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Eigenvalue Problems via Three Critical Points
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Abstract—- In this paper, multiple positive solutions for
semipositone discrete eigenvalue problems are obtained by
using a three critical points theorem for nondifferentiable
functional.
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I. INTRODUCTION

LET Z and R be the set of all integers and real numbers
respectively. For a, b ∈ Z, define Z(a) = {a, a+ 1, · · ·},

Z(a, b) = {a, a+ 1, · · · , b} when a ≤ b.
In this paper, we study the positive solutions for semiposi-

tone discrete eigenvalue problems{ −�2u(t− 1) = λf(u(t)), t ∈ Z(1, T ),
u(0) = 0, u(T + 1) = 0,

(1)

where λ is a positive parameter, T ≥ 4 is a positive integer,
�u(t) = u(t + 1) − u(t) is the forward difference operator,
�2u(t) = �(�u(t)). f : [0,+∞) → R is a continuous
function, f(0) < 0. A sequence {u(t)}T+1

t=0 is called a positive
solution of (1) if {u(t)}T+1

t=0 satisfies (1) and u(t) > 0 for
t ∈ Z(1, T ).

When f(0) < 0, such problems are usually referred in the
literature as semipositone problems. Semipositone problems
derive from [5], where Castro and Shivaji initially called
them nonpositone problems, in contrast with the terminology
positone problems, put forward by Cohn and Keller in [8],
where the nonlinearity was positive and monotone. Semi-
positone problems arise in bulking of mechanical systems,
design of suspension bridges, chemical reactions, astrophysics,
combustion and management of natural resources.

In general, studying positive solutions for semipositone
problems is more difficult than that for positone problems.
The difficulty is due to the fact that in the semipostione case,
solutions have to live in regions where the nonlinear term is
negative as well as positive. However, many methods have
been applied to deal with semipositone problems. The usual
approaches are quadrature methods, fixed point theory, sub-
super solutions and degree theory. The readers may refer to
the survey paper [7] and the references therein.
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Very recently, critical point theory has been applied to
study the positive solutions of semipositone problems. In [9],
Costa, Tehrani and Yang investigated the positive solutions of
semipositone Dirichlet problems by using nonsmooth moun-
tain pass theorem, which has been developed by Chang [6].
Furthermore, in [12], Zhang and Liu considered the positive
solutions of a class of semipositone discrete boundary value
problems. In addition, three critical points theorem, which is
a powerful tool in studying multiple solutions of differential
equations, has been used to obtain the multiple solutions of
nonlinear differential equation and difference equations. See
[2, 10, 11]. However, to the author’s best knowledge, it has
not been applied to study positive solutions of semipositone
discrete boundary value problems. For knowledge about dif-
ference equations, one can refer to [1].

Our main objective in this paper is to use a three critical
points theorem for nondifferentaible functional to deal with
the multiple positive solutions of semipositone problem (1).
More precisely, we define the discontinuous nonlinear term

g(s) =

{
f(s) if s > 0,
0 if s ≤ 0.

Now we consider the slightly modified problem{ −�2u(t− 1) = λg(u(t)), t ∈ Z(1, T ),
u(0) = 0, u(T + 1) = 0.

(2)

We will prove in section III that the set of positive solutions
of (1) and (2) do concide. Moreover, any nonzero solution of
(2) is nonnegative.

II. PRELIMINARIES

In this section, we recall some basic results on variational
method for locally Lipschitz functional I : X → R defined on
a real Banach space X with norm ‖ · ‖, that is, for functional
such that, for each u ∈ X , there is a neighbourhood N =
N(u) of u and a constant M =M(u) for which

|I(x)− I(y)| ≤ L‖x− y‖, ∀x, y ∈ N.

This abstract theory has been developed by Chang [6].
Definition 1. For given u, z ∈ X , the generalized direc-

tional derivative of the functional I at u in the direction z is
defined by

I0(u; z) = lim sup
k→0,t→0

1

t
[I(u+ k + tz)− I(u+ k)].
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Definition 2. The generalized gradient of I at u, denoted
∂I(u), is defined to be the subdifferential of the convex
function I0(u; z) at z = 0, that is,

w ∈ ∂I(u) ⊂ X∗ ⇐⇒ 〈w, z〉 ≤ I0(u; z), ∀ z ∈ X.

