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Abstract—To determine the potential of a low cost Irish 

engineered timber product to replace high cost solid timber for use in 
bending active structures such as gridshells a single Irish engineered 
timber product in the form of orientated strand board (OSB) was 
selected. A comparative study of OSB and solid timber was carried 
out to determine the optimum properties that make a material suitable 
for use in gridshells. Three parameters were identified to be relevant 
in the selection of a material for gridshells. These three parameters 
are the strength to stiffness ratio, the flexural stiffness of 
commercially available sections, and the variability of material and 
section properties. It is shown that when comparing OSB against 
solid timber, OSB is a more suitable material for use in gridshells that 
are at the smaller end of the scale and that have tight radii of 
curvature. Typically, for solid timber materials, stiffness is used as an 
indicator for strength and engineered timber is no different. Thus, low 
flexural stiffness would mean low flexural strength. However, when 
it comes to bending active gridshells, OSB offers a significant 
advantage. By the addition of multiple layers, an increased section 
size is created, thus endowing the structure with higher stiffness and 
higher strength from initial low stiffness and low strength materials 
while still maintaining tight radii of curvature. This allows OSB to 
compete with solid timber on large scale gridshells. Additionally, a 
preliminary sustainability study using a set of sustainability indicators 
was carried out to determine the relative sustainability of building a 
large-scale gridshell in Ireland with a primary focus on economic 
viability but a mention is also given to social and environmental 
aspects. For this, the Savill garden gridshell in the UK was used as 
the functional unit with the sustainability of the structural roof 
skeleton constructed from UK larch solid timber being compared 
with the same structure using Irish OSB. Albeit that the advantages of 
using commercially available OSB in a bending active gridshell are 
marginal and limited to specific gridshell applications, further study 
into an optimised engineered timber product is merited. 

 
Keywords—Bending active gridshells, High end timber 

structures, Low cost material, Sustainability.  

I. INTRODUCTION 

RIDSHELLS are doubly curved structures, constructed 
from initially straight elements that resemble shell 

structures. Shell structures are inherently effective in their 
structural performance leading to high span to thickness ratios. 
They inherit their strength and stiffness from their three 
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dimensional geometry and curvature. Large open plan spaces 
can be created with a minimum amount of material. Gridshells 
represent a state of the art in structural timber engineering, 
which are difficult to engineer. There are two principle 
categories of gridshells, classified as bending active and 
bending inactive gridshells. The term bending active means 
that the structural elements have to bend considerably to give 
the structure its shape, a type of bending pre-stress [1]. 
Alternatively, bending inactive describes a structure whereby 
the structural elements do not need to bend to give the 
structure its shape. A typical bending inactive structure would 
be a truss, portal frame and a geodesic dome. The majority of 
bending inactive gridshells have been constructed from steel 
whereby the structure is comprised of numerous straight 
elements each inclined at a different angle to its adjacent 
element to give the structure its curved shape. Bending active 
gridshells on the other hand are not all that common, however 
a number of them have been constructed such as the 
Multihalle in Mannheim [2], the Weald and Downland 
Museum [3], and the Savill Garden centre [4] (Fig. 1). 
Notably, the majority of bending active gridshells is 
constructed from solid timber sections. However, there was a 
high cost associated with these gridshells because solid timber 
was used. Many natural defects such as knots, splits and grain 
discontinuities occur in solid timber. These defects become 
critical when using small sections, as the defects do not scale 
with section size. Therefore, the solid timber material used for 
the gridshells mentioned in [2]-[4] had to be specially selected 
from the timber available. For the latter two gridshells 
described in [3] and [4], from the lengths of sawn timber, the 
defects were identified, removed and the defect free pieces 
finger jointed back together. The average defect free piece was 
600mm with the distances to be spanned for the Savill garden 
gridshell being 90m and 25m [5]. The time and labour 
required to carry this out led to a high processing cost along 
with an initial high base cost for the actual material, which is 
unsuitable for the sustainability of these structures. However, 
in more recent years, alternative engineered materials have 
been used in the construction of gridshells, more so for 
bending active gridshells such as cardboard tubes [6] and glass 
fibre reinforced polymers (GFRP) [7]. 
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[12]; they are based on mean stiffness values. Fig. 3 compares 
the strength and stiffness of various species and grades of 
timber. The higher the fm/E ratio the more suitable a material is 
for use in bending active structures. If a line is drawn from the 
origin through the OSB data point it directly bisects the solid 

timber into hardwood and softwood. This means that OSB 
(manufactured from a softwood timber) in terms of the fm/E 
ratio is more suitable for bending active gridshells than any 
softwood solid timber. 

