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Positive solutions of initial value problem for the
systems of second order integro-differential
equations in Banach space

Lv Yuhua

Abstract—In this paper, by establishing a new comparison result,
we investigate the existence of positive solutions for initial value
problems of nonlinear systems of second order integro-differential
equations in Banach space.We improve and generalize some re-
sults(see[5,6]),and the results is new even in finite dimensional
spaces.
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I. INTRODUCTION
N recent years, the research about initial value problem
for second order integro-differential equation is more and
more active (see[1-6]), paper[5] investigates the existence of
solution for the following equation:

2" (t) = ft,x(t),z , Tx),
2(0) = 20,2 (0) = 1,
paper [6] discusses the existence of solutions of initial value

problems for the following systems of second order integro-
differential equations:

{ I::(t):f(t,I(t)y,TI), ‘T(O)ZIOVI;I(O):Ilv
y (1) =9t y).2,Ty), y(0)=yoy (0) =y,
Motivated by the paper [5,6], we consider the existence of

solutions of initial value problems for the following systems
of second order integro-differential equations:

{ x::(t) = f(t,l‘(t),y,xll,Tx), ;1;((]) = xOvll‘,(O) =11,
Y (t) = g(tvy(t)71’7y ,Ty)7 y(()) =90,y (0) =y,

te0,1]

(1)
where t € I,f,g € C[I x Ex E X E x E,E], Tz(t) =

t

k(t,s)x(s)ds,k € C[D,RT], D = {(t,s) € R?|0 < s <
P< 1),

Suppose (E, ||.]|) is a real Banach space, P is a normal
cone in E, and the normal constant is 1, the partial order
induced by Pis < :xz <y < y—a € P. E* is the dual
space of E, P* = {¢ € E*|p(x) > 0,Vz € P} denote the
dual cone of P. Obviously, z € P if and only if o(z) >
0,Yo € P*. (C[I,E],|.]lc) is also a Banach space, where
I.lle = I?glxﬂx(t)H Let I =(0,1], P. = {z € C[I, E]|z(t) >
0,vt € I}, then P, is a normal cone in C[I, E] , and normal
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constant is 1, moreover, it defines the partial order of C[I, E].
Yug,v9 € C[I,E], and ug < vy, we define order interval
[uo,v0] = {z € CII,E] | up < = < vg}. For the sake of
convenience, we first list some lemmas.

Lemma 1%/ Let E be a real Banach space, P be a cone of
E, w € C?[I, E] such that

W' (t) > aw(t)—Nw' (t)— LTw(t),w(0) > 6,0 (0) > 6, (2)

where @ > 0, N > 0,L > 0, ko = max{k(¢,s) | (t,s) € D},
which satisfy
Lky <a <N, (3)

then w(t) > 6,w'(t) > 6.
Lemma 2 Let z,y € C?[I, E], and

z" (t) > ba(t) + ey(t) — Nz'(t) — L /t k(t, s)x(s)ds,
2(0) > 0,2(0) > 0, ’
V(0> bylt) + calt) = Ny (0~ L [ k(e o)u(s)ds,
y(0) > 0,'(0) > 0,
(4)
where b > ¢ > 0 such that
N >b+c¢>b—c> Lk, (5)

then z(t) > 0,y(t) > 6,2 (t) > 0,y (t) > 6.

Proof Let w(t) = z(t) + y(t),t € I{s by(4), we have
W' (t) > (b+ c)w(t) — Nw' (t) — L/ k(t, s)w(s)ds,
, 0
w(0) > 0,w (0) > 6, by (5) and lemma 1, we can get

w(t) > 0,0 (t) > 6,

(t) +y(t) > 0,2 (t) +y () > 0. (6)
Next, we prove
(t) > 0,y(t) > 0,2 (t) > 0,y (t) > 0,V € I.

Actually, by (4) and (6), we can get
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y' > (b-cy— Ny — L/t k(t, s)y(s)ds, (8)
y(0) > 6,5'(0) > 6.

In the same way, by(7) and (8), we can get
(t) > 0,y(t) > 0, (t) > 6,y'(¢) > 0.

Let o(.) be Kuratowski noncompact measure, we have the
following lemmas.
Lemma 3"l If B c C[I,E] is a countable bounded set,

then a(B(t)) € L[I,R*], and a({/x(t)dﬂz e BY) <

2 / o(B(t))dt.

