcium-rich phases, Diopside, Domestic 
wastes, Fly ashes, Glass-ceramics, Lead, Municipal Solid Waste 
Incineration. 

I. INTRODUCTION 
EAVY Metals like lead or cadmium are widely used in 
our domestic activities and they are found in significant 

quantities in domestic wastes. For example, in France in 2004, 
795 and 4 milligrams of Pb and Cd respectively were found 
per kilogram of domestic waste [1]. 

In occidental countries, incineration is the major treatment 
of domestic waste [2] (43 wt% of domestic waste in France). 
This technique offers a great reduction of waste volume and 
generates thermal or electrical energy. However, Municipal 
Solid Waste Incineration (MSWI) produces further ultimate 
wastes: bottom and fly ashes. Bottom ashes are found be used 
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as road and railway filling materials. Up to present, fly ashes 
are only stored in class1-type landfills for hazardous wastes, 
because of their contents of toxic elements (up to 0.02 wt% of 
PbO or CdO [3]). Note also that about 1.2 million of tones of 
fly ashes are produced each year in Western Europe [4]. Then 
it appears that land storage is not a long-term solution for the 
treatment of municipal wastes, because of increasing wastes 
production throughout the world due to demographic 
expansion, and economic development of many emerging 
countries. A promising way could then be a valorization 
through a stable immobilization of toxic elements in matrices 
which allow a further use as new materials. 
 Several matrices had been studied for immobilization of 
toxic element, such as glasses, ceramics and cements. Glass-
ceramics are also envisaged because of their high chemical 
flexibility or lower diffusion coefficient. Moreover, their high 
density of grain boundary makes them very resistive to brutal 
crack [5]-[7]. In glass-ceramics, when toxic elements are 
incorporated in specific sites inside crystals (embedded by a 
glassy matrix), we can consider that this process corresponds 
to a double barrier protection from any release of these 
hazardous elements into the environment. 
 Calcium-rich glass-ceramics appears as good candidates to 
immobilize cadmium and lead because calcium has a large 
ionic radius and then calcium crystal sites are expected to host 
voluminous cations like those of Cd and Pb. Note that such Ca 
sites (in silicate perovskite) were shown to host large amounts 
of voluminous cations  U⁴⁺ [8], [9]. 
 In this study, diopside crystals (CaMgSi₂O₆ composition) 
were targeted for their expected capacity to incorporate large 
cations, especially in the 8-fold coordinated M2 site. Diopside 
was found to accept uranium in this typical site [10]. We can 
expect similar behaviour for Cd and Pb since Ca2+ is known to 
display a ionic radius of 1.12 Å when 8-fold coordinated 
while Cd and Pb display ionic radius of 1.10 Å and 1.29 Å 
respectively when in the same coordination [11]. In previous 
studies [12], [13], the immobilization of elements like Cd, Cr 
or Pb (present in fly ashes), was tested in diopside-based 
glass- ceramics. But it appears that these studies did not 
clearly quantify and demonstrate the incorporation of these 
toxic elements inside diopside crystals.  

II. METHOD 
Starting glasses were synthesized from oxides mix in the 
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system SiO2-MgO-CaO-Al203. They were doped with 
relatively large amounts of CdO or PbO, as presented in Table 
1. We chose excess of doping elements in order to better 
constrain the insertion mechanisms of Cd and Pb. Oxides 
mixes (typically 2 grams in weight) were finely crushed in 
ethanol so as to get relatively homogeneous starting materials. 
To minimize the volatilization of lead or cadmium during 
synthesis of parent glasses, pellets of our samples were 
prepared. We observed maximum 3-4 wt% difference between 
Cd or Pb contents before and after glass synthesis at high 
temperature. 

Several samples with different amounts of doping element 
were synthesized for a systematic analysis (12 and 16 wt% of 
CdO or PbO). In this paper, we present the results obtained 
from two glass-ceramics representative of all samples studied 
in this work. The composition of the corresponding parent 
glasses is given in Table I. 

For synthesis of parent glasses, pellets of oxides mix were 
placed in a platinum crucible and carried at 300°C during 30 
minutes (ethanol volatilization) then brought at 900°C for 60 
minutes (decarbonatation) and then brought to 1500°C during 
20 minutes, to get homogeneous glasses with limited cadmium 

and lead loss by volatilization. 
 
Glasses samples were splitted in two parts. One was resin-

embedded, polished and carbon-coated for microanalysis. And 
the other was used as parent glass for glass-ceramics 
synthesis. 

Diopside-based glass-ceramics were synthesized by a two-
stage thermal treatment: a nucleation stage at 750°C during 90 
minutes and a crystal growth stage at 1000°C during 90 
minutes. Temperatures and duration of these stages were 
chosen in order to maximize number and size of crystallites. 

 
Glass-ceramics were characterized by X-Ray Diffraction 

(XRD) with a Bruker-AXS D8-Discover diffractometer using  
CuKα  wavelength ( 5418.1=λ  Å). Glasses and glass-
ceramics were studied by Electron MicroProbe Analysis 
(EMPA, CAMECA SX50) and by using an Analytical 

Scanning Electron Microscope (ASEM, LEICA S440) 
equipped with a TRACOR-NORAN Energy Dispersive X-ray 
(EDX) spectrometer. We observed a very good agreement 
between analyses obtained from these two latter techniques 
(with less than 1 wt% difference). 

