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Abstract—Heat transfer due to forced convection of copper water 

based nanofluid has been predicted by Artificial Neural network 
(ANN). The present nanofluid is formed by mixing copper 
nanoparticles in water and the volume fractions are considered here 
are 0% to 15% and the Reynolds number are kept constant at 100. 
The back propagation algorithm is used to train the network. The 
present ANN is trained by the input and output data which has been 
obtained from the numerical simulation, performed in finite volume 
based Computational Fluid Dynamics (CFD) commercial software 
Ansys Fluent. The numerical simulation based results are compared 
with the back propagation based ANN results. It is found that the 
forced convection heat transfer of water based nanofluid can be 
predicted correctly by ANN. It is also observed that the back 
propagation ANN can predict the heat transfer characteristics of 
nanofluid very quickly compared to standard CFD method.  
 

Keywords—Forced convection, Square cylinder, nanofluid, 
neural network.  

I. INTRODUCTION 

HE flow and heat transfer around slender cylindrical bluff 
bodies has been the subject of intense research, mainly 

owing to the tremendous engineering significance on heat 
exchangers, solar heating systems, natural circulation boilers, 
nuclear reactors, dry cooling towers, electronic cooling, vortex 
flow meters and flow dividers, probes, sensors and many 
more. 

By using different methods, such as expanding the effective 
heat transfer area or heat transfer coefficient, convective heat 
transfer can be moderated. In recent, a modern class of fluid, 
called nanofluid, is developed and is using to enhance the heat 
transfer. 

It is observed that thermal conductivity of nanofluid is 
higher than that of the base fluids when the nanoparticles are 
mixed in small amount [1], [2]. The application of nanofluid 
in convection for different industrial purpose is introduced in 
preceding studies [3], [4]. Recently, application of nanofluid 
on enhancement of heat transfer has studied [5], [6].  

Various numerical and experimental studies of heat transfer 
characteristics by utilizing nanofluids has been studied and 
concluded in the literature [7], [8]. The heat transfer 
performance of nanofluids in a differentially heated enclosure 
and concluded that there is enhancement in heat transfer rate 
due to the mixing of nanoparticles in the base fluid is 
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investigated [7]. Dey and Das [9] also studied the natural 
convection heat transfer inside a square enclosure with a 
heated square cylinder. Effect of different nanofluid, as 
Al2O3, CuO with water as base fluid & ethylene glycol and 
water mixture on momentum & forced convection (laminar 
and steady) over square cylinder has been studied recently 
[10] with different Pr. up to volume fraction 4% and they also 
make conclusion that there is an optimum value of volume 
fraction at a certain particle diameter. 

Although, all the heat transfer studies are based on 
experimentally or numerically; but over the last few years, 
prediction of different characteristics of heat transfer and 
aerodynamic behavior are becoming an area of research in 
various engineering applications due to its less time 
consuming method. There are various techniques are using in 
prediction; between them Artificial Neural Network (ANN) is 
one of the most utilizing method. Recently, [11] studied the 
prediction of heat transfer in the presence of nanofluid using 
ANN and found that ANN can be used to predict heat transfer 
characteristics most efficiently and rapidly.  

By considering the forgoing studies, it is altogether okay to 
conclude that there is no prior study has been conducted on 
prediction of nanofluid based convection over a square 
cylinder. Therefore, in the present study, the prediction of 
unsteady forced convection by utilizing nanofluid is studied 
by back propagation ANN. The Reynolds number are kept at 
100 and solid volume fraction as 0 to 15%.  

II. MODEL DESCRIPTION AND GOVERNING EQUATIONS 

The system of interest here is to predict the forced 
convection heat transfer characteristics past over a square 
cylinder in a channel at the symmetric horizontal line, 
schematically shown in Fig. 1. The square cylinder of depth D 
with constant wall temperature Tw is held in a channel 
subjected to an upstream steady laminar flow of x-velocity, 

u u  (free stream velocity) and temperature, T . The aim 

is to simulate an infinitely long channel; however, the 
computational domain has to be finite. The distance of the 
upstream and the downstream boundaries from the center of 
the cylinder are Lu=10D and Ld=40D. The distance between 
the upper and lower side-walls, H, is specified according the 
blockage ratio (D/H=0.05). The no slip boundary condition is 
associated with the side-walls.  
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Fig. 1 A schematic diagram of the problem description 

