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Prediction of Location of High Energy Shower
Cores using Artificial Neural Networks
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Abstract—Artificial Neural Network (ANN)s can be modeled for
High Energy Particle analysis with special emphasis on shower core
location. The work describes the use of an ANN based system which
has been configured to predict locations of cores of showers in the
range 10

10.5 to 10
20.5 eV. The system receives density values as

inputs and generates coordinates of shower events recorded for values
captured by 20 core positions and 80 detectors in an area of 100
meters. Twenty ANNs are trained for the purpose and the positions
of shower events optimized by using cooperative ANN learning. The
results derived with variations of input upto 50% show success rates
in the range of 90s.
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I. INTRODUCTION

Study of High Energy Particle Showers involve a plethora
of theoretical and experimental works comprising of complex
measurement and detection equipments. Cosmic showers are
the generators of Extensive Air Showers. A primary cosmic ray
produces many secondary particles called air showers. When
millions or billions of these particles approach the surface of
the earth or even a mountain than it is called an extensive
air shower (EAS) [1]. Study of shower characteristics involve
analysis of measuring the position, size and time extent of the
events. Experimental density values maybe used to calculate
the shower sizes and location of events which involves tedious
theoretical work. Also there are several constraints related
to experimental works related to the analysis of EAS. Some
of them are due to inaccurate knowledge on interactions of
shower particles and primary energies [2]. Therefore, there
always exist a necessity to develop a readily available system
which can be used to predict locations of shower events.
Several works exist which have used different approaches
to analyze extensive air shower (EAS)s and thereby develop
applications suitable for EAS shower size prediction and
location. A work by D. Hanna [3] reports application of
Artificial Neural Network (ANN)s for EAS. Another work by
J C Perrett and J T P M van Stekelenborg [4] describes the
implementation of an ANN to estimate the core position and
energy of extensive air showers recorded by the South Pole
air shower experiment (SPASE) [5]. Another work of similar
nature is [8]. This work discusses the possibilities of using
ANNs for individual EAS data evaluation. A work as cited in

Gitanjali Devi is with the Deptt. of Physics, Lalit Chandra Bharali College,
Guwahati - 781011, Assam, India. e-mail: (gitanjalilcb@gmail.com); Kan-
darpa Kumar Sarma and Pranayee Datta are with Deptt. of Electronics and
Communication Technology, Gauhati University, Guwahati - 781014, Assam,
India e-mail: (kandarpaks@gmail.com)

Anjana Kakoti Mahanta is with Deptt. of Computer Science, Gauhati
University, Guwahati -781014, Assam, India.

[6] uses ANN for providing a mass likelihood distribution for
each measured shower, based on its multi-parameter training
with simulated showers. Another work by A. Chilingarian .
et. al [7] neural network models to recognize the experimental
EAS without known primary and energy.
The present work discusses the formulation and working of
an ANN based system for prediction of EAS event location
in the range 1010.5 to 1020.5 eV. The system uses twenty
multi layer perceptron (MLP) - a class of feed forward ANN
trained with error back - propagation algorithm to determine
shower event coordinates. The twenty MLP cluster is trained
in a cooperative configuration to provide optimized results.
The set up is trained extensively and tested with data samples
simulated resembling experimental conditions.

II. BASIC CONSIDERATIONS OF THE ANN

Artificial Neural Network (ANN)s are non- parametric pre-
diction tools that can be used for a host of pattern classification
problems [9] including face recognition. The application of
the ANN considers two aspects. A MLP is constituted for this
work with one hidden layer and input and output layers. The
choice of the length of the hidden layers have been fixed by
not following any definite reasoning but by using trial and
error method. For this case several sizes of the hidden layer
have been considered. Table I shows the performance obtained
during training by varying the size of the hidden layer.

TABLE I
PERFORMANCE VARIATION AFTER 1000 EPOCHS DURING TRAINING OF A

MLP WITH VARIATION OF SIZE OF THE HIDDEN LAYER

Case Size of hidden MSE Precision
layer (x input layer) Attained attained in %

1 0.75 1.2 x 10−3 87.1
2 1.0 0.56 x 10−3 87.8
3 1.25 0.8 x 10−4 87.1
4 1.5 0.3 x 10−4 90.1
5 1.75 0.6 x 10−4 89.2
6 2 0.7 x 10−4 89.8

