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Pricing European Options under Jump Diffusion
Models with Fast L-stable Padè Scheme

Salah Alrabeei , Mohammad Yousuf

Abstract—The goal of option pricing theory is to help the
investors to manage their money, enhance returns and control their
financial future by theoretically valuing their options. Modeling
option pricing by Black-School models with jumps guarantees to
consider the market movement. However, only numerical methods
can solve this model. Furthermore, not all the numerical methods
are efficient to solve these models because they have nonsmoothing
payoffs or discontinuous derivatives at the exercise price. In this
paper, the exponential time differencing (ETD) method is applied
for solving partial integrodifferential equations arising in pricing
European options under Merton’s and Kou’s jump-diffusion models.
Fast Fourier Transform (FFT) algorithm is used as a matrix-vector
multiplication solver, which reduces the complexity from O(M2)
into O(M logM). A partial fraction form of Padè schemes is used
to overcome the complexity of inverting polynomial of matrices.
These two tools guarantee to get efficient and accurate numerical
solutions. We construct a parallel and easy to implement a version
of the numerical scheme. Numerical experiments are given to show
how fast and accurate is our scheme.

Keywords—Integral differential equations, L-stable methods,
pricing European options, Jump–diffusion model.

I. INTRODUCTION

BLACK-Scholes model is consider the cornerstone

of option pricing theory. However, empirical studies

revealed that the Black-Scholes model is inconsistent with

market movements. Many studies have revealed to overcome

these shortcomings, such as Lèvy models and jump-diffusion

models. Two main Jump-diffusion models proposed by

Merton [1] and Kou [2] are our concern in this paper.

We intend to numerically solve a partial integrodifferential

equation (PIDE) arising in jump-diffusion models. Unlike

the Black-Scholes model, Jump diffusion models do not

have closed forms. Therefore, extensive research has been

conducted on this topic. Several numerical schemes were

used such as Alternating Directions Implicit methods [3],

[4], Multinomial trees method [5]–[7]. The latter method is

restricted by the number of time steps. Operator-splitting

approach was also considered in [8]–[10]. However, these

approaches require to solve full dense matrices, which is

computationally expensive. To avoid a full dense matrix

inversion, Khaliq et al. [11] developed numerical schemes

based on rational approximations of matrix exponential

functions. The schemes were applied to the Black-Scholes

model. We intend to extend their scheme for pricing European

options under the jump-diffusion models. We overcome the
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difficulties of the dens matrix, arising from approximating the

non-local integral term using the FFT algorithm. We also shall

construct an accurate numerical scheme using partial fraction

decomposition technique. Integrating these two techniques will

considerably reduces the computational cost and as well as

preserves the quadratic order of convergence in time as well

as in space. This paper is organized as follows: the continuous

problem is given in Section II. Discretization in space as

well as in time are given in Sections III and IV respectively.

Several numerical examples are given in Section V to show

the efficiency and accuracy of our algorithm. Finally, short

conclusion is given in Section VI.

II. MATHEMATICAL MODEL

Before we go through the mathematical models and their

formulas, we first need to give some important definitions and

notations from option pricing theory for the sake of clarity.

Definition 1. An asset is a sale object that has a known value

at present, but it can be changed in the future.

There are a few examples of assets, such as currencies, for

example the value of one bitcoin in USD, shares in a company,

value of gold or oil.

Definition 2. An option is a sale agreement between two

parts, holder and writer, to purchase or to sell, but not the

obligation, a particular asset for particular price at particular

time in the future.

There are several types of options, but we are interested in

some of them which will be divided into two types depending

on the exercising type and exercising time. with respect to

exercising type.

Definition 3. Call option is an option that gives the holder

(buyer) the right to buy, but not the obligation, a particular

asset for particular price at particular time in the future.

Definition 4. Put Option is an option that give the writer

(seller) the right to sell, but not the obligation, a particular

asset for particular price at particular time in the future.