A. Governing Equations 

The dimensionless governing equations for the two 
dimensional, laminar, incompressible nanofluid flow and heat 
transfer with constant thermo-physical properties and 
negligible dissipation effect can be expressed in the following 
forms: 
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where u, v are the dimensionless velocity components along x 
and y directions of a Cartesian coordinate system respectively, 
p is the dimensionless pressure, Re u D 


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 is the Reynolds 

number based on the cylinder dimension, θ is the 
dimensionless temperature, Pr 

PC
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is the Prandtl number 

and t is the dimensionless time. The fluid properties are 
described by the density ρ, kinematic viscosity µ and thermal 
conductivity k. The dimensionless variables are defined as: 
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B. Thermophysical Properties of Nanofluid 

The different thermophysical properties of nanofluid are 
defined as: 
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The thermophysical properties of fluid and nanoparticles 

are given in Table I [12]. 
 

TABLE I 
THERMOPHYSICAL PROPERTIES OF NANOFLUID 

Fluid/ 
Nanoparticle 

Thermophysical properties 

ρ Cp k µ 

Water 997.1 4179 0.613 0.001 

Cu 8933 385 400 _ 

C. Boundary Conditions 

The physical boundary condition for the above discussed 
problem configuration are written as follows: 
 The left wall of the computational domain is designed as 

the inlet. The “velocity inlet” boundary condition is 
assigned at the inlet boundary with free stream velocity, 
u∞, temperature T and Neumann boundary condition for 
pressure is used 

0
p

x

   

. 

 The usual no-slip boundary condition is assigned for flow 
at the surface of the cylinder, i.e. u=0; v=0 with constant 
wall temperature of θ=1 and normal gradient condition for 

pressure   . 0,p n where n is theunit normal    

 Towing-tank boundary condition is assigned at the upper 
and lower surface of the computational domain, i.e. u=u∞: 
v=0. 

 The extreme right surface of the computational domain is 
assigned as outlet. The “pressure outlet” boundary 
condition is employed at the exit boundary with a fully 
developed flow situation 

0, 0, 0
u v

x x x

         

 of Dirichlet 

type Pressure boundary condition (p=0). 

III. NUMERICAL DETAILS 

In the present investigation, the numerical simulation is 
performed by using the finite volume based commercial CFD 
solver Ansys FLUENT. FLUENT is used to solve the 
governing equations which are the partial differential 
equations, using the control volume based technique in a 
collected grid system. The solver used in the present work is 
pressure-based implicit method. Semi-Implicit Method for 
Pressure-Linked Equation (SIMPLE) is selected for the 
pressure-velocity coupling scheme. The pressure term is 
discretized under the scheme of STANDARD whereas the 
momentum is discretized by second order upwind scheme. 
The laminar viscous model is used for the low Reynolds 
number consideration. The convergence criteria for the 
continuity and velocity are set to 10-5. 

 The heat transfer characteristic between the cylinder and 
the surrounding fluid is calculated by the Nusselt number. The 
local Nusselt number and the Stanton number based on the 
cylinder dimension is given by: 
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where, h is the local heat transfer coefficient, k is the thermal 
conductivity of the fluid and n is the direction normal to the 
cylinder surface. Surface average heat transfer is obtained by 
integrating the local Nusselt number along the cylinder face. 
The time average Nusselt number is computed by integrating 
the local value over a large time period. 

IV. ARTIFICIAL NEURAL NETWORK MODEL 

Artificial neural network (ANN) is a computational 
structure inspired by a biological neural system. An ANN 
consists of very simple and highly interconnected units called 
neurons. The neurons are connected to each other by links in 
which individual weights are passed and over which signals 
can pass. The arrangement of neurons into layer and the 
connection pattern within and between the layers are called as 
network architecture. Each neuron receives multiple inputs 
from other neurons in proportion to their connection weights 
and generates a single output, which may be propagated to 
several other neurons [13]. 

