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Positive Solutions for Systems of Nonlinear
Third-Order Differential Equations with p-Laplacian

Li Xiguang

Abstract—In this paper, by constructing a special set and utilizing
fixed point theory, we study the existence and multiplicity of the
positive solutions for systems of nonlinear third-order differential
equations with p-laplacian, which improve and generalize the result
of related paper.

Keywords—p-Laplacian, cone, fixed point theorem, positive
solution.

I. INTRODUCTION

THE boundary value problems of differential equation with

p-Laplacian arises in a variety of problems related to

applied mathematics, physics and engineering. However there

is still a little research about it. In recent years, some results

concerning the problems have been obtained. We refer the

readers to [1]-[6] and the references cited therein. In the thesis

[5], the author investigated the following elliptic systems:⎧⎨
⎩

Δu+ λk1(| x |)f(u, v) = 0,
Δv + μk2(| x |)g(u, v) = 0,
u |∂Ω= v |∂Ω= 0.

In the thesis [6], the author investigated the following

coupled singular boundary value problems:⎧⎪⎪⎨
⎪⎪⎩

(φp(u
′′(t)))

′
+ ω1(t)f1(t, v(t)) = 0, t ∈ (0, 1),

(φp(v
′′(t)))

′
+ ω2(t)f2(t, u(t)) = 0, t ∈ (0, 1),

α1u(0)− β1u
′
(0) = 0, γ1u(1) + δ1u

′
(1) = 0, u

′′
(0) = 0,

α2v(0)− β2v
′
(0) = 0, γ2v(1) + δ2v

′
(1) = 0, v

′′
(0) = 0.

Motivated by the thesis [5], [6], in this paper. We

consider the following systems of third-orderdi boundary value

problems:⎧⎪⎪⎨
⎪⎪⎩

(φp(u
′′(t)))

′
+ ω1(t)f1(t, u(t), v(t)) = 0, t ∈ (0, 1),

(φp(v
′′(t)))

′
+ ω2(t)f2(t, u(t), v(t)) = 0, t ∈ (0, 1),

α1u(0)− β1u
′
(0) = 0, γ1u(1) + δ1u

′
(1) = 0, u

′′
(0) = 0,

α2v(0)− β2v
′
(0) = 0, γ2v(1) + δ2v

′
(1) = 0, v

′′
(0) = 0.

(1)
where φp(s) =| s |p−2 s, p ≥ 2, αi, γi > 0, βi, δi ≥ 0,
fi ∈ C((0, 1) × [0,+∞) × [0,+∞), [0,+∞)), ωi(t) ∈
C((0, 1), [0,+∞)) and fi, ωi(t) may be singular at t = 0, 1.

In thesis [5], the control functions need to be continuous

and monotonic. In thesis [6], f1 and f2 are functions of

one variable. Different from the works mentioned above, our

purpose here is to deal with more general functions than that of

thesis [6]. Moreover, the conditions that we used are weaker

than that of thesis [5]. The organization of this paper is as
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follows, we shall first introduce some definitions and lemmas

in the rest of this section. The main results will be stated and

proved in Section II. In Section III, we present an example to

check our result.

For the sake of convenience, we first give some conditions.

(H1)fi(t, u(t), v(t)) ≤ gi(t)hi(u(t), v(t)), gi(t) : (0, 1) →
[0,+∞) may be singular at t = 0, 1, hi(u, v) : [0,+∞) ×
[0,+∞) → [0,+∞) is continuous, i=1,2.

(H2) ωi ∈ C((0, 1), [0,+∞)), ωi may be singular at t =
0, 1, and

0 ≤
∫ 1

0

ωi(s)gi(s)ds < +∞.

(H3)

0 ≤ lim sup
(u,v)→0

h1(u, v)

(u+ v)p−1
< ηp−1

1

and

0 ≤ lim sup
(u,v)→0

h2(u, v)

(u+ v)p−1
< ηp−1

2 .

(H4)

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→∞

f1(s, u, v)

(u+ v)p−1
≤ ∞,

or

(M−1
2 ξ2)

p−1 < lim inf
(u,v)→∞

f2(s, u, v)

(u+ v)p−1
≤ ∞.

(H5)

0 ≤ lim sup
(u,v)→∞

h1(u, v)

(u+ v)p−1
< ηp−1

1

and

0 ≤ lim sup
(u,v)→∞

h2(u, v)

(u+ v)p−1
< ηp−1

2 .