Definition 5. European option is an option that can only be

exercised (bought or sold) on the expiry date.

A. Jump Diffusion Model

Consider v(x, τ) is the value price of the asset x at time τ
satisfying the following initial value problem

vτ − 1

2
σ2vxx − (r − 1

2
σ2 − κλ)vx + (r + λ)v
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−λ

∫ ∞

−∞
v(z, τ)φ(z − x)dz = 0 (1)

with the appropriate boundary and initial conditions depending

on the option of interest.

• Call option⎧⎨
⎩

v(x, 0) = max(Eex − E),
v(Xmin, τ) = 0,

v(Xmax, τ) = Eexmax − Ee−rt,

• Put option⎧⎨
⎩

v(x, 0) = max(E − Eex),
v(Xmin, τ) = Ee−rt − EeXmin ,

v(Xmax, τ) = 0,

where E is the exercise price, σ is the volatility and r is

the rate of interest, λ is the Poisson intensity and κ is the

expectation of the the impulse function. For the boundary

conditions, Xmin and Xmax are a boundaries of the truncated

domain Ω ∈ (−∞,∞) and φ is the density function of the

normal distribution function is given by

φ(ξ) =
1√
2πδ

e−
(ξ−μ)2

2δ2

where μ and δ2 are the mean and the variance of the the

normal distribution respectively. κ w.r.t the normal distribution

function is given by

κ = e(μ−
δ2

2 ) − 1

III. SPATIAL DISCRETIZATION

Most of the PDEs or PIDEs arising in finance are discretized

by finite difference methods. We shall use the second order

central finite difference method to approximate the truncated

infinite space domain Ω = [Xmin, Xmax] [12], then we

discretize the differentiation term of the PIDE (1) in space and

approximate the integral term using the composite Trapezoidal

Rule at each subinterval in space. Thus, the approximation of

the differentiation part of of PIDE (1) is given by a tri-diagonal

matrix

A = − tridiag

[
σ2

2h2
− 2r − 2λκ− σ2

4h
,−σ2

h2
− r − σ2

,
σ2

2h2
+

2r − 2λκ− σ2

4h

]
.

where h is the step size. The infinite integral is split into

local and non-local integrals. The local integral ( i.e over Ω)

is approximated by composite trapezoidal rule which gives a

Toeplitz matrix given by

[G]j,i = hφ(h(i− j)), i, j = 1, 2, ...,M (2)

where M is the number of space-steps. The non-local 
integrals are either vanished due to the boundary conditions or 
computed analytically depending on the distribution function

and option type. Therefore, the PIDE(1) can be written as a

semi-linear system of ODEs given by

v′(τ) +Av = λF (v, τ) (3)

where F is the approximated integral term.

IV. TIME STEPPING SCHEMES

Padé approximation is a ratio of two polynomials

determined from the coefficients of the Taylor series

expansion of a function given by [11]:

Rn
m(x) = Pn

m(x)/Qn
m(x)

where Pn
m(x) and Qn

m(x) are two polynomials of order n
and m respectively. Our interest is to use the second order

L-acceptable (0,2)-Padè approximation to be able to construct

an L-stable method.

R0
2(x) = 2(2 + 2x+ x2)−1

For the semi-discretized system of the ODE given in  (3), we 
set k ≥ 0, τn = nk, 0 ≤ n ≤ N. Following [11],  (3) has an 
exact solution using Duhamel principle given by

vn+1 = e−kAvn + k

∫ 1

0

e−kA(1−s)F (v(τn + ks), τn + ks)ds (4)

where ν − τ = ks and vn = v(τn).