III. RESULTS 
Both glass-ceramics display the same characteristics (Fig. 

1) with a glassy matrix in clear grey, diopside crystals in dark 
grey and in each case a new phase which appears in white 
(backscattered electron contrast corresponding to dense 
material). Anorthite crystals (in black) are also present but 
they are known to be generated by surface corrosion 
processes.  

In all samples, many diopside crystals are present whereas 
the volume of the glassy matrix appears to be quite small. 
Unlike previous studies [12], [13], the diopside crystals 
observed in the present work are slightly bigger (about 5 
micrometers compared to 3 micrometers) due to higher 
temperatures of crystal growth stage. 

  

 
 

 
 Fig. 1 Scanning Electron Microscope pictures of (a) GD16Cd 

(Glass-ceramic doped with 16 wt% of CdO) and (b) GD12Pb (Glass-
ceramic doped with 12 wt% of PbO)  

 
EDX analysis reveals that diopside does not incorporate 

lead, probably due to ionic radius differences (as described 
above). However, the picture is different for cadmium: 
diopside is shown to accept cadmium up to about 9 wt% CdO 
(then about 1.5 at% Cd), probably in the Ca sites. After these 
results, we can propose the chemical formulae for the diopside 
crystals doped with cadmium as in equation (1) with the 
hypothesis of cadmium inserted in the calcium site.  

TABLE I 
COMPOSITION OF PARENT GLASS FOR GLASS-CERAMICS DOPED WITH CADMIUM 

OR LEAD OXIDES 

Oxide GD16Cd * GD12Pb * 

2SiO
 

44.52 wt% 46.64 wt% 

MgO
 

20.16 wt% 
 

21.12 wt% 
 

CaO  11.76 wt% 
 

12.32 wt% 
 

32OAl
 

7.56 wt% 
 

7.92 wt% 
 

Doped  
element 

CdO: 16 wt% 
 

PbO: 12 wt% 
 

* G for Glass and D for diopside. 16Cd for glass doped with 16 wt% of CdO. 
12Pb for glass doped with 12 wt% of PbO 
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6213.087.026.015.059.0 ),(),,( OAlSiMgAlCdCa   (1) 
 
Based upon stoichiometric considerations, we see that 

aluminum can be distributed over both calcium and silicon 
sites: this can only be achieved with a charge compensation as 
seen in a previous study [14]. XRD reveals that the cadmium 
insertion does not induce a significant distortion of the 
diopside crystal structure, since the Bragg peaks positions are 
almost exactly those expected from Analytical Standard for 
Testing Materials files (see XRD pattern in Fig. 2). 
 

 
 Fig. 2 XRD pattern of glass-ceramics GD12Pb. Stars (*) represent 
Bragg’s peaks of the New Pb-rich phase (NPb), while main peaks for 
diopside and anorthite are assigned with hkl Miller indices. Note the 
coarse background at 2ϑ around 30° witch is a signature of the glass-

matrix. 
 
In both glass-ceramics samples, new Cd- or Pb-rich phases 

are observed. They appear with a light contrast (relative to 
heavy metal insertion, as pictured in Fig. 1). The new Pb-rich 
phase (named NPb) contains up to 57 wt% of PbO (about 9.8 
at% of Pb). The new Cd-rich (named NCd) displays CdO 
content up to 41 wt% (then nearly 9 at% of Cd). Both phases 
are observed throughout the whole sample. After EMPA and 
EDX analysis, we can write a chemical formula as in equation 
(2) for NPb and equation (3) for NCd if we assume that 
cadmium is inserted into calcium site. 

 

83.445.162.0 OSiPbAl  (2) 

622.047.15.12.181.019.0 ),( OAlMgSiCdCa  (3) 
 
Bragg peaks of these new phases were identified, but no 

indexation from related possible crystal structures could be 
found for both NPb and NCd XRD patterns. XRD details of 
both phases are listed in Table II.  

 
In both cases, the glassy matrix also contains cadmium or 

lead. We can assume that these new phases display solubility 
limits of Cd and Pb, since the Cd or Pb excess is found in the 
glass matrix. 

IV. CONCLUSION 
This study shows that diopside-based glass-ceramics 

incorporate up to about 9 wt% of CdO (or 1.5 at% of Cd) 
inside diopside crystals without significant structural change. 

Lead is not incorporated into diopside, probably due to ionic 
radius differences.  
 In these glass-ceramics, two new phases are observed and 
can be envisaged as good candidates for Cd or Pb 
immobilization. The new Cd-rich phase contains up to 41 wt% 
of CdO (then 9 at% of Cd) while the new Pb-rich phase 
contains about 57 wt% of PbO (9.8 at% of Pb).  

In order to determine the capacity of these new phases to 
retain heavy metals, leaching experiments need to be done to 
determine their long-term behaviour in terms of Cd and/or Pb 
release into the environment. 
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