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 
Abstract—Surrogate model has received increasing attention for 

use in detecting damage of structures based on vibration modal 
parameters. However, uncertainties existing in the measured 
vibration data may lead to false or unreliable output result from such 
model. In this study, an efficient approach based on Monte Carlo 
simulation is proposed to take into account the effect of uncertainties 
in developing a surrogate model. The probability of damage existence 
(PDE) is calculated based on the probability density function of the 
existence of undamaged and damaged states. The kriging technique 
allows one to genuinely quantify the surrogate error, therefore it is 
chosen as metamodeling technique. Enhanced version of ideal gas 
molecular movement (EIGMM) algorithm is used as main algorithm 
for model updating. The developed approach is applied to detect 
simulated damage in numerical models of 72-bar space truss and 120-
bar dome truss. The simulation results show the proposed method can 
perform well in probability-based damage detection of structures with 
less computational effort compared to direct finite element model. 
 

Keywords—Enhanced ideal gas molecular movement, Kriging, 
probability-based damage detection, probability of damage existence, 
surrogate modeling, uncertainty quantification. 

I. INTRODUCTION 

N recent years, significant efforts have been undertaken in 
the area of vibration-based damage detection methods. 

These methods are based on the fact that dynamic 
characteristics, i.e. natural frequencies, mode shapes and 
modal damping, are directly related to the stiffness of the 
structure. Therefore, a change in natural frequencies or a 
change in mode shapes may indicate a loss of stiffness. Some 
detailed literature reviews which describe the state of the art in 
the methods for damage detection, localization, and 
characterization, by examining changes in the dynamic 
response of a structure can be found in [1], [2]. 

The use of approximate models known as surrogate models 
with a much lower computational cost instead of expensive 
computer analysis codes (Finite Element Model) pervades 
much of today’s engineering design and optimization. These 
approximations or meta-models are used to replace the actual 
expensive computer analyses and facilitated multidisciplinary, 
multi-objective optimization, reliability analysis, and concept 
exploration [3], [4].  

Detection of damage severity is effectively the solution to 
the inverse problem [5]. However, it may be necessary in 
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many cases to solve the forward problem to generate data for 
the solution to the inverse problem. Generation of data is 
usually computationally expensive, and surrogate models are 
created to reduce the computational expense [6]. Simulation of 
efficient surrogate model of finite element (FE) as a response 
of updating damaged structure which is employed in the 
optimization loop through an inverse process to ascertain the 
damage parameters (damage severity and location), can 
replace expensive numerical simulations while enhancing 
computation efficiency. Fathnejat et al. [5] proposed solution 
procedure based on artificial neural network (ANN) to reduce 
the computational time of model updating during the process 
of damage severity detection. 

Studies shows that ANNs are capable of providing correct 
damage identification, especially when the structural damage 
and the associated changes in vibration properties are 
simulated numerically and are error-free [1], [3]. However, in 
practice, uncertainties in the FE model parameters and 
modelling errors are inevitable. The existence of modelling 
error in the FE model due to the inaccuracy of physical 
parameters, non-ideal boundary conditions, FE discretization, 
and nonlinear structural properties may result in the vibration 
parameters generated from such a FE model which did not 
exactly represent the relationship between the modal 
parameters and the damage parameters of the real structure 
[7]. On the other hand, the existence of measurement error in 
the measured data that are normally used as testing data in a 
surrogate model is also unavoidable. Since the efficiency of a 
surrogate model prediction relies on the accuracy of both 
components, the existence of these uncertainties may result in 
false and inaccurate predictions. Therefore, the impact of 
uncertainties on the reliability of surrogate models for 
structural damage detection needs to be analyzed. 