The case where the size of the hidden layer taken to be 1.5
times to that of the input layer is found to be computationally
efficient. Its MSE convergence rate and learning ability is
found to be superior to the rest of the cases. Hence, the size
of the hidden layer of the ANNs considered is 1.5 times to
that of the input layer.
The selection of the activation functions of the input, hidden
and output layers plays an important part in the performance
of the system. A common practice can be to use a similar type
of activation function in all layers. But certain combinations
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and alterations of activation function types carried out during
training provide a way to attain better performance. Two
types of MLP configurations are considered- the first type
constituted by a set of similar activation functions in all
layers and the other with a varied combination of activation
functions in different layers. Both these two configurations
are trained with gradient descend with variable learning rate
and momentum back propagation (GDMALBP) algorithm as a
measure of training performance standardization. The outcome

TABLE II
EFFECT ON AVERAGE MSE CONVERGENCE AFTER 1000 EPOCHS WITH

VARIATION OF ACTIVATION FUNCTIONS AT INPUT, HIDDEN AND OUTPUT
LAYERS

Case Input Hidden Output MSE x
layer Layer Layer 10−4

1 log-sigmoid log-sigmoid log-sigmoid 1.45
2 tan-sigmoid tan-sigmoid tan-sigmoid 1.32
3 tan-sigmoid log-sigmoid tan-sigmoid 1.05
4 log-sigmoid tan-sigmoid log-sigmoid 1.02
5 log-sigmoid log-sigmoid tan-sigmoid 1.15
6 log-sigmoid tan-sigmoid log-sigmoid 1.19

of the MLP blocks vary depending upon the number of
training sessions and the data used. Mean Square Error (MSE)
convergence and prediction precision are used to ascertain the
performance of the MLP blocks. Samples used for training
includes images with several types of noise between 1 to 30
dB.

A. Multi Layered Perceptron Based Learning

The fundamental unit of the neural networks is the
McCulloch-Pitts Neuron (1943). The MLP is the product of
several researchers: Frank Rosenblatt (1958), H. D. Block
(1962) and M. L. Minsky with S. A. Papart (1988). Backprop-
agation, the training algorithm , was discovered independently
by several researchers (Rumelhart et. al.(1986) and also Mc-
Clelland and Rumelhart (1988)).
A simple perceptron is a single McCulloch-Pitts neuron trained
by the perceptron algorithm is given as:

Ox = g(([w].[x] + b) (1)

where [x] is the input vector, [w] is the associated weight
vector, b is a bias value and g(x) is the activation function.
Such a setup, namely the perceptron will be able to classify
only linearly separable data. A MLP, in contrast, consists of
several layers of neurons. The equation for output in a MLP
with one hidden layer is given as:

Ox =
N∑

i=1

βig[w]i.[x] + bi (2)

where βi is the weight value between the ith hidden neuron.
Such a set-up maybe depicted as in Figure 1. The process
of adjusting the weights and biases of a perceptron or MLP
is known as training. The perceptron algorithm (for training
simple perceptrons consists of comparing the output of the
perceptron with an associated target value. The most common
training algorithm for MLPs is error backpropagation. This
algorithm entails a back propagation of the error correction
through each neuron in the network.

Fig. 1. Multi Layer Perceptron

B. Application of Error Back Propagation for MLP training

The MLP is trained using (error) Back Propagation (BP)
depending upon which the connecting weights between the
layers are updated. This adaptive updating of the MLP is
continued till the performance goal is met.Training the MLP
is done in two broad passes -one a forward pass and the
other a backward calculation with error determination and
connecting weight updating in between. Batch training method
is adopted as it accelerates the speed of training and the rate
of convergence of the MSE to the desired value [9]. The steps
are as below:

• Initialization: Initialize weight matrix W with random
values between [-1,1] if a tan-sigmoid function is used as
an activation function and between [0, 1] if log-sigmoid
function is used as activation function. W is a matrix of
CxP where P is the length of the feature vector used for
each of the C classes.

• Presentation of training samples: Input is pm =
[pm1, pm2.....pmL].
The desired output is dm=[dm1, dm2......dmL].

– Compute the values of the hidden nodes as:

nethmj =
L∑

i=1

wh
jip

mi + ∅h
j (3)

– Calculate the output from the hidden layer as

oh
mj = fh

j (nethmj) (4)

where f(x)= 1
ex

or f(x)= ex

−e−x

ex+e−x

depending upon the choice of the activation function.
– Calculate the values of the output node as:

oo
mk = fo

k (netomj) (5)

• Forward Computation: Compute the errors:

ejn = djn − ojn (6)

Calculate the mean square error(MSE) as :

MSE =

∑M

j=1

∑L

n=1 e2
jn

2M
(7)

Error terms for the output layer is:

δo
mk = oo

mk(1 − oo
mk)emn (8)
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Error terms for the hidden layer:

δh
mk = oh

mk(1 − oh
mk)

∑
j

δo
mjw

o
jk (9)

• Weight Update:

– Between the output and hidden layers

wo
kj(t + 1) = wo

kj(t) + ηδo
mkomj (10)

where η is the learning rate(0¡η¡1). For faster con-
vergence a momentum term(α)maybe added as:

wo
kj(t+1) = wo

kj(t)+ηδo
mkomj+α(wo

kj(t+1)−wkj)
(11)

– Between the hidden layer and input layer:

wh
ji(t + 1) = wh

ji(t) + ηδh
mjpi (12)

A momentum term maybe added as:

wh
ji(t+1) = wh

ji(t)+ηδh
mjpi +α(wo

ji(t+1)−wji (13)

One cycle through the complete training set forms one epoch.
The above is repeated till MSE meets the performance criteria.
While repeating the above the number of epoch elapsed is
counted. A few methods used for MLP training includes:

• Gradient Descent(GDBP)
• Gradient Descent with Momentum BP (GDMBP)
• Gradient Descent with Adaptive Learning Rate BP

(GDALRBP) and
• Gradient Descent with Adaptive Learning Rate and Mo-

mentum BP (GDALMBP).

Here, while MSE approaches the convergence goal, training
of the MLPs suffer if:
Corr(pm,i(j), pm,i(j + 1)) = high and
Corr(pm,i(j), pm,i+1(j))= high. This is due to the require-
ments of the (error) back propagation algorithm as suggested
by equations 8 and 9.

III. APPLICATION OF ANN FOR CORE LOCATION

PREDICTION

Showers were generated according to a modified NKG
function [3] with particle content between 1010.5 to 1020.5

eV with Moliere radius of 70 m. Their cores were evenly
distributed within a circle of radius 50 m centered on the
middle of the array and the detectors distributed within a 100
meter arc. This restriction was adopted to avoid edge effect. A
conceptual model of the core and detector locations used for
the work are depicted in Figure 2. The high energy showers
between 1010.5 to 1020.5 eV are simulated and density values
calculated. While calculating density values core positions and
locations of detectors are important. These coordinates are
used to simulate the density values. The work considers twenty
shower events taking place within a radius of fifty meters. The
ANN is designed to accept density values obtained for twenty
showers and provide coordinates of the EAS events of which
the measurements are made. The density values captured
by the detectors and coordinates of the shower events are
unique hence require separate ANN predictors for each of the

Fig. 2. Conceptual set-up used for simulation of density functions of EAS

Fig. 3. Experimental Set-up

positions. For twenty shower events similar number of ANN
are formed and a lay-out akin to the committee machine [9]
is formulated. The set-up is essential for accurate prediction
and optimization of the results. The training is carried out in
a cooperative environment as to minimize the predicted error.
The fundamental considerations governing the working and
parameter selection of the cooperative ANNs or committee
machines can be explained using the following analysis [10]
[9]:
Let a training set of m input - output pairs be
(x1, t1), (x2, t2), ...(xm, tm) be given and N networks are
trained using this set of data. For simplicity, let for n-
dimensional input there be a single output. Let for network
functions fi for a number of networks represented by indices
i = 1, 2, ...N , the cooperative or committee network formed
generates as output given as

f =
1
N

N∑
i=1

fi (14)

The rationale behind the use of the averaging in the output of
the cooperative or committee network as given by eq. 14 is
the fact that if one of the constituent networks in the ensemble
is biased to some part of the input samples, the ensemble
average can scale down the prediction error considerably [10].
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A quadratic error function can be computed from each of the
error vectors ei using the ensemble function f as

Q =
m∑

i=1

[ti −
1
N

N∑
i=1

fi]2 (15)

Using matrix notation, the quadratic error can be expressed as

Q = |
1
N

(1, 1, ....)E|2 =
1

N2
(1, 1, ....1)EET (1, 1, ......1)T

(16)
EET is the correlation matrix representing the error residuals.
If each function approximation produces uncorrelated error
vectors, the matrix EET is diagonal and the ith diagonal
element Qi is the sum of quadratic deviations for each
functional approximation, i.e Qi = ‖ei‖2. Thus,

Q =
1
N

(
1
N

(Q1 + Q2 + ........ + QN )) (17)

It implies that the total quadratic error of the ensemble is less
by a factor 1

N
than the average of the quadratic errors of the

total computed approximations. This holds only if N is not
very large. If the quadratic errors are not uncorrelated, i.e if
EET is not symmetric, a weighted combination of N functions
fi can be approximated as

f =
N∑

i=1

wifi (18)