(H6

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→0

f1(s, u, v)

(u+ v)p−1
≤ ∞

or

(M−1
2 ξ2)

p−1 < lim inf
(u,v)→0

f2(s, u, v)

(u+ v)p−1
≤ ∞.

where ηi and ξi (i = 1, 2) are constants such that

0 < ηi( max
0≤t≤1

∫ 1

0

Gi(t, τ)φq(

∫ τ

0

ωi(s)gi(s)ds)dτ) ≤ 1

2

and

ξi

∫ 1−θ

θ

Gi(
1

2
, τ)φq(

∫ τ

θ

ωi(s)ds)dτ ≥ 1.
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It is easy to show the systems (1) are equivalent to the

following integral equations⎧⎪⎪⎨
⎪⎪⎩

u(t) =

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ,

v(t) =

∫ 1

0

G2(t, τ)φq(

∫ τ

0

ω2(s)f2(s, u(s), v(s))ds)dτ,

(2)
where q is a constant such that 1

p + 1
q = 1, and

Gi(t, s) =

⎧⎪⎨
⎪⎩

ϕi(t)ψi(s)

ρi
, 0 ≤ s ≤ t ≤ 1,

ϕi(s)ψi(t)

ρi
, 0 ≤ t ≤ s ≤ 1,

where
ρi = αiγi + αiδi + βiγi,
ϕi(t) = γi + δi − γit,
ψi(t) = βi + αit, 0 ≤ t ≤ 1.

Let

A(u, v)(t) =

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ,

B(u, v)(t) =

∫ 1

0

G2(t, τ)φq(

∫ τ

0

ω2(s)f2(s, u(s), v(s))ds)dτ,

F (u, v)(t) = (A(u, v)(t), B(u, v)(t)).

Then systems (2) are equivalent to the fixed point equation

F (u, v) = (u, v)

in the Banach space E = X ×X, where

X = {u : u, φp(u
′′
) ∈ C1[0, 1]}.

The following fixed -point theorem of cone expansion and

compression type is crucial in the following argument.

Lemma 1 [7] Let K be a cone in Banach space E. Assume

Ω1,Ω2 are open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let

F : K
⋂
(Ω2 \Ω1) → K be a completely continuous operator

such that either

‖Fu‖ ≤ ‖u‖, u ∈ K
⋂

∂Ω1, ‖Fu‖ ≥ ‖u‖, u ∈ K
⋂

∂Ω2;

or

‖Fu‖ ≥ ‖u‖, u ∈ K
⋂

∂Ω1, ‖Fu‖ ≤ ‖u‖, u ∈ K
⋂

∂Ω2,

then F has a fixed point in K
⋂
(Ω2 \ Ω1).

In what follows we set

‖(u, v)‖ = ‖u‖+ ‖v‖,
where

‖u‖ = max
t∈[0,1]

|u(t)|.

In order to apply Lemma 1, we let K be the cone defined

by

K = {(u, v) : (u, v) ∈ E : u, v ≥ 0,
min

t∈[θ,1−θ]
(u(t) + v(t)) ≥ M(‖ u ‖ + ‖ v ‖)},

where θ ∈ (0, 1
2 ), M = min{M1,M2}, and

Mi = min{δi + θγi
γi + δi

,
θαi + βi

αi + βi
}.

Lemma 2 [8] If p ≥ 2, 1
p + 1

q = 1, then

| φq(x)− φq(y) |≤ φq(x− y).

Lemma 3 Suppose that conditions (H1)−(H2) hold, then

F : K → K is completely continuous.

Proof: First we show that F (K) ⊂ K.
∀(u, v) ∈ K, t ∈ [0, 1], we have

A(u, v)(t)

=

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ

≤
∫ 1

0

G1(τ, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ.

Hence

‖A(u, v)‖

≤
∫ 1

0

G1(τ, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ.

On the other hand, for t ∈ [θ, 1−θ],
Gi(t, τ)

Gi(τ, τ)
≥ Mi, τ ∈ [0, 1],

we have

min
θ≤t≤1−θ

A(u, v)(t)

= min
θ≤t≤1−θ

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ

≥ M1

∫ 1

0

G1(τ, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ

≥ M1 ‖ A(u, v) ‖ .

Similarly

min
θ≤t≤1−θ

B(u, v)(t) ≥ M2 ‖ B(u, v) ‖ .

