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 
Abstract—As the Silicon oxide scaled down in MOSFET 

technology to few nanometers, gate Direct Tunneling (DT) in 
Floating gate (FGMOSFET) devices has become a major concern for 
analog designers. FGMOSFET has been used in many low-voltage 
and low-power applications, however, there is no accurate model that 
account for DT gate leakage in nano-scale. This paper studied and 
analyzed different simulation models for FGMOSFET using TSMC 
90-nm technology. The simulation results for FGMOSFET cascade 
current mirror shows the impact of DT on circuit performance in 
terms of current and voltage without the need for fabrication. This 
works shows the significance of using an accurate model for 
FGMOSFET in nan-scale technologies.  

  
Keywords—CMOS transistor, direct-tunneling current, floating-

gate, gate-leakage current, simulation model. 

I. INTRODUCTION 

HE CMOS technology has been scaled down drastically 
in last decade to meet the industry demand. This scaling 

reduced the power dissipation, increased the speed and 
reduced the fabrication cost. However, the reduction of feature 
size has led to a dramatic shrink in silicon-oxide thickness 
(Tox) to few nanometers (nm). This in turn forces the voltage 
suppliers to below 1-V. unfortunately, the transistor’s 
threshold voltage (VT) has not reduced by the same rate. 
Therefore, low-voltage (LV) analog circuit design technique 
capable of reducing VT such as multiple input floating-gate 
(FG) MOS transistor (FGMOST) is still very valuable.  

Having multiple inputs at the gate of FGMOST is one of the 
important advantages that provide the ability to tune the 
threshold voltage and reduce the headroom voltage to the 
minimum and makes it suitable for LV applications [1]-[3]. As 
a result of shrinking feature size, gate leakage current (GLC) 
presents many challenges at the transistor’s performance. 
When Tox is less than 3 nm, direct tunneling (DT) GLC 
becomes a dominant problem that can increases the power 
dissipation and degrades the FGMOST performance. 
FGMOST simulation models in the literature [4]-[6] are not 
viable for nm scale technologies; especially for analog design. 
This paper focuses on the impact of DT on nm FGMOST on 
circuit performance and the importance of having an accurate 
model.  
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II. FGMOS STRUCTURE AND OPERATION 

A FGMOS is very similar to standard MOS transistor but it 
differs in a way that it has no resistive connections to its gate 
and the inputs are capacitive connected to the FG. FGMOS 
usually fabricated using double poly structure where the first 
poly is the FG and the second poly is the control gate as 
shown in Fig. 1 (A). The FG voltage is the weighted sum of all 
coupled inputs voltages connected to the gate as shown in Fig. 
1 (B). With no DC path to ground at the gate and having 
multiple inputs has resulted into several changes in the DC 
characteristics from the standard MOSFET. Assuming there is 
no leakage current at the gate, the FG voltage is given by [4] : 
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where n is the number of inputs voltages at the gate, Ci are the 
input capacitors connected at the gate, Vi are input voltages, 
C୥ୱ	and	C୥ୢ are the parasitic capacitors, ܳிீ refers to the 
charge trapped in FG during fabrication, VT is the standard 
MOS transistor threshold voltage and VTFG is the threshold 
voltage of the FGMOST. 
 

 

Fig. 1 (A) N-type FGMOS using double poly structure (B) equivalent 
circuit for floating gate transistor 

 
FGMOSFET behaves as a programmable threshold voltage 

device where the effective threshold voltage VTHFG can be 
reduced to zero or to a negative value compared to standard 
MOS threshold. This tuning capability enabled the 
FGMOSFET to be the best choice for low voltage 
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applications. Fig. 2 illustrates the tuning capability of the FG 
transistor with two inputs by increasing one and sweeping the 
other.  
 

 

Fig. 2 FGMOS threshold voltage programmability when VDS swept 
from 0V to 1V  

III. NANO-SCALE TECHNOLOGY CHALLENGES 

There are some problems had faced the analog designers 
when using FGMOST in nano-scale technologies. The first 
problem is the DT gate leakage current results from the direct 
tunneling of carriers (electrons and holes) from the gate 
through the very thin oxide to the bulk and source/drain 
regions. This leakage current degrades the FGMOST 
performance. It should be included in the simulation model. In 
the following sections previous simulation models for 
FGMOST and the GLC are discussed. 

A. Gate Direct Tunneling in Sub 100-nm Technologies 

Gate DT current results from tunneling of carriers (electrons 
and holes) from the gate through the oxide to the bulk and 
source/drain regions.  

DT gate current is a strong exponential function of silicon 
oxide thickness (Tox) and the potential across it with respect to 
the transistor dimensions in a way that DT increase 
exponentially as Tox decrease and when the gate voltage 
increase. In [7] an empirical gate leakage model was 
incorporated in 100nm BSIM3v3 (level 49) and was suggested 
for circuit simulation where the DT gate leakage adjusted to fit 
0.13um technology. The gate to source current (Igs) and gate to 
drain current (Igd) were described using voltage dependent 
current sources (VCCS) between gate to source and gate to 
drain as shown in Fig. 3. Equations (4) and (5) were extracted 
from simulation results and they show the dependency of Igs 
and Igd on TOX, Vgs and Vgd respectively. 
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Fig. 4 illustrates another simulation model suggested in [8]. 