A single artificial neuron can be implemented in many 
different ways. The general mathematic formulation of a 
single artificial neuron could be defined as: 
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where, x is a neuron with n input (x0 to xn) and one output y(x) 
and where (wi) are weights determining how much the inputs 
should be weighted with b denoting the bias [14]. ‘f’ is an 
activation function that weights how powerful the output 
should be from the neuron, based on the sum of the inputs and 
expressed as: 
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Fig. 2 Schematic representation of a multilayer feedforward network 
consisting of three inputs, one hidden layer with five neurons and 

three outputs 
 

The basic feedforward network performs a non-linear 
transformation of input data in order to approximate the output 
data. In a multilayer feedforward ANN, the neurons are 
ordered in layers, starting with an input layer and ending with 

an output layer. Between these two layers, there are a number 
of hidden layers. For the present ANN model, three layers are 
used namely one input layer, one hidden layer and one output 
layer. Connections in these kinds of network only go forward 
from one layer to the next where all the neurons in each layer 
are connected to all the neurons in the next layer. The 
designed neural networks structure 2-10-1 (2 neurons in input 
layer, 10 neurons in hidden layer and 1 neurons in output 
layer) of the present study is shown in Fig. 2. 

A. Training ANN 

The back-propagation method is the most popular training 
algorithm. The input and output data are trained in ANN so 
that the weights can be adjusted to give the same outputs as 
found in the training data. The inputs (x) into a neuron are 
multiplied by their corresponding connection a weight (W), 
summed together and bias is added to the sum. This sum is 
transformed through a transfer function (f) to produce the 
required output, which may be passed to other neurons. After 
propagating an input through the network, the error is 
calculated and the error is propagated back through the 
network while the weights are adjusted in order to make the 
error smaller. The number of iterations 500 is selected for the 
present network. The training data has been selected 70% of 
the total data and the remaining data are selected for testing. 
Neural network requires that the range of the both input and 
output values should between 0.1 and 0.9 due to the restriction 
of sigmoid function. Therefore, the numerical data evaluated 
in this study are normalized by: 
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where Xn = normalized value, Xi = actual input (or output) 
value, X max =Maximum value of the inputs (or outputs), Xmin 
=Minimum value of the inputs (or outputs). 

V. RESULTS AND DISCUSSIONS 

A. Grid Testing and Validation of Present Results 

In this study, three different mesh sizes (Grid1-15000, 
Grid2-25000 and Grid3-40000) are adopted in order to check 
the mesh independency (refer Fig. 3). A detailed grid 
independency study has been performed and results are 
obtained for the average Nusselt number at ɸ=0.0 but there is 
no considerable changes between Grid2 and Grid3 (refer 
Table II). Thus a grid size 25000 is found to meet the 
requirements of the both grid independency and computation 
time limit.  

The present numerical data are validated with the available 
published data. The present data are validated for Pr=0.7 (Air) 
and Re=100. Number of trials has been performed to find 
quite accurate value and time step is chosen for every case as 
0.01. The parameters used for validation are Cd, Clrms and 
Nuavg. The present data are in very good agreement with the 
published data, tabulated in Table III. 
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(a)              (b) 

Fig. 3 Grid Distribution of the computational domain (a), Zoomed 
view of the grid distribution of the cylinder (b) 

 
TABLE II 

STUDY OF EFFECT OF GRID SIZE FOR GRID INDEPENDENCY TEST 

Number of cells 
Re=100 

Nuavg 

15000 6.700028 

25000 6.871824 

40000 6.902747 

 
TABLE III 

COMPARISON OF PRESENT NUMERICAL DATA WITH THE LITERATURE DATA 

Source 
Square cylinder 

Cd Clrms Nuavg 

Present Study 1.5299 0.1698 3.8443 
Sahu et. al 

[15] 
1.4878 0.1880 4.0254 

 

 

(a) 
 

 

(b) 

Fig. 4 Nulocal prediction over cylinder surface & (a), fitting plot of 
numerical & predicted data at ɸ=0.00 (b) 

 

(a) 

 

(b) 

Fig. 5 (a) Nulocal prediction over cylinder surface & (b) fitting plot of 
numerical & predicted data at ɸ=0.03 