The weights wi must be computed in such a way as to
minimize the expected quadratic deviation of the function f for
the given training set. With the constraint with the constraint
w1 + + wN = 1, eq. 16 transforms to

Q =
1

N2
(w1, w2, ...wN )EET (w1, w2, ...wN )T (19)

Differentiating the above eq. 19 w. r. t w1, , wN , and using a
Lagrangian multiplier λ for the constraint w1 + + wN = 1,
the above functional modifies to

Q′ =
1

N2
wEET + λ(1, 1, .....1)wT (20)

=
1

N2
wEET + λ1wT (21)

where 1 is a row vector with all its N components equal to 1.
Setting the partial derivative of Q′ with respect to w to zero
this leads to

1
N2

wEET + λ1 = 0 (22)

With simplification,

λ =
1

N21(EET )−11T
(23)

The optimal weight set can be calculated as

w =
1(EET )−1

1(EET )−11T
(24)

assuming that the denominator does not vanish. This method,
however, is dependent on the constraint that EET is not ill-
conditioned.

IV. EXPERIENTIAL RESULTS AND DISCUSSION

Each of the twenty units of the ANN cluster is formed
by cascade feed-forward networks - a variation of the MLP
trained with back-propagation. The average data size for each
of the block is fifty sets of 20 × 100 where 20 represents the
number of shower cores and 100 denotes the density values
recorded by the detectors. Noise between -3 dB and 3 dB are
mixed to make the ANN cluster robust enough to deal with
variations found from experiential works.
Figure 4 shows the location of shower events as predicted by
the ANN blocks with detector positions and core positions
shown. The plot is for one event of which the density values
are fed to the trained ANN set-up. After training with fifty
sets of data the plotted values are generated as the average of
twenty sets of inputs of which half are with noise variation
in the mentioned range. The results show a success rate of
around 95%. The above is repeated for another event and a
similar success rate is obtained. A set of results are shown
in Table III summarizing the training and testing processing.
The location of all the twenty showers has also been generated

TABLE III
AVERAGE PERFORMANCE DERIVED DURING TRAINING OF THE ANN

CLUSTER FOR ONE SHOWER EVENT

SL Num Epochs Success rate Time
in % in sec.s

1 5000 94.1 98.3
2 10000 95.3 186.3
3 15000 96.2 318.2
4 20000 96.3 473.5

using the ANN cluster as a whole. Initially as the training is
limited to a few thousand session, the event cluster is spread
insider and outside the fifty meter radius. The expected results
are a grouping inside the fifty meter arc. As training sessions
are increased with more number of samples, the predicted
results start to cluster inside the intended circle. Figure 6
show a grouping generated by the ANN - cluster after 5000
sessions of training. The grouping clearly shows the location
of shower events generated using density values placed inside
the circle. A better clustering of the events recorded after
10000 iterations is shown by Figure 7. The number of training
sessions have been extended to 20000 also but the best results
are obtained around the 10,000 to 12,000 mark. hence, testing
results are derived from the ANN cluster trained upto this
limit. A unitary ANN block instead of a cluster can also
be sued for the purpose but prediction results are atleast 5%
below than that generated by the cluster. Moreover, the cluster
with its optimization capacity provides the best result out of
a sample set of twenty applied to it. This is an advantage
provided by the cluster. Moreover, as the shower core has
its own unique location and density values, a unitary block
shows best discrimination capacity only when applied for a
single shower core location prediction. A plot of the success
rates of the core location prediction is depicted by Figure 8.
The training doesn’t improve much after 12000 sessions but
training time increases.
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Expected and ANN predicted core and detector positions of four shower events of which density values are recored

Fig. 4. Location of shower events with detector and core positions generated by the ANN set-up for one event
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Fig. 5. Location of shower events with detector and core positions generated by the ANN set-up for another event

V. CONCLUSION

The work is an attempt to use ANN based techniques to
predict core locations. The experiential work carried out with
a ANN cluster is found to be better suited for handling core
location prediction and optimization. Shower event data are
simulated and the extracted data are used for ANN training
which is tested further to verify the extent of training. The

system thus developed is a readily available tool which can
provide nearly precise location details of shower in the range
1010.5 to 1020.5 eV. The system has the potential to become a
part of an experiential set-up for which it needs to be extended
and modified further for real time applications.
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Fig. 6. Shower events of four cases predicted by ANN after 5000 sessions taking density values from 100 detectors
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Fig. 7. Shower events of four cases predicted by ANN after 10000 sessions taking density values from 100 detectors
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