The model includes three terminals with the parasitic 
capacitors Cgs, Cgd and Cgb with the gate tunneling. The gate 
current in the model partitioned to Igs, Igd and Ich and they 
were represented by VCCS. 
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Fig. 3 DT gate current micro model proposed in [7] 
 

 

Fig. 4 Micro model for gate tunneling for circuit simulation proposed 
in [8] 

 
Fig. 5 shows a micro model for the gate DT leakage current 

proposed in [9]. The model used a voltage dependent current 
sources as a function of the terminal voltages and the 
partitioning of the channel current (Igs, Igd) using variable 
resistors. The resistors and the gate current can be found in (6) 
and (7).  
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Fig. 5 Gate DT model for circuit simulation suggested in [9] 

B. Simulation Model 

Due to the nature of FGMOST (no DC path to ground), a 
dedicated simulation model is needed. A simulation model 
was suggested by [4] in which a standard MOSFET with 
multiple inputs capacitively coupled to FG was used. A large 
resistor and voltage-control-voltage-source (VCVS) were 
added to MOSFET to provide a DC path to ground as shown 
in Fig. 6.  

In the FG simulation model proposed in [5], a resistor is 
connected in parallel with each input capacitor as shown in 
Fig. 7. These resistors were selected in a way that the RC 
product of each pair is equal. Furthermore, these resistors must 
be very large in order not to have any effect at AC simulation. 
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Fig. 6 Ramirez-Angulo model [4] for simulation of the FGMOS 
 

 

Fig. 7 FGMOS simulation model in [5] 
 

The previous models were suggested to model the 
functionality of FGMMOS and to solve the simulation 
convergence problem. However, the DT effect in FG devices 
had not been explored enough. 

In [10], the author investigates the impact of DT on 
FGMOS performance and proposed a new model for circuit in 
sub 100nm technologies. It was found that FG voltage 
decreases gradually as a function of time as can be found in 
(8)-(10). The reduction in gate voltage results from the direct 
tunneling of electrons or holes from gate to the source and 
from the gate to the drain respectively. The FG voltage change 
rate is directly related to the gate current and the input 
capacitance ratio seen at the gate. 
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Fig. 8 illustrates the model implemented in TSMC90nm. 

The model includes two cells from analog hardware 
description language AHDL library and one block using 
Verilog A code to describe the gate tunneling. This model can 
be used for transient and DC simulations by adding initial 
condition to the leakage current integrator. Equations (11)-
(13) represent DT current and gate effective voltage.  
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Fig. 8 The proposed FGMOST’s simulation model in [10] 

IV. SIMULATION RESULTS 

Current mirror (CM) is one of the simplest yet the important 
building blocks in integrated circuit design. It is used to copy 
or multiply the input current precisely to other circuits as 
shown in Fig. 9 (A). Cascode current mirror is used to 
improve the output impedance in CM where multiple FG 
stacked together as shown in Fig. 9 (B).The output current is a 
function of the transistor aspect ratio (W/L). The CM output 
current can be found in (11) and (12) respectively.  
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In order to examine and compare the performance of FG 

devices implemented in sub 100nm, a comparison carried out 
between a FG simulation model that counts for the DT and 
another simulation model that does not accounts for DT gate 
current. FG cascode CM was implemented in TSMC 90nm 
and the simulation carried out using CAD tools from Cadence 
/ Spectre to simulate the circuit. Fig. 10 shows the dimensions 
(W/L) for the FG cascode CM that’s used in as test bench in 
the comparison. 

The simulation result for the FG cascode CM using 
Ramirez-Angulo simulation model in [4] is shown in Fig. 11. 
As can be seen, the required voltage to reach the required 
current was 227mV. Next, the same FG base CM was 
implemented using a simulation model proposed in [10]. This 
model accounts for DT in FGMOS in sub 100nm 
technologies. The simulation result for the output 
characteristic of CM was shown in Fig. 12.  

We can observe that, applying the same DC voltage to the 
FG 227mV wasn’t enough to generate the required output 
current 5mA. Higher gate voltage was needed 280 mV to get 
the required output current. This is very realistic and agrees 
with what reported before for gate leakages in FG devices in 
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[10]. This increasing in voltage was needed to compensate for 
gate voltage reduction that results from gate current as it is 
seen in (10).  
 

 

Fig. 9 FG current mirror (A) simple FG cell (B) cascade cell 
 

 

Fig. 10 FG current mirror transistors dimensions 
 

 

Fig. 11 The output current verse output voltages for FG cascode 
current mirror implemented with Ramirez model 

 
The FG cascode CM using Ramirez model didn’t account 

for that DT therefore, the result was not accurate. The 
importance of these results arises from the need to have an 
accurate and realistic simulation results for FGMOSFET in 
deep nanotechnologies without the need to fabricate. 

 

 

Fig. 12 The output current against output voltage for FG cascode 
current mirror implemented with the model in [10] 

V. CONCLUSION 

In this paper, a discussion has been presented to show the 
importance of using an accurate model for FGMOSFET in 
nano-scale technologies. Different models for FGMOSFET 
available in the literature have been compared. The simulation 
results had shown the gate DT impacts on circuit performance 
in terms of current and voltage.  
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