I

Lemma4l If B c C[I, E] is bounded and equicontinuous,
let m(t) = a(B(t)),t € I, then m(t) is continuous on I, and

af /1 B(t)dt) < /1 a(B(t))dt.

Il. CONCLUSIONS

In this paper,we suppose that the following conditions hold:
(H1) There exist zg,y0 € C2[I, E], such that xo(t) <
yo(t),t € I, and

xg < f(t,xo,yo,xlo,Txo),Vt el,
z0(0) < xo,xé((]) <z,
yg < f(tvy()leovyévaO)?V/t € I’
Y0(0) = yo0,40(0) = y1.

(H2) There exist non-negative constants b, ¢, N, L satisfy-
ing inequality (5), such that

f(t: Ty Yn, I’n, Txn)
N(In+1 - In)

f(tv Tn+1,Yn+1, x;L+17 TI7L+1) -
> b(Tpt1 — Tn) + (Ynt1 — Yn) —

*LT(.Z‘»,H_l — J}n)/, ,

9 Ynt1, Tt 1, Yy 1, TYns1) — g(t, Yns Tns y[n7Ty’ﬂ)
S bWns1 = Yn) + c(@ns1 — 2n) = NWpy1 — )

—LT(yn+1— yn);

g(tv Yn+1, Tn+l Ypt1s Tyn-‘rl) -
> b(Ynt1 — Tn) + (Tt — Yn) —

—LT(Yn+1 — xn),

where l’nayn71n+17yn+1 € [107:’;’0] and 1n+1 > «T/naygz >
y’fl-‘rla n7yn’ n+1ayn+1 € [x1,y1] and L, 2 Ly Yn 2
yn+1ﬂ 17273

(Hs) There exists constant d > 0, for any bounded
equicontinuous set B;(i = 1,2,3,4) in [zo,y0] and [z1,y1],
we have

F(t @, yn, @y, Tan)
N(ynJrl - wn)

a(f(t, B(t), Ba(t), Bs(t), T'Bi(t)))

< d[a(Bl(t))+a(Bz( ))+a(3 (1)) + T(B1(1)))],
a(g(t, Ba(t), Bi(t), Ba(t), T'Ba(1)))

< dle(Ba(t)) + a(Bi(t)) + a(Ba(t) + (T (Bz(1)))]-

Theorem 1 Suppose P C FE is a normal cone, and
conditions (H;) — (Hg) hold, then initial value problem
(1) has solutions z*,y* € [zg,yo]. Moreover, there exist
monotone iterative sequences {xn( ) A{yn(®)} € [zo, yo
and {x, (t)},{y,(t)} C [xg,ye], Which converge uniformly

to z*,y* and (ar*)l,(y*)'
@, (1), y, () satisfy

ZTp(t) = x0 + ta;
t

+ / (t = 8)[F (5 Enm1(8), Y1 (8), 21 (), Trn1(5))
+b($"/(s) - x7L71(5)) + C(yn(s) - ynf1(5))

N (@ (5) — 2y 1(5)) — LT(@n(s) — 2nor(s))]ds,
yn(t) = yo + ty1

+ /0 (t = )[9(5, Yn1(5), Zn1(5)s Y1 (5), Tyn_1(5))
B () — n—1(s)) + c(wa(s) — Tu_1(s))

on I, where z,(t),y,(t) and

~N(Yn(s) = Un_1(5)) = LT (yn(s) — un—1(s))lds,
(10)
(1) =
+ 0[ (8, 2n—1(8), Yn—1(5), 2, _1(8), Txp_1(s))
+b(xn/( )_In/ 1(8)) + clyn(s ) Yn—1(5))
=N (2, (s) = 2,_1(5)) = LT (zn(s) — 2p-1(s))]ds,
(11)
y;(t)t— Y1
+ 0 [g(svy'nfl(s) x"*1(5)7y/n—l(s)7Tynfl(5)) 19
() () (2
te(@n(s) — 2n-1(s)) = N(Yn(s) = Yn_1(s))
— LT (yn(8) — un—1(s))]ds,
and
o< <.<z,<.<z"<y*<..
SicmE it (13)
g <z <<z, <. <(z¥) <(y) <. u
<<y <<y <y 19
Proof  Firstly, by mathematical induction, we can prove
{zn ()}, {yn(t)} satisfy
Tno1 < Tp <Yp < Yn_1,n=1,2,3,..., (15)
:1:;1_1 Sx’n Sy/n Sy;_l,nzl,Z,S,.... (16)

Obviously, Vz,—1,yn—1 € C[I,E](n = 1,2,3...), it is easy
to see equations (9) and (10) have only a couple of solutions
T, yn I C[I, E], by(9)(10),we have

o (8) = F(t@n 1 (), yn1 (1), 21 (1), Tn1 (1))
+b(£€n/(t) - xnr—l(t)) + C(yn(t) - yn—l(t))

=N (2, (t) = 2,1 (1) = LT (20(t) = 2n1 (1)),
2n(0) = 20,2,(0) = x1,n =1,2,3...