Hence, the objective of this paper is to study the influence 
of uncertainty on damage identification using a combination of 
frequency and mode shape as the input variables. To consider 
the uncertainties in the FE modelling and the measurement 
data, an approach introduced by Papadopoulos and Garcia [8] 
is applied. Using this method, the probability of damage 
existence (PDE) can be estimated by comparing the 
probability distribution of the undamaged and damaged 
models. To consider the effect of FE modelling error, a 
statistical surrogate model is trained with vibration data 
generated from the FE model, but smeared with random 
variations. To include the effect of noise in the measurement 
data, the testing data used as input to the statistical kriging 
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model for damage identification are also smeared with random 
noises. Hence, in this paper, a methodology is presented for 
the damage detection of skeletal structure based on kriging 
metamodeling technique and enhanced version of ideal gas 
molecular movement (EIGMM) algorithm [9], [10]. The 
computational cost of model updating during the optimization 
process of damage detection is reduced efficiently by 
evaluating multiple damage location assurance criterion 
(MDLAC) index [11] based on the frequency change vector of 
structures, using kriging surrogate. To validate proposed 
probability-based damage detection method, two examples are 
presented.  

The paper is organized as follows. The brief introduction 
about Kriging surrogate is presented in Section II. Section III 
then presents the analytical formulation of MDLAC. Ideal gas 
molecular movement and enhanced version is described in 
Sections IV and V. Probability based model updating and 
proposed damage detection procedure is described in Sections 
VI and VII. Numerical examples are studied in Section VIII. 
Finally, Section IX presents conclusions of the work. 

II.  THE KRIGING SURROGATE 

Kriging, which is widely used, is a combination of 
polynomial regression and Gaussian stochastic processes [10]. 
The regression model fits the samples according to the rule of 
least-squares estimation. The correlation model adjusts the 
prediction error by using maximum likelihood estimation. 
Kriging is formulated as [12]: 

 


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ˆ ( ) ( ) ( ) ( )
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n

i i
i correlation

y Y x Z x f x Z x
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0
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n

ii i
Y x f x


  is the regression model, which 

usually adopts polynomials up to the second order to represent 
the global trend of the sample points. ( )Z x  is the correlation 

model, which is a Gaussian process with mean value 0  and 
covariance  . The correlation model is given by 
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where jkR  is the Gaussian correlation function on the p-

dimensional design space: 
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In (2) and (3),   is the coefficient vector of the correlation 

model. The optimal coefficients    are found for maximum 
likelihood estimation. It is important to choose proper 
formulations of the regression functions which represent the 
system behavior as precisely as possible. Higher-order 

polynomial regressions have the capability of approximating 
more complex responses, but they require more sample points 
to determine the polynomial coefficients. By properly 
selecting the polynomial orders and mixed terms of design 
variables using knowledge of a system, the number of 
coefficients in regression functions can be greatly reduced. 

III. MULTIPLE DAMAGE LOCATION ASSURANCE CRITERION 

(MDLAC) 

Structural damage detection techniques are generally 
classified into two main categories. They include the dynamic 
and static identification methods requiring the dynamic and 
static test data, respectively. Furthermore, the dynamic 
identification methods have shown their advantages in 
comparison with the static ones. Among the dynamic data, the 
modal analysis information of a structure such as the natural 
frequencies and mode shapes were widely used for damage 
detection [13]-[15]. Determination of the level of correlation 
between the measured and predicted natural frequencies or 
mode shapes can provide a simple tool for identifying the 
location and severity of structural damages. When the natural 
frequencies are employed to identify the damage, two 
parameter vectors may be determined. One parameter vector 

consists of the ratios of the first fn  natural frequency changes 

F  due to structural damage, i.e.: 
 

h d
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where hF  and dF  indicate the natural frequency vectors of 

the healthy and damaged structure, respectively. Another 
parameter vector can be similarly defined as: 
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where  F ESV  is a natural frequency vector that can be 

extracted from an analytic model and elemental stiffness 

vector (ESVs)  1,..., ,...,T
i nESV E E E  which represents 

a damage variable vector containing the elasticity modulus of 
structural elements ( , 1,..., )iE i n   of all n   structural 

elements.  
Given the pair of parameter vectors, one can estimate the 

level of correlation in several ways. An efficient way is to 

evaluate a correlation index called the MDLAC  which is 
expressed in the following form [11]: 
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The MDLAC  compares two frequency change vectors, 
one of which is obtained from the examined structure, and the 
other from is an analytical model of the structure. The 

MDLAC  varies from a minimum value 0  to a maximum 

value 1. It will be maximal when the vector of analytical 
frequencies equates to the frequency vector of damaged 
structure, i.e.  