 

 

Fig. 3 Comparison of typical structural timber and timber products 
 

 

Fig. 4 Maximum curvature of different timber materials. The legend is displayed in a descending order of radius of curvature 
 

B. Section Flexural Stiffness 

The fm/E ratio is not enough to be able to make an informed 
decision on a suitable material for use in bending active 
gridshells. The maximum curvature (minimum radius) that a 
length of material is able to form to is another essential 
parameter. Using Euler-Bernoulli beam theory (1) the bending 

radius of a member can be calculated as a function of the 
bending stress. By using the maximum bending stress of a 
material fm, the minimum bending radius of the member can 
be determined (2) 
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TABLE II 
MAXIMUM STIFFNESS (GPa) AND COV OF SELECT SOLID TIMBER GRADES 

C24 C30 C40 D30 D40 D60 OSB 

Emin 7.4 8 9.4 9.2 10.9 14.3 4.19 

Emean 11 12 14 11 13 17 4.93 

Emax 14.6 16 18.6 12.8 15.1 19.7 5.7 

COV (%) 19.8 20.2 19.9 9.9 9.8 9.6 9.1 

 
This now creates an envelope for the material stiffness for 

which can be used when making design decisions. In light of 
this unique characteristic, there is a specific implication for 
using OSB and other wood-based panels for bending active 
gridshells. The change in the end use of OSB from its implicit 
use in the standards needs to be understood along with the 
implications of doing so. For the determination of 
characteristic material properties in terms of bending, the 
standards [16] suggest a test specimen width of 300 mm. This 
width has an averaging effect of the material properties over a 
narrower width, thus implying that the end use of the product 
as defined by the standards is close to that of the full sheet. In 
contrast to this, the end use of the product for bending active 
gridshells is narrow strips of approx. 50-100 mm. Therefore, 
there is less of an averaging effect for the material properties 
resulting in a higher variability but closer to what is expected 
in reality for bending active gridshells. A different material 
testing strategy needs to be developed to account for the 
deviation from the standards in terms of the end use of the 
product. This is further discussed along with experimental 
results in [17]. This also has implications for the way in which 
the design codes and product standards are developed if the 
design of bending active gridshells is to become standard 
practice. 

III. SUSTAINABILITY OF IRISH OSB VERSES UK LARCH 

The second part of this study is to investigate the 
sustainability of using Irish OSB verses imported UK larch for 
the structural members in a bending active gridshell. The 
research question being answered here is, is using engineered 
Irish timber in a gridshell more sustainable than using 
imported solid timber. 

A. Functional Unit 

In order to answer this question an existing gridshell, the 
Savill garden gridshell, will be used as the functional unit. To 
investigate whether Irish OSB is a more sustainable material 
for gridshells, this building will be assessed by firstly 
replicating it in Ireland using the same material (UK larch) 
and then replacing the larch that makes up the roof structure 
with an equivalent quantity of OSB to give the structure the 
same strength and stiffness. The sustainability of each will be 
assessed using straightforward indicators primarily concerned 
with the economy and the environment but also with a 
mention to society and building regulations.  

B. Straight forward Indicators 

 As mentioned previously, the sustainability study is based 
on the three pillars of sustainable development. The primary 
indicator for this study is economy (cost). This includes the 

volume of material, time, processing and transportation. The 
environmental indicators include the energy inputs for each 
process, emissions, water and waste. The social indicators 
include health and safety, aesthetics and the potential for Irish 
industry. The building regulations would include 
policymaking, legislation and governance. These indicators 
are more clearly represented in Table III. 

 
TABLE III  

OUTLINE OF THE INDICATORS IN THIS STUDY 

Item Assessment Indicator Unit 

Economic Quantitative 

Vol. of material 
m3 

€ 

Time € 

Labour € 

Transport € 

Processing € 

Environmental Quantitative 
Embodied Carbon kg CO2/kg 

Embodied energy MJ/kg 

Social Qualitative Irish Industry - 

Building Regulations Qualitative Compliance - 

C. Definition of Boundary 

In order to assess sustainability, a clearly defined boundary 
needs to be established. Hence, the longitudinal (Life Cycle) 
boundary established for this study will be from the harvesting 
of the timber in the forestry up to the construction of the 
structural roof skeleton. Further clarifications on the 
transverse boundaries will be established as each indicator is 
discussed. 