B. Prediction of Heat Transfer 

The heat transfer characteristic over the square cylinder due 
to presence of nanofluid is presented by means of local and 
average Nusselt number. At front stagnation point, the heat 
transfer is maximum due to the more clustering of isotherm 
lines & afterward it is decreasing gradually to the rear face of 
the cylinder. It is seen that there is gradual decrease and 
afterwards increase in Nusselt number at a point, which is the 
point of separation (refer Figs. 4 (a)–8 (a)). This kind of nature 
is found due to the presence of vortex in that region and 
continues to the rear separation point. It is found that by 
increasing of solid volume fraction, heat transfer rate is 
increased. As by increasing the solid volume fraction, the 
volume of nanoparticles striking the cylinder is increased, 
which causes more heat transfer from cylinder surface, by 
means of which the heat transfer rate is also increased. The 
training and testing data are collected from numerical analysis 
for Re= 100, ɸ= 0 to 15%. The training data are separated 
from the total data by keeping the particular testing data 
alongside. For training the network, different combinations of 
solid volume fraction are selected. For training the present 
ANN model, Reynolds number and volume fraction have 
taken as input and local Nusselt number is found as output. 
Figs. 4 (b)-8 (b) show the variation of numerical and predicted 
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data after testing the network, which are clearly depicted that 
the predicted data are in good agreement with the numerical 
data for every volume fraction.  

 

 

(a) 
 

 

(b) 

Fig. 6 Nulocal prediction over cylinder surface & (a), fitting plot of 
numerical & predicted data at ɸ=0.05 (b) 

 

 

(a) 
 

 

(b) 

Fig. 7 Nulocal prediction over cylinder surface & (a), fitting plot of 
numerical & predicted data at ɸ=0.10 (b) 

 

 

(a) 

 

(b) 

Fig. 8 Nulocal prediction over cylinder surface & (a), fitting plot of 
numerical & predicted data at ɸ=0.15 (b) 
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Fig. 9 Average Nusselt number prediction over cylinder 
 

The average Nusselt number over the cylinder surface is 
also predicted in this present study. The variation of average 
Nusselt number about the cylinder surface is shown in Fig. 9 
for Re=100 & ɸ=0.00 to 0.15. Only one case or Re is 
considered for predicting the local & average Nusselt number 
and it shows that a very good agreement between the 
numerical data and the predicted data. Hence, the present 
ANN model can be implemented for predicting the forced 
convection over square cylinder at different Re to minimize 
the computational time. 

The error between the numerical values and the ANN 
predicted values are presented as Adjusted R2 which is 
expressed as: 
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where, n=Sample Size, p=total number of regressors in the 
training model. Ni= Actual Value. Pi=Predicted Value and 
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It is found that the maximum error in local Nusselt number 
is 0.643% for ɸ=0.00. It is obvious for ANN that, more values 
in training, more accurate will be the prediction. 

The heat transfer over square cylinder is enhanced by 
introducing the nanoparticle at different volume fraction 
which is encapsulated in Table IV. 

 
 TABLE IV 

% INCREMENT OF NUAVG FOR DIFFERENT ɸ 

ɸ Nuavg % increment 

0.00 6.871824  

0.03 6.957886 1.252389 

0.05 7.025581 2.237499 

0.10 7.234203 5.273403 

0.15 7.501226 9.159169 

VI. CONCLUSION 

Back propagation Artificial Neural Network is used to 
predict the forced convection heat transfer characteristics of 

water based nanofluid flowing over a square cylinder at low 
unsteady Reynolds number. For this purpose, series of 
numerical data has been developed for the cylinder model with 
a validation which shows a very good agreement of present 
result with the previously available published data. For 
training and testing the network, several numerical cases with 
combinations of input variables are created and output data are 
generated. The validity of the applied predicted methods was 
investigated in several cases to ensure the effectiveness to 
establish the results with less permissible error. It can be 
concluded by analyzing the results that the present back 
propagation artificial neural network (2-10-1) can predict the 
local and average Nusselt number accurately with minimum 
mean relative error; hence reducing the computational time in 
CFD calculation while achieving acceptable accuracy. 
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