Thus

min
θ≤t≤1−θ

(A(u, v)(t) +B(u, v)(t))

≥ min
θ≤t≤1−θ

A(u, v)(t) + min
θ≤t≤1−θ

B(u, v)(t)

≥ M1 ‖ A(u, v) ‖ +M2 ‖ B(u, v) ‖

≥ M ‖ (A(u, v), B(u, v)) ‖ .

We conclude that F (K) ⊂ K.

Next we show that F : K → K is completely continuous.
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Let ∀D ∈ K be a bounded set, i.e. ∃M > 0 such that

∀(u, v) ∈ K, ‖(u, v)‖ ≤ M, we have

A(u, v)(t)

=

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ,

≤
∫ 1

0

G1(τ, τ)φq(

∫ τ

0

ω1(s)g1(s)h1(u(s), v(s))ds)dτ

≤ {maxφq(h1(u(s), v(s)) : 0 ≤ s ≤ 1}
×
∫ 1

0

G1(τ, τ)φq(

∫ τ

0

ω1(s)g1(s)ds)dτ

≤ {maxφq(h1(u(s), v(s)) : 0 ≤ s ≤ 1}
×
∫ 1

0

G1(τ, τ)dτφq(

∫ 1

0

ω1(s)g1(s)ds)

= N1 < ∞.

So ‖ A(u, v) ‖≤ N1.

Similarly,

‖ B(u, v) ‖≤ N2 < ∞.

Hence,

‖ F (u, v) ‖ =‖ A(u, v) ‖ + ‖ B(u, v) ‖
≤ N1 +N2 < +∞.

Correspondingly, F : K → K is bounded uniformly.

Now, we show that F is equicontinuous. The continuity of

Gi(t, s) on [0, 1] × [0, 1] implies that Gi(t, s) is continuous

uniformly. i.e.

∀ε > 0, ∃δ > 0, such that ∀ξ ∈ [0, 1], |t1 − t2| < δ, we have

|Gi(t1, ξ)−Gi(t2, ξ)|
< ε

2 ({maxφq(hi(u(s), v(s)) : 0 ≤ s ≤ 1}

×φq(

∫ 1

0

ωi(s)gi(s)ds))
−1.

Hence, ∀D ∈ K, we have

|F (u, v)(t1)− F (u, v)(t2)|

= |(A(u, v)(t1), B(u, v)(t1))− (A(u, v)(t2), B(u, v)(t2))|

= |(A(u, v)(t1)−A(u, v)(t2)), (B(u, v)(t1)−B(u, v)(t2))|

≤ |(A(u, v)(t1)−A(u, v)(t2))|

+|(B(u, v)(t1)−B(u, v)(t2))|.

= |
∫ 1

0

(G1(t1, τ)−G1(t2, τ))

×φq(

∫ τ

0

ω1(s)g1(s)h1(u(s), v(s))ds)dτ |

+|
∫ 1

0

(G2(t1, τ)−G2(t2, τ))

×φq(

∫ τ

0

ω2(s)g2(s)h2(u(s), v(s))ds)dτ |

≤|
∫ 1

0

(G1(t1, τ)−G1(t2, τ))

×max{φq(h1(u(s), v(s)) : 0 ≤ s ≤ 1}

×φq(

∫ 1

0

ω1(s)g1(s)ds)dτ |

+ |
∫ 1

0

(G2(t1, τ)−G2(t2, τ))

×max{φq(h2(u(s), v(s)) : 0 ≤ s ≤ 1}

×φq(

∫ 1

0

ω2(s)g2(s)ds)dτ |

≤ ε
2 + ε

2 = ε.

This means that F (K) is equicontinuous, so F (K) is

relatively compact in K.

Finally we show F : K → K is continuous.

Let {(un, vn)} ⊂ K be sequence such that (un, vn) →
(u0, v0), n → ∞, we have

|F (un, vn)(t)− F (u0, v0)(t)|

≤
∫ 1

0

G1(τ, τ)|φq(

∫ 1

0

ω1(s)f1(s, un(s), vn(s))ds)

−φq(

∫ 1

0

ω1(s)f1(s, u0(s), v0(s))ds)|dτ

+

∫ 1

0

G2(τ, τ)|φq(

∫ 1

0

ω2(s)f2(s, un(s), vn(s))ds)

−φq(

∫ 1

0

ω2(s)f2(s, u0(s), v0(s))ds)|dτ

≤
∫ 1

0

G1(τ, τ)dτ |φq(

∫ 1

0

ω1(s)(f1(s, un(s), vn(s)

−f1(s, u0(s), v0(s))ds)|

+

∫ 1

0

G2(τ, τ)dτ |φq(

∫ 1

0

ω2(s)(f2(s, un(s), vn(s))

−f2(s, u0(s), v0(s))ds)|.
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By (H2), Lebesgue dominated convergence theorem and the

continuity of f1, f2, we have

‖F (un, vn)− F (u0, v0)‖ → 0, n → ∞,

thus F is continuous.