 

  dF ESV F  (7) 

IV. IDEAL GAS MOLECULAR MOVEMENT 

The behavior of gas molecules in an isolated medium shows 
that they disperse rapidly in different directions and cover all 
the space inside. The essence of such manner lies on two 
factors; the high speed of ideal gas molecules and their 
collisions. Recently, the conventional IGMM was introduced 
by the authors, and its application in solving engineering 
problems was assessed then [9], [16]. The algorithm utilizes 
the governing equations for speed and collision of molecules 
in order to determine their new location. The speed of 
molecules thus is proportional to the temperature and 
inversely proportional to its mass. Besides, they collide with 
each other with a certain probability, increasing gradually with 
their motions. Ideal gas molecules have fully elastically 
collisions, and elastic collision governing equations can be 
used to determine the new position of gas molecules after 
collision [9]. Different steps of the IGMM algorithm can be 
summarized as follows [9]: 
Step1. Generate the initial population of gas molecules with a 

uniform distribution from the allowable range of design 
variables. 

Step2. Evaluate each molecule and assign them a mass 
according to its fitness using the following relation: 

 

2

1 1
( ) ( ( ))

im
fit i fit i




 (8) 
 

 

where im  shows the mass of the i -th molecule and ( )fit i  

reflects the fitness of the i -th molecule with regard to the 
objective function for the problem.  
Step3. Pairing molecules without repetition. In this stage, 

based on the governing equations of the ideal gases, it 
was assumed that there are no simultaneous molecular 
collisions.  

Step4. Determine collision probability (CP) based on (8). 
 

1 exp( 0.63 )CP iter      (9) 
 
Step5. Generate a random number between 0 and 1 and 

compare it with CP to determine whether collision 
occurs or not. According to this phenomenon, the 
following steps will proceed to calculate the new 
velocity and position of each molecule. 

Step6. In collision phase, new post-collision velocities are 
obtained using (10) and (11). In using these equations, 
the molecule with a larger mass is assumed stationary, 
and the lighter molecule moves according to the 
hypotheses about the elastic collision between gas 
molecules. The initial velocity of the moving molecule 

is obtained using relation x t    (for 1t  ) by 
subtracting the positions of the two molecules.  

 

 1 2
1 1

1 2

( )
( )d dm Em

m m
   


  (10) 

1
2 1

1 2

(1 )
( )d dE m

m m
   


 (11) 

 

where d  indicates the dimension of the optimization 
problem. As stated, in the event of elastic collisions, parameter 
E  is equal to 1, but in (10) and (11), this parameter is defined 
as a variable to guarantee the convergence in the algorithm. 
Therefore, in the first few steps of the optimization process, 
this variable has a value near 1, but with an increase in the 
number of optimization cycles, its value declines dynamically 
based on the following linear equation. 
 

1 ( )
max

iter
E

it
    (12) 

 

where iter  and max it  indicate current and the maximum 
iterations of optimization procedure, respectively. Having 
computed the new velocity of each molecule, its new position 
can be computed using (13) and (14): 
 

1 2 1( ) ( )d d dx x rand      

 

(13) 
 

2 2 2( ) ( )d d dx x rand      (14) 

 

where 2
dx  shows the position of stationary molecule before 

the impact, and accordingly, 1( )dx   and 2( )dx   indicate the 

new positions after the impact, respectively. rand  represents 
a random normal distributed value in the range [0,1]. 
Step7. In no collision phase, the new velocity of the i -th 

molecule is determined using (15). 
 