The longitudinal boundary for the assessment of 
sustainability of a gridshell constructed from imported UK 
larch has the following steps: 
 Harvest from forest 
 Transport to sawmill 
 Saw into laths 
 Transport to processing facility 
 Finger jointing 
 Transport to site 
 Scarf jointing 
 Construct gridshell 

In addition, the associated boundary using OSB has the 
following steps: 
 Harvest from forest 
 Transport to factory 
 Process into sheets 
 Saw into strips 
 Transport to site 
 Splice jointing 
 Construct gridshell 

D. Assumptions and Data Gaps 

The sustainability of the building in service is outside the 
scope of this study. However, it is thought this would not 
differ significantly for both buildings. As both roofs are 
externally clad identically, they are expected to have the same 
life expectancy. 
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release for modified larch timber is close to if not greater than 
that for OSB.  

Both structures are constructed similar whereby the first 
layer is lifted into position and additional layers added until 
the structure is complete. As the structure is relatively 
lightweight when compared to structures of a similar size 
made from steel or concrete, it is expected that the impact of 
the construction phase is low in the overall assessment. It is 
thought that the construction of the OSB gridshell make take 
longer due to the extra number of layers. However, this can be 
offset by lifting all layers together with the joints unlocked to 
allow sliding between the layers. In addition, the impact of 
transport will have an effect on the results as the two products 
are sourced from two completely different locations, one of 
which crosses international boundaries. 

3) Social Impact 

The social aspects of the sustainability of the two building 
types are assessed qualitatively. Using OSB is positive from 
an Irish point of view. The OSB material is 100% Irish. The 
timber is locally sourced from sustainably managed forests, 
and processed into OSB in Ireland. This has positive potentials 
for the Irish industry, benefits the local economy and creates 
jobs. Whereas the Larch timber for the original Savill Garden 
gridshell was sourced in the UK and has to be imported at a 
cost for use in Ireland. 

4) Building Regulations 

Given the fact that the same functional unit is used for both 
building types and the only variation is the type of timber 
product used for the structural roof skeleton, both building 
types would have to comply with the exact same building 
regulations. Therefore, no comparison can be made in this 
regard. 

IV. FURTHER WORK 

The lack of data made difficult any meaningful quantitative 
analysis. However, the preliminary study (both material 
property comparison and sustainability) has shown that there 
is a potential for OSB to be used in bending active gridshells. 
OSB was identified to be more suitable for smaller scale 
gridshells than solid timber, thus putting a restriction on its 
use. In order to gain a more complete insight into limitations 
of OSB for use in bending active structures, the following list 
of items must be addressed: 
 A more complete sustainability study that will encompass 

the entire life cycle (cradle to grave) of OSB and solid 
timber. 

 A single normalized index (‘Suitability Index’) depicting 
the suitability of OSB and solid timber across various 
spans. 

A qualitative suitability index is shown in Fig. 7 that 
compares the suitability of OSB and solid timber for different 
gridshell spans. The intersection at ‘A’ is the limiting 
threshold whereby above this OSB is not a suitable timber 
material for gridshells. Furthermore, once these limitations 
have been established and quantified, work can begin on 

optimizing the OSB material through the manufacture process 
to expand the threshold for OSB gridshells. 

 

 

Fig. 7 Qualitative suitability index of OSB compared to solid timber 
for increasing gridshell spans 

V. CONCLUSION 

Engineered timber is a more suitable and cost effective 
material for use in gridshells. Here an Irish engineered timber 
product in the form of OSB compared against solid timber and 
other engineered timber products under three main headings 
that are relevant to gridshells. It was concluded that OSB is 
suitable for use in gridshells, notably smaller span gridshells 
with high curvatures. 

A preliminary sustainability study was carried out to 
compare using Irish OSB against imported larch for a large 
scale gridshell constructed in Ireland. This preliminary study 
concluded that in terms of environment and building 
regulations both material were quite similar. On the other 
hand, in terms of economics and society OSB has a more 
positive impact than imported UK larch.  

Given that OSB is manufactured from fast growing 
softwood, the renewability of the forestry has a shorter time 
period as compared to the solid larch used in the Savill garden 
gridshell. 

Overall, this paper successfully outlines to the wider timber 
community of the potential of a substandard timber product in 
the form of OSB as a replacement to the high cost solid timber 
products previously used in state of the art timber structures 
such as gridshells.  
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