Definition 3. u ∈ X is a critical point of the locally
Lipschitz functional I if 0 ∈ ∂I(u).

Definition 4. I is said to satisfy nonsmooth Palais-Smale
condition (nonsmooth (PS) condition for short), if any se-
quence {un} such that

I(un) → c0 ∈ R,

I0(un, v − un) ≥ −εn‖v − un‖, for all v ∈ H,

where εn → 0+.

has a strongly convergent subsequence.
Now we state the three critical points theorem for nondiffer-

entiable functional, which plays an important role in proving
the main results. It derives from [3], see also [4].

Lemma 1. ([3],[4]) Let X be a separable and reflexive
real Banach space, and let Φ, J : X → R be two locally
Lipschitz functionals. Assume that there exists u0 ∈ X such
that Φ(u0) = J(u0) = 0 and Φ(u) ≥ 0 for every u ∈ X , and
that there exist u1 ∈ X and r > 0 such that

(i) r < Φ(u1);
(ii) supΦ(u)<r J(u) < r J(u1)

Φ(u1)
.

Furthermore, assume that the functional Φ−λJ is sequentially
weakly lower semicontinuous satisfying nonsmooth (PS) con-
dition and

(iii) lim‖u‖→+∞(Φ(u)−λJ(u)) = +∞ for every λ ∈ [0, ā],
where

ā =
hr

r J(u1)
Φ(u1)

− supΦ(u)<r J(u)
with h > 1.

Then there exists an open interval Λ ⊆ [0, ā] and a positive real
number σ such that, for every λ ∈ Λ, the functional Φ − λJ
admits at least three critical points whose norms are less than
σ.

III. PROOF OF MAIN RESULTS

Let E be the class of the functions u : [0, T +1] → R such
that u(0) = u(T + 1) = 0. Equipped with the usual inner
product and induced norm

(u, v) =
T∑
t=1

(u(t), v(t)), ‖u‖ =

(
T∑
t=1

u2(t)

)1/2

,

E is a T -dimensional Hilbert space.
Define the functional I on E as

I(u) =
1

2

T+1∑
t=1

[(�u(t− 1))2 − 2G(u(t))]

=
1

2
uTAu−

T∑
t=1

G(u(t)) = Φ(u)− J(u),

where u = {u(1), u(2), · · · , u(T )}, G(x) =
∫ x
0
g(s)ds,

Φ(u) = 1
2u

TAu, J(u) =
∑T
t=1G(u(t)) and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠
T×T

.

Clearly J(u) is a locally Lipschitz functional and I defines a
locally Lipschitz functional on E. Simple computation shows
that
∂

∂u(t)
Φ(u) = 2u(t)− u(t+ 1)− u(t− 1) = −�2u(t− 1).

By Theorem 2.1 of [6], ∂J(u) ⊂ [g(u(t)), g(u(t))] can be
obtained, where g(s) = min[g(s + 0), g(s − 0)], g(s) =
max[g(s + 0), g(s − 0)]. Then the critical points of the
functional I are solutions of the inclusion

−�2u(t− 1) ∈ [g(u(t)), g(u(t))], t ∈ Z(1, T ).

Remark 1. It is easy to verify that g(s) = g(s) = f(s) for
s > 0, g(s) = g(s) = 0 for s < 0. Then g(0) = f(0), g(0) =
0.

Remark 2. If u > 0, then the above inclusion becomes

−�2u(t− 1) = λf(u(t)), t ∈ Z(1, T ).

It is clear that A is a positive definite matrix. Let λT >
0, λ1 > 0 be the largest and smallest eigenvalues of matrix A
respectively. Denote by u− = max{−u, 0}. Let Y1 = {t ∈
Z(1, T )|u(t) ≤ 0}, Y2 = {t ∈ Z(1, T )|u(t) > 0}. Notice that
u−(t) = 0 for t ∈ Y2 and g(u(t)) = 0 for t ∈ Y1. Then

T∑
t=1

g(u(t))u−(t) =
∑
t∈Y1

g(u(t))u−(t)+
∑
t∈Y2

g(u(t))u−(t) = 0.