To solve (4), several exponential time differencing 
Runge-Kutta schemes (ETDRK) were proposed (see [13],

[14]). However, these methods require to invert matrix higher 
order polynomials which causes computational difficulties as 
well as instability due to the ill-conditioning. Follwoing 
[15] we overcame all these difficulties by using the partial 
fraction form of the Pade` approximation (see [16], [17]). 
Therefore, our scheme becomes

vn+1 = αn + kφ1(kA)
[
F (αn, τn+1)− F (vn, τn)

]
(5)

where

an = R0
2(kA)vn + kφ2(kA)F (vn, τn)

and

φ1(kA) = (I + kA)(2I + 2kA+ k2A2)−1

φ2(kA) = (kA)−1(I −R0
2(kA))

where

R0
2(x) = 2�

(
w1

x− ρ1

)

where ρ1 = i−1, is a shared pole of R0
2(x), φ1(x) and φ2(x).

Whereas, w1 = −i, w2 = 1
2 and w3 = 1

2 − i
2 are the

weights of R2
0(x), φ1(x) and φ2(x) corresponded to that pole

respectively.

Definition 6. A method has an absolutely stable region D if

|Rn
m(x)| < 1 for all x ∈ D.

Definition 7. A method is called A-stable if its absolutely

stable region contains the right-half plan, i.e; |Rn
m(x)| > 0
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Definition 8. A method is called L-stable if it is an A-stable

and satisfies

lim
x→∞Rn

m(x) = 0

A. Stability Region

Consider the nonlinear ODE,

vτ = cv + F (v) (6)

where F (v) is the non-linear term. We assume that there exist

a fixed point v0 = v(τ0), such that cv0 + F (v0) = 0. We

linearize about the fixed point to lead to

vt = cv + λv. (7)

where v becomes the perturbation to v0, whereas, λ = F ′(v0).
Following [13], if R(c + λ) < 0, then the fixed point v0 is

stable.

To obtain the stability region of the numerical methods,

we first denote x = λk and y = ck, where k is the time

step-size, then we apply (5) to the ODE (6) leading to a

recurrence relation involving vn and vn+1. The following

amplification factor corresponding to the (0,2)-Padè scheme

can be computed by any mathematical software.

r(x, y) =
x2y2 − 3x2y + 2(x− y)2 + xy2 + 4x− 4y + 4

(y2 − 2y + 2)2
(8)

Generally speaking, the parameters c and λ are complex

so are x and y. Therefore, the the stability region of the

(0,2)-Padè scheme is four dimensional, which makes it

difficult to plot the stability region [13]. Hence different

approaches have been used to overcome this issue such as in

[13] who put both x and y are real, whereas, [18] assumed

that x is complex and t y is fixed and real.

According to [18], for a better useful method, the stability 
regions grow as |y| becomes larger. Therefore, we shall fix y 
with several negative real values , y = 0 , y = −5, y = −10 and 
y = −20, in the complex x-plane.

Re(ξ)

Im
(ξ

)

η=−20 η=−10 η=−5 η=0

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20
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Fig. 1 Stability regions of (0,2)-Pad`e scheme in the complex ξ-plane

We can observe from Fig. 1 that the stability region tends to

the second order Runge-Kutta scheme as y → 0, and it grows

as y decreases from -10 to -20. This result gives an indication

of the stability of the (0,2)-Padè scheme.

B. The ETD − Padè(0, 2) Algorithm

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Step1: Solve for X

(kA− ρ1I)X = w1vn + w3kF (vn, τn)
Step2: Set

αn = 2�(X)

Step3: Solve for Y

(kA− ρ1I)Y = w2k

[
F (αn, τn+1)− F (αn, τn)

]

Step4: Set

vn+1 = αn + 2�(Y )
End

V. NUMERICAL EXPERIMENTS

In this section, we test performance of our algorithm by

showing its efficiency and accuracy. Therefore, the first tow

examples compare computational cost in different numerical

methods. Whereas, the third numerical example shows the

order of convergence independently of the maturity state (T ).

All the numerical experiments were computed using Matlab©

with processor core i3 and RAM 4GB.

A. FFT Algorithm Efficiency

Thanks to the approximation of the integral part which

leads to a Toeplitz matrix, we can reduce the cost of the

vector-matrix multiplication from O(M2) to O(M logM) by

using using what is so-called Fast Fourier Transform (FFT)

algorithm [8], [19].

We compare the FFT algorithm as a matrix-vector

multiplication and the straightforward matrix-vector

multiplication. We set the following inputs: Ω = [−6, 6],
with the parameters from the literature [8] given by E = 1,

σ = 0.2, ρ = 0.5, r = 0, λ = 0.2, α1 = 3,α2 = 2
and T = 0.2. We can observe from Table I that the FFT

TABLE I 
COMPARISON BETWEEN MATRIX-VECTOR MULTIPLICATION BY THE FFT 

ALGORITHM AND THE STRAIGHTFORWARD MULTIPLICATION

Straightforward Multiplication FFT Algorithm

M N CPU(seconds) CPU(seconds)
257 40 0.250 0.277
513 80 0.939 0.822
1025 160 4.777 4.169
2049 320 27.683 22.018
4097 640 176.423 130.603
8194 1280 1265.331 740.895

algorithm is taking much less time than the straightforward

multiplication. As the size of the matrix getting larger and

the number of iteration is higher, the FFT algorithm performs

much better.

B. Padè Scheme Efficiency

In this experiment we consider the numerical solution

for European call option under Merton’s jump obtained by

(0,2)-Padè scheme and exponential Time Integrator method

(ETI) method used by [20], with the following parameters
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Ω = [−2, 2], E = 100, σ = 0.3, δ = 0.5, r = 0, λ = 1,μ = 0
and T = 0.5

TABLE II
EUROPEAN CALL OPTION UNDER MERTON’S JDM OBTAINED BY (0,2)-PAD 

`E ETDRK2 SCHEME AND ETI METHOD

(0,2)-Padè ETDRK2 ETI

M N Error CPU Error CPU
40 40 2.706e -02 0.03714 1.929e-02 0.27055
80 80 3.180 e-03 0.23670 1.216e-03 0.48838
160 160 5.778 e-05 0.39437 8.343 e-06 2.72692
320 320 1.365e-05 1.50878 1.260e-6 48.91743
640 640 3.918e-06 10.36289 8.074e-7 683.06578

We can easily observe from Table II that the accuracy of

the solution is almost the same in the both methods.However,

the (0,2)-Padè scheme is extremely faster that the ETI scheme.

especially’ when the time-steps is small as well as the size of

the matrix A is large.

C. Padè Scheme Convergence

To test the convergence in time, we use our scheme in

different maturities.

TABLE III
ORDER OF CONVERGENCE OF (0,2)-PAD ̀ E SCHEME FOR EUROPEAN 

CALL OPTION UNDER MERTON’S JDM AT S = E

T=0.5 T=1
T ime Steps Error Order Error Order

40 1.2283e-03 – 5.9796e-3 –
80 3.0948e-4 1.98877 1.5008e-3 1.99432

160 7.7761e-05 1.99273 3.7514e-4 2.00022
320 1.9492e-05 1.99615 9.3706e-5 2.00122
640 4.8372e-06 2.0106 2.3296e-05 2.00803

The convergence results are computed by multiplying the

number the time-steps N by two starting by 40 nodes and

uniformly refined to 640. Whereas, the space step size is

fixed by h = 0.001. The error is calculated by the difference

between the exact and approximated solution at the asset price

S = E. The exact solution at T = 0.5 and T = 1 is

10.4219064 and 15.66668082 respectively

VI. CONCLUSION

We have developed an efficient and stable scheme for

pricing European options under Morton’s jump diffusion

model. We integrated two useful methods to overcome

computational cost of dense matrices operations. Our scheme

considerably reduced the processing time compared with other

schemes. Quadratic rate of convergence is also achieved.
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