By above arguments, we claim F is completely continuous.

II. CONCLUSIONS

Theorem 1 Suppose that conditions (H1) − (H4) hold,
then systems (1) has at least one positive solution.

Proof:
By (H3), we may choose r > 0, for any ‖u‖ + ‖u‖ ≤ r

we have

h1(u, v) ≤ ηp−1
1 (u+ v)p−1,

and

h2(u, v) ≤ ηp−1
2 (u+ v)p−1.

Set

Ω1 = {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < r}
If (u, v) ∈ K

⋂
∂Ω1 then ‖u‖+ ‖v‖ ≤ r, we have

A(u, v)(t)

=

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ,

≤
∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)g1(s)h1(u(s), v(s))ds)dτ

≤ η1‖(u, v)‖ max
0≤t≤1

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)g1(s)ds)dτ

≤ 1
2‖(u, v)‖.

Which implies

‖A(u, v)‖ ≤ 1

2
‖(u, v)‖.

Similarly,

B(u, v)(t) ≤ 1

2
‖(u, v)‖.

Hence, for (u, v) ∈ K
⋂

∂Ω1, we have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≤‖ (u, v) ‖ . (3)

By (H4), if we further assume

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→∞

f1(s, u, v)

(u+ v)p−1
≤ ∞,

then there is an R > r, for any ‖u‖+ ‖v‖ > R, we have

f1(s, u, v) ≥ (M−1ξ1(u+ v))p−1.

Let R > max{R,M−1
1 R,M−1

2 R}, we set

Ω2 = {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < R}.
If (u, v) ∈ K

⋂
∂Ω2, then

A(u, v)( 12 )

=

∫ 1

0

G1(
1

2
, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ

≥ M−1
1 ξ1

∫ 1−θ

θ

G1(
1

2
, τ)

×φq(

∫ τ

θ

ω1(s)(u(s) + v(s))p−1ds)dτ

≥ ξ1(‖u‖+ ‖v)‖)
∫ 1−θ

θ

G1(
1

2
, τ)φq(

∫ τ

θ

ω1(s)ds)dτ

≥ ‖(u, v)‖.

which implies

‖A(u, v)‖ ≥ ‖(u, v)‖.

Similarly

‖B(u, v)‖ ≥ ‖(u, v)‖.

An analogous estimate holds for f2 in condition (H4).

Hence, for (u, v) ∈ K
⋂

∂Ω2 we have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≥‖ (u, v) ‖ . (4)

By Lemma 1, F has at least one fixed point (u, v) ∈
K

⋂
(Ω2 \ Ω1). So, systems (1) has at least one positive

solution.

Theorem 2 Suppose that conditions (H1), (H2), (H5),
(H6) hold, then systems (1) has at least one positive solution.

Proof: By(H5), there exist R0, εi > 0, for ‖u‖+‖v‖ ≥ R0,
we have

hi(u, v) ≤ (ηi − εi)
p−1(u+ v)p−1.

Let

a = max
i=1,2

max{φq(hi(u, v)) : u(t) ≤ R0, v(t) ≤ R0},

R > max{ a

ε1
,
a

ε2
}.

We set

Ω1 = {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < R},
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if (u, v) ∈ K
⋂
∂Ω1, then

A(u, v)(t)

=

∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)f1(s, u(s), v(s))ds)dτ

≤
∫ 1

0

G1(t, τ)φq(

∫ τ

0

ω1(s)g1(s)h1(u(s), v(s))ds)dτ

=

∫ 1

0

G1(t, τ)φq(

∫
‖u‖+‖v‖≥R0

ω1(s)g1(s)

×h1(u(s), v(s))ds)dτ

+

∫ 1

0

G1(t, τ)φq(

∫
‖u‖+‖v‖≤R0

ω1(s)g1(s)

×h1(u(s), v(s))ds)dτ

≤ (η1 − ε1)(‖u(t)‖+ ‖v(t)‖)
∫ 1

0

G1(t, τ)

×φq(

∫
‖u‖+‖v‖≥R0

ω1(s)g1(s)ds)dτ

+a

∫ 1

0

G1(t, τ)φq(

∫
‖u‖+‖v‖≤R0

ω1(s)g1(s)ds)dτ

≤ [(η1 − ε1)(‖u‖+ ‖v‖) + a] max
0≤t≤1

∫ 1

0

G1(t, τ)

×φq(

∫ τ

0

ω1(s)g1(s)ds)dτ

≤ 1

2
‖(u, v)‖.