Lemma 2. If u is a solution of (2), then u ≥ 0. Moreover,
either u > 0, or u = 0.

Proof. It is not difficult to see that (�u−(t) +
�u(t))�u−(t) ≤ 0 for t ∈ Z(0, T ). In fact, no matter that
�u(t) ≥ 0 or �u(t) < 0, the former inequality holds. Hence
�u−(t) · �u(t) ≤ −(�u−(t))2.

If u is a solution of (2), then we have

0 =
T∑
t=1

[�2u(t− 1) + λg(u(t))u−(t)]

= −
T+1∑
t=1

�u(t− 1)�u−(t− 1) + λ

T∑
t=1

g(u(t))u−(t)

≥
T+1∑
t=1

(�u−(t− 1))2 = (u−)TAu− ≥ λ1|u−‖2.

So u− = 0. Hence u ≥ 0. If u(t) = 0, then

u(t+1)+u(t−1) = �2u(t−1) = −λg(u(t)) = −λg(0) = 0.

Therefore u(t + 1) = u(t − 1) = 0. It follows that u = 0
everywhere.

The following are the main results.
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Theorem 1. Suppose that
(1) There exists a constant β > 0 such that if u ∈ (0, β),

then g(u) < 0, g(β) = 0; if u ∈ (β,+∞), then g(u) > 0;
(2) There are two constants a, γ > 0 which satisfy γ < 2

and
G̃(u) ≤ a(1 + |u|γ), ∀u ∈ R;

(3) There exist two constants c, d > 0 satisfying c < Nd
with G̃(d) > 0 and∑N

t=1 max|u(t)|≤c G̃(u(t))
c2

<
μ1

μN

G̃(d)

Nd2
.

Then for every h > 1, there exists an interval Λ1 ⊆ [0, ā],
where

ā =
μ1hc

2

2

μ1

μN

G̃(d)
Nd2 −

∑N
t=1 max|u(t)|≤c G̃(u(t))

c2

,

and positive real number σ1 such that for any μ ∈ Λ1, (1)
has at least two positive solutions on E, whose norms are less
than σ1.

Proof. Clearly Φ(u) is locally Lipschitz and weakly se-
quentially lower semicontinuous. Since E is finite-dimensional
and f satisfies condition (ii), the assertion remains true re-
garding J too. Let u0(t) = 0, t ∈ Z(1, N). Then Φ(u0) =
J(u0) = 0. Furthermore, let u1(t) = d, t ∈ Z(1, N), then
‖u1‖2 = Nd2. Let r = μ1

2N c
2, by c < Nd,

Φ(u1) =
1

2
uτ1Au1 ≥ 1

2
μ1‖u1‖2 =

1

2
μ1Nd

2 > r,

condition (i) of Lemma 1 is satisfied.
On the other hand, Φ(u1) = 1

2u
τ
1Au1 ≤ 1

2μN‖u1‖2 and

J(u1)

Φ(u1)
=

NG̃(d)
1
2u

τ
1Au1

≥ NG̃(d)
1
2μN‖u1‖2

=
NG̃(d)
1
2μNNd

2
=

G̃(d)
1
2μNd

2
.

Considering u ∈ E,

max
t∈Z(1,N)

|u(t)| ≤
√
N‖u‖.

By Φ(u) ≤ r,

1

2
μ1‖u‖2 ≤ 1

2
uτAu = Φ(u) ≤ r.

Therefore

max
t∈Z(1,N)

|u(t)| ≤
√

2rN

μ1
= c.

Then by condition (3),

sup
Φ(u)≤r

J(u) ≤
N∑
t=1

max
|u(t)|≤

√
2rN
μ1

G̃(u(t)) < r
J(u1)

Φ(u1)
.

Hence condition (ii) of Lemma 1 is satisfied.
By condition (2), for any μ ≥ 0,

lim
‖u‖→∞

(Φ(u)− μJ(u)) = +