; / (17)
Yn(t) = f(tyn—1(t), Tn—1(), Y1 (1), Tyn-1(1))
FBn(6) ~ 1 (8) + clan(t) — 2n1(8)

N(yn(t) - %/nfl(t)) - LT(yn(t) - ynfl(t)%
yn(o) - yann(O) =Y, = 17273

By(17),(18), (H1), (H2), we have

(21 —20)" (t) = b1 —20)(t) +c(y1(t) = wo(t)
—N(l}l — Io) (t) — LT(I‘l — .Z’())(t),
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it is equicontinuous on I, by (9),(10),(Hs3) and lemma 3, we

(1 = 20)(0) = 2o — o = 0, have
z; —3)(0) =21 — 21 =9, .
) mai(t) < 2/ a((t — s)[f (s, B1(s)B2(s)Bs(s), T Bi(s))
(1 —50) (£) < byr — o) (t) + c(z1(t) = xo(t) 4208, (s) + 2¢Ba(s) + 2N By(s) + 2LT B (s)))ds
~N( ~v) (0= LT;yl ~w)(®), < 2/ [(2b+ d)m1(s) + (2¢ 4+ d)ma(s)
1 — Yo =Yo — Yo =10, 0
(1 — 1) (1) > (b— )y —z1)(2) ma(t) < 2/0 a((t — s)[g(s, B2(s)B1(s)Ba(s), T B2(s))
—N(y1 —z1) (t) = LT (y1 — z1)(2), +Zngt(s) 4+ 2¢B1(s) + 2N By(s) + 2LT By(s)])ds
(v~ 22)(0) = o — 0 > , <2 [0+ dmas) + Qe+ dymi (5
(Y1 —21)(0) =y1 — 21 > 0. +(2N + d)ma(s) + (2L + d)a(T Ba(s))]ds,
By lemma 1 and lemma 2, we can get . (22)
20 <z <1 <yo,my <y <Yy < Yo ms(t) < 2/0 a([f (s, B1(s)Ba(s)Bs(s), TBi(s))
Now, suppose that for & > 1, (15),(16) hold, i.e. +2531t(3) + 2¢Bs(s) + 2N Bs(s) + 2LT Ba(s)])ds

< 2/ [(2b + d)ymy(s) + (2¢ 4+ d)ma(s)

Tk ST S Yp < Y1, oy < T < Y S Yoo ;
+(2N + d)ms(s) + (2L + d)a(T B1(s))]ds,

Next, we will show it also hold for &+ 1. Actually, by(15),(16) (23)

and (Hs), we have t
mat) <2 [ allg(s. Bals) Ba(s) Ba(s), TBals)

(@1 — k) (1) = b(@rer — 21)(8) + elypsa () - yk(t))( +2bBo(s) + 2¢B1 (s) + 2N Ba(s) + 2LT Ba(s)])ds

7N(I'k+1 — Tk) (t) — LT(.T]H_l — Tk t), t
<2 [ [(2b+ d)ma(s) + (2¢ + d)m1(s)
(xp+1 — 2x)(0) = 29 — 29 = 6, /0
; ; +(2N + d)ma(s) + (2L + d)a(T Ba(s))]ds.
('Tk-i—l — .Tk)(O) =1 —T1 = 9, (24)

By lemma 4, we have
(ki1 —ye) (8) < b(Yrsr — y)(8) + ez (8) — 2x(t)

=N (Yr+1 —yx) (t) = LT (yr+1 — yx) (1), a(TBi(s)) = O‘(/OS k(s,7)B1(7)dr)
(Y1 = yx)(0) = yo — yo = 6, < ko /S a(By(7))dr (25)
Wig1 — U)(0) = y1 —y1 =0, 0
= ko mq(7)dr,