Similarly,

B(u, v)(t) ≤ 1

2
‖(u, v)‖.

Hence, for any (u, v) ∈ K
⋂

∂Ω1, we have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≤‖ (u, v) ‖ . (5)

On the other hand, by (H6), if we further assume

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→0

f1(s, u, v)

(u+ v)p−1
≤ ∞,

then there is an 0 < r < R, for any ‖u‖+ ‖v‖ ≤ r, we have

f1(s, u, v) ≥ (M−1ξ1(u+ v))p−1.

Set

Ω2 = {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < r},
similar to the proof of Theorem 1, for (u, v) ∈ K

⋂
∂Ω2, we

have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≥‖ (u, v) ‖ . (6)

An analogous estimate holds for f2 in condition (H6).
By Lemma 1, F has at least one fixed point (u, v) ∈

K
⋂
(Ω1\Ω2), so system (1) has at least one positive solution.

Theorem 3 Suppose that conditions (H1)− (H4) and (H6)
hold, then systems (1) has at least two positive solutions
(u1, v1) and (u2, v2) with ‖(u1, v1)‖ < r < ‖(u2, v2)‖.

Proof By (H4) if we further assume that

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→∞

f1(s, u, v)

(u+ v)p−1
≤ ∞,

then we choose a R1 > r large sufficiently, for any ‖u‖ +
‖v‖ > R1, we have

f1(s, u, v) ≥ (M−1ξ1(u+ v))p−1.

Set

ΩR1
= {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < R1},

similarly, for any (u, v) ∈ K
⋂

∂ΩR1 , we have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≥‖ (u, v) ‖ . (7)

An analogous estimate holds for f2 in condition (H4).
On the other hand, by (H6) we assume that

(M−1
1 ξ1)

p−1 < lim inf
(u,v)→0

f1(s, u, v)

(u+ v)p−1
≤ ∞,

we choose R2 < r small sufficiently, for any ‖u(t)‖+ ‖v(t)‖
< R2, we have

f1(s, u, v) ≥ (M−1ξ1(u+ v))p−1.

Set

ΩR2 = {(u, v) : (u, v) ∈ K; ‖(u, v)‖ < R2},
similarly, for any (u, v) ∈ K

⋂
∂ΩR2 , we have

‖F (u, v)‖ = ‖A(u, v)‖+ ‖B(u, v)‖ ≥‖ (u, v) ‖ . (8)

An analogous estimate holds for f2 in condition (H6).
By Lemma 1, F has at least twice fixed points

(u1, v1) ∈ ΩR1
\ Ω1 and (u2, v2) ∈ Ω1 \ ΩR2

, so

systems (1) has at least twice positive solutions with

‖(u1, v1)‖ < r < ‖(u2, v2)‖.

Theorem 4 Suppose that conditions (H1)−(H5) hold, then
problem (1) has at least two positive solutions (u1, v1) and
(u2, v2) with ‖(u1, v1)‖ < R < ‖(u2, v2)‖.

The proof is similar to the Theorem 3, we omit it.

III. EXAMPLE

As an application of Theorems 1 and 2, we give an example:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(φp(u
′′(t)))

′
+

(u(t) + v(t))α1

6
√
t(1− t)

= 0,

(φp(v
′′(t)))

′
+

(u(t) + v(t))α2

6
√

t(1− t)
= 0,

u(0) = u(1) = 0, u
′′
(0) = 0,

v(0) = v(1) = 0, v
′′
(0) = 0.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:12, No:9, 2018

193

where p ≥ 2, α1 ≥ α2 > p − 1. ωi(t) =
1

4
√
t(1− t)

,

fi(t, u, v) =
(u+v)αi

6 4
√

t(1−t)
.

Let

gi(t) =
1

3 4
√
t(1− t)

, hi(u, v) = (u+ v)αi ,

ωi(t)gi(t) =
1

3
√

t(1− t)
and

∫ 1

0

ωi(s)gi(s)ds =
π

3
,

Theorem 1 holds.

If α1 ≤ α2 < p− 1, then Theorem 2 holds.
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