1.7d i
i

i

kT

m
    (15) 

 

The Boltzmann constant value ( k ) in (15) is assumed 
opposite to the number of molecules in the optimization 
process. Velocity of each molecule accords with the mass and 
temperature of that molecule. Hence, in this phase, it is 
necessary to calculate the new temperature of each molecule. 
To this end, a subtractive equation is defined as follows. The 
initial temperature is set to 1000 in original IGMM. 
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Finally, after determining the new velocity of each 

molecule using (15), the new position of each molecule is 
obtained as given 

 

2( ) ( )d d d
i ix x rand      (17) 

 
Step8. The convergence criterion will be checked, and if the 

algorithm does not converge, Steps 2-4 will be 
repeated. 

V. ENHANCED IDEAL GAS MOLECULAR MOVEMENT 

Enhanced version of IGMM is proposed by authors in [17]. 
In some optimization problems, number of variables that must 
be considered is very large. For example, in optimization 
based damage detection problem, damaged elements and 
damage extends are searched through an optimization process 
until the response of hypothesized damaged structure equals 
those of a real damaged structure. When real structure is large 
scale structure, number of elements (variables) will be 
increased [18]. Hence, when optimization method tries to 
minimize, objective function must handle with huge bunch of 
variable, and this decreases convergence speed of algorithm. 

Therefore, an approach introduced by Ghasemi et al. [17] is 
applied in this paper to resolve this problem. In damage 
detection problem, in the first stage when initial population 
generated, each molecule has a velocity vector that represents 
its speed in an n-dimensional space. Each variable of this 
vector represents elasticity modulus of structural elements. In 
the proposed method, first, number of variables in each stage 
of IGMM algorithm is considered as the total number of 
elements. Then, all the intact elements are eliminated in each 
stage, and the algorithm converges to the exact locations and 
severity of damages. Zero values for the variables signify that 

the i -th element of structure is intact, and a non-zero value 
refers to the damaged element. If the variables with near zero 

values ( 0.05iSRF  ) do not alter for 10 iteration, this 

variable will be eliminated. 
As far as the objective function is concerned, it is defined 

here as an unconstrained optimization problem as follows: 
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where ( )F ESV  is that minimization problem, and 

minE  and 

maxE  are the lower and upper bounds of the damage vector, 

respectively. It is necessary that the bounds represent the 
physical behavior of the structure. By using an optimization 
algorithm and solving (18), the damage variables are 
determined.  

VI. MONTE CARLO SIMULATION FOR PROBABILITY BASED 

MODEL UPDATING 

Since the uncertainties (noises) inevitably exist in the 
measured vibration data, the updated ESV (E) is subjected to 
uncertainty as well. As mentioned before, the uncertainties in 
the measured modal data are assumed as independent 
normally distributed random variables with zero means and 
particular covariance. In this regard, the eigenvalues and mode 
shapes can be expressed as [19]: 

 

,0 (1 )E E
i i iX   ,  

1,2,..., mi n   

 

(19) 
 

,0 (1 )E E
i i iX   ,   

1,2,..., mi n   
(20) 

 

where 0  represents the true values, 
iX 
 and 

iX 
 denote 

relative random noises in the measured frequencies and mode 
shapes, respectively. The mean value of vector X  is zero, 
and the standard deviation represents the noise level. 

The statistics (mean value and standard deviation) of E can 
then be calculated by the perturbation method [20] or Monte 
Carlo simulation (MCS). The latter method can also give 
statistical samples of the updated ESVs, from which the 
statistical distribution can be obtained. Studies have 
demonstrated that the statistical distribution of the ESVs in the 
updated model is also normal [21], verified by the goodness-
of-fit test [22]. Again, when the measured modal data in both 
undamaged and damaged states are available and the model 
updating method [21] is employed, the statistics of ESVs in 
both states ( hE  and dE ) can be respectively calculated. 

 

 

Fig. 1 Probability density functions for j  and 
'
j  and probability 

of damage existence 
j

dP  

 
The PDE can be estimated from statistical distributions of 

the stiffness parameters of the undamaged and damaged 
models. For example, if the stiffness parameter (

j ) of the 

undamaged segment j  is normally distributed with mean 

( )jE   and standard deviation ( )j  , the probability density 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:4, 2017

737

 

 

function can be obtained as illustrated in Fig. 1, where 
j

L  is 

the lower bound of the healthy parameter. 
In this study, the confidence level is set to 95%, thus the 

lower bound is ( ) 1.645 ( )
j j jL E     , which indicates 

that there is a probability of 95% that the healthy stiffness 
parameter falls in the range of [ ( ) 1.645 ( ), ]j jE     . 

Similarly, for the stiffness parameter of segment j  in the 

damaged state 
'( )j , the distribution is again assumed as 

normal with mean '( )jE   and standard deviation 
'( )j  , 

and the corresponding probability density function is also 
plotted in Fig. 1. The PDE is defined as the probability of not 

being 
'
j  within the 95% confidence healthy interval. Thus, 

the PDE of segment j  is 
 

'

'

1 ( )

( )
j

j

j
dP prob L x

prob x L

 



    

   
 (21) 

 
PDE is a value between 0 and 1, and if the PDE of a 

segment is close to 1, then it is most likely the element which 
is damaged. If the PDE is close to 0, damage existing in the 
element is very unlikely [23]. It should be noted again that the 
stiffness parameters of the undamaged and damaged state have 
normal distributions because the random variations in (20) are 
assumed as zero mean normally distributed random variables.  

In most surrogate applications for damage detection, the 
training data are obtained from FE analysis, which involved 
generating large number of damage cases based on an initial 
baseline FE model. Once the surrogate model is well-trained, 
the testing data are then applied to the model to obtain the 
locations and severities of any damages. In most of the 
previous studies, both training and testing data are assumed to 
be free from modelling and measurement error. In practice, 
however, modelling error and measurement noise are 
inevitable. 

According to Xia et al. [24], the inaccuracy due to 
modelling and measurement error can be overcome by taking 
into account the uncertainties through a statistical method. In 
this study, modelling error and measurement noise are 
assumed to be normally distributed with zero means and 
specific variance. The noise is applied in terms of coefficient 
of variations (COV). The statistical properties of E value for 
each segment are obtained by using MCS. This is followed by 
calculation of the PDE of E values for each segment. 

VII. MAIN STEPS FOR PROPOSED DAMAGE DETECTION 

METHOD 

The main steps for the proposed damage detection method 
using kriging surrogate and EIGMM algorithm are 
summarized as follows: 
Step1. Generating failure scenarios with the damage severity 

range between 0.05 and 0.35 with the pace of 0.05. 

Step2. Developing FE model which computes the natural 
frequencies of the structure and finally the MDLAC 
corresponding to the failure scenarios that have been 
defined in the previous step. 

Step3. Using the FE model of the structure in order to 
generate training and testing datasets for development 
of surrogate model that is used in the optimization 
process of damage detection. 

Step4. Setting the initial number of design variables equal to 
total number of elements.  

Step5. Engaging directly the surrogate model by the optimizer 
(EIGMM) to evaluate the objective function to be 
minimized to determine the damage of elements. 
(Applying the surrogate model). 

Step6. Finding i  as 0iX   for all components of damage 

vector and determining the total number of intact 
elements. 

Step7. Removing the intact elements from the damage vector 
and thus reducing number of variables from the 
optimization problem. 

Step8. Performing EIGMM once again based on the new 
optimization size from Step 7. 

Step9. Checking the convergence by computing 1 MDLAC
from (18). If two response vectors are almost 
indifferent, save the results and terminate the 
optimization process, otherwise, go to the Step 6. 

In this study, in order to generate failure scenarios which 
completely span the design space, Latin Hypercube Sampling 
(LHS) method has been applied. LHS generates a sample of 
plausible collections of parameter values from a 
multidimensional distribution. The LHS was presented by 
McKay in 1979 [25]. 

VIII. NUMERICAL RESULTS OF DAMAGE DETECTION 

In this study, two structures are selected as the numerical 
examples to reveal the robustness and the degree of accuracy 
of the proposed damage detection method. These structures 
are:  
1. 72-bar space truss 
2. 120-bar Dome Truss 

The mass matrix is assumed to be constant, and damage in 
the structure is simulated as a relative reduction in the 
elasticity modulus of individual element. Stiffness reduction 
ratio (SRF) is defined as: 

 

, 1,...,i
i

E E
SRF i n

E


   (22) 

 

where E  is the original modulus of elasticity and iE  is the 

final modulus of elasticity of the i -th element. For the 
optimization process, the number of molecules for EIGMM 
was fixed to 50 for each run along a maximum of 200 
iterations 
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A. The 72-Bar Space Truss 

A 72-bar spatial truss is considered as the first numerical 
example as shown in Fig. 2. Four non-structural masses of 
2270 kg are attached to the nodes 1–4. This structure has also 
been investigated as an example in the field of structural 
optimization with frequency constraints by different 
researchers [26], [15]. As it can be seen from Fig. 2, the 
structure has 48 degrees of freedom. Table I represents the 
properties of this example. 

Two cases of damage are assumed for this structure: 
Damage case 1: 15% of damage in element 55; (15% of 
damage in each of the vertical members of the first story will 

result in the same set of natural frequencies). 
Damage case 2: 10% of damage in element 4 and 15% of 
damage in element 58; (90, 180, and 270-degree rotation along 
the z axis will result in the same set of natural frequencies). 

 
TABLE I 

PROPERTIES OF 72-BAR SPACE TRUSS 

Property (unit) Value 

E , modulus of elasticity (N/m2) 
106.98 10  

 , material density (kg/m3) 2770.0   

Added mass (kg) 2270   

A , cross-sectional area of the members(m2) 0.0025  

 

 

Fig. 2 A 72-bar spatial truss 
 
Using the trained kriging model with 2% and 15% random 

errors (COV) in frequencies and mode shapes, and the testing 
data with the same level of noise, the mean values and 

standard deviations of structural stiffness parameters 
corresponding to the two damage scenarios are estimated 
based on proposed procedure. From the normally distributed 
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probability density function of the damaged and undamaged 
states, the PDEs can be calculated. The PDEs for scenario 1 
and scenario 2 are depicted in Figs. 3 and 4. From these 
figures, it is observed that, in scenario 1, the PDEs of element 
55 are very high, and the PDEs of the other elements are low. 
This indicates that it is very likely that damage exists in 
segment 55 only. For scenario 2, the highest PDE occurred at 
segments 4 and 58, which are also the true damage locations. 
These results show that, using the proposed kriging surrogate 
model that coupled with EIGMM, the damages are detected 
with high confidence, and undamaged segments are less likely 
to be falsely identified. Moreover, in Figs. 3 and 4, the 
improved algorithm’s capability of finding all of the global 
optimal solutions (damage states) is apparent. Furthermore, 
engaging EIGMM by efficient surrogate model, maintains the 
acceptable accuracy of damage detection. 

 

 

Fig. 3 Probability of damages existence for damage case 1 of bar 
truss 

 

 

Fig. 4 Probability of damages existence for damage case 2 of bar 
truss 

B. 120-Bar Dome Truss 

A 120-bar dome truss, shown in Fig. 5 is considered as the 
second example [3], [27]. 

 

(a) 
 

 

(b) 

Fig. 5 120-bar dome truss (a) plan view, (b) section view  
 

The diameter and the height of the dome are 31.78 m and 7 
m, respectively. The material is a seamless steel pipe with a 
modulus of elasticity of 30,450 ksi (210,000 MPa), and the 
material density is 0.288 lb/in3 (7971.810 kg/m3). The external 
diameter of the pipes is 0.2 m, and the thickness is 0.006 m. 
For generating training and testing datasets, FE program 
OpenSees [28] is used for structural analysis. Different 
damage scenarios are considered as shown in Table II. Figs. 6 
and 7, Tables III and IV show the performance of the 
proposed method on this regard. 
 

TABLE II 
DIFFERENT DAMAGE SCENARIOS 120-BAR DOME TRUSS 

Case 1 Case 2 

Element Number SRF Element Number SRF 

12 0.30 4 0.35 

38 0.20 30 0.20 

53 0.25 51 0.35 

79 0.2 58 0.25 

  89 0.2 

  105 0.40 

Element Numbers 

P
D

E
 

Element Numbers 

P
D

E
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:4, 2017

740

 

 

 

Fig. 6 Probability of damages existence for damage case 1 of dome 
truss 

 
TABLE III 

PROBABILITY OF DAMAGES EXISTENCE FOR DAMAGE CASE 1 OF DOME TRUSS 

Element Number FE Model (PDE) Surrogate Model (PDE) 

10 2% 9% 

11 0% 1% 

12 98% 94% 

13 0% 2% 

36 0% 5% 

37 0% 4% 

38 95% 96% 

39 10% 14% 

51 0% 1% 

52 0% 0% 

53 100% 100% 

54 0% 0% 

77 0% 0% 

78 3% 8% 

79 98% 96% 

80 0% 1% 

 

 

Fig. 7 Probability of damages existence for damage case 2 of 
dome truss 

 
Results demonstrate that the statistical approach provides 

reliable prediction of damage occurrence by taking into 
consideration the uncertainties present in the real data when 
performing the training. 

In this section, the proposed method of using appropriate 
kriging model instead of FE model as an updating model in 
optimization process of damage detection has been analyzed 
and compared. In both solution procedures, EIGMM 
specifications are the same. Table V shows the results of 

comparing between two solution methods in terms of 
computational speed and accuracy. To compute process time 
when using a surrogate model, data generation time, training 
and testing time, and EIGMM implementation time are 
considered together (core™ i7 2.67 GHz CPU). 

 
TABLE IV 

PROBABILITY OF DAMAGES EXISTENCE FOR DAMAGE CASE 2 OF DOME TRUSS 

Element Number FE Model (PDE) Surrogate Model (PDE) 

2 0% 3% 

3 1% 2% 

4 99% 96% 

5 0% 1% 

30 100% 100% 

31 1% 0% 

32 4% 9% 

33 0% 1% 

50 7% 7% 

51 100% 100% 

52 0% 2% 

56 0% 1% 

57 0% 0% 

58 97% 95% 

87 0% 0% 

88 5% 4% 

89 94% 95% 

90 7% 9% 

103 0% 0% 

104 1% 2% 

105 100% 99% 

106 7% 18% 

 
TABLE V 

COMPARISON THE RESULTS BETWEEN TWO SOLUTION METHODS IN TERMS OF 

COMPUTATIONAL SPEED AND ACCURACY 

 
Damage detection 
process time (sec) 

RMSE of determined 
damage probability 

FE model 3480 5.02x10-04 

Kriging surrogate model 302 1.29x10-03 

RMSE: root mean squared error.  
 
It can be concluded from Table V that the idea of using a 

kriging model as a surrogate of FE model substantially 
reduces the computation time of damage severity detection. 
By this proposed solution method, computation time of the 
proposed procedure is reduced to one-tenth of the former one. 
Using kriging model in process of damage detection done by 
optimization algorithm accelerates this process besides 
maintaining the acceptable detection accuracy.  

IX. CONCLUDING REMARKS 

This study presented a statistical surrogate method that 
accounts for the inevitable FE modelling error and 
measurement noise for structural damage detection. MCS 
method is used to derive the statistical surrogate model and to 
identify the structural condition. Both the modelling error and 
measurement noise are assumed to have normal distribution 
and zero means. Using this method, the probability of damage 
existence can be estimated. The numerical and experimental 
results demonstrated that the computational time of damage 
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detection using EIGMM engaged by kriging model as a 
surrogate of FE model is significantly reduced compared to 
using direct FE model based EIGMM (about one-tenth). Using 
this solution procedure contributes to a substantial reduction in 
the number of FE structural analysis which is further 
highlighted in damage detection of large-scale structures. 
However, further investigation needs to be conducted in order 
to see the sensitivity of the proposed method to different 
damage levels and different uncertainties levels. 
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