0
(g1 = za41) (1) = (b= )(rs1 — rs1) (8) .
~N (g1 — zp1) (1) a(TBs(s)) = o / k(s, 7)Ba(r)dr)
—LT (yrt1 — T2 (1), 0,
(s — 1) (0) = 30— a0 > 0 <to [ a(Bar)ar (20
(y;c-l-l _I;€+1)(0) =y —x1 > 0. — ko /st(T)dT.
Therefore, by lemma 1 and lemma 2, we have 0

, / / / Let p(t) = max{m1(t), ma(t), ms(t), ms(t)}, by (21)-(26),
T < Tht1 <Ykl S Yk T < Tpgr < Y1 < Yio p(t) tma (£), ma(), ms (£), ma(@)}. by (21)-(26)

we have
S0, Yn € N, (15)and (16) hold. Consequently ¢
t) <2 2b+ 2c+ 2N + 3d)p(s
0T € STy S SYn S Sy Spos (19) p(f) /0[( i #e)
and +(2L+d)k0/0 p(7)dr]ds
’ ! ’ ’ t
g <z <. <2, <<y, <<y Sy (20) :2/ [2b + 2¢ 4+ 2N + 3d
’ 0
Let Bi(t) = {wn(t)}, Ba(t) = {yn(t)}, Bs(t) = {z, ()}, +(2L + b)ko(t — 5)]p(s)ds
By(t) = {y,(t)}, where n € N, m;(t) = a(B;(t))(i = <2[2b+2c+2N +3d
1,2,3,4). P. is normal cone, by the normality of cone P, ¢
B;(i = 1,2,3,4) is the bounded set in C[I, E], obviously, +(2L+b)k0]/0 p(s)ds,
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similarly to the proof of paper [7], we can get p(t) = 0, V¢t € I,
therefore m;(t)=0(i=1,2,3,4), s0 {z,.(t)}, {yn(®)}, {2, ()},
{y,,(t)} is relatively compact set in C[I, E]. By the Arzela-
Ascoli theorem there exist subsequences {x,, (¢t)},{yn,(t)},
{2, (1)}, {yn, ()}, which converge uniformly to a*,y*,(z*)’
and (y*)" on I. By the nqrmality of P. and the monotonicity
of {zn(®)}, {yn(®)}, {2,,()} {y, ()} we know {z, (i)},

{n (D)} {20 (D)} {yn(D)} converge to 2,y (z*)" and (y*)’
on I. Taking limits in (9),(10), we have

z*(t) = I9t+ txy
+/ (t = 8)[f(s,2"(5), 5" (5), () (s), Tz*(s))]ds,
’ (27)

y(t) = Yo+t
+/ (t—5)[g(s,y" (s), 2% (). (y*) (5), Ty*(s))]ds,
’ (28)

it is easy to see that z*(t),y*(t)are solutions of systems of
integro-differential equations (1), and (13)(14) hold evidently.

Theorem 2 Suppose P C E is a regular cone, and
conditions (H;) — (Hz) hold, then there exist the same result
as theorem 1 .

Proof  Similarly to the the proof of theorem 1, the only
difference is that we get the result m;(t) = a(B;(t)) = 0(i =
1,2,3,4) from (Hs) in theorem 1, but we can get it by (19)
(20) and the regularity of cone in theorem 2.

I11. EXAMPLE

As an application of theorem 1 and theorem 2, we give an
example:

Example using the result of this paper, we study the
initial problem for the following integro-differential equation
in Banach space F:

W' =H(t,w,w,w,Tw),w(0) =wy,o (0) =wi, (29)

Suppose H,w,wp,w; have the following decomposition:
H(t7w7w7w 7Tw) = f(ta$7y7-77 >T'7") +g(t7y7r7y 7Ty)7
w = x+Yy,ws = To+Yo, w1 = x1+y1, where f, g € C[Ix E'x

ExEXE,E],Tx(t) = / k(t,s)x(s)ds, t € I,wo,w1 € E,

0
2(0) = x0 < yo = y(0),2 (0) = 21 < y1 =y (0).
As the direct result of theorem 1 and theorem 2, we get the
following conclusions:

Conclusion 1 Let P ¢ E be a normal cone. f,g sat-
isfy conditions (Hy) — (Hs), then there exists solutions w*
€ [2x0,2y0), and iterative sequence {w,} = {zn + yn}
converges uniformly to w* on I, where x,,,y, are defined
by (9) and (10).

Conclusion 2 Let P C E be a regular cone. f,g satisfy
conditions (H;) — (Hz), then the same result as conclusion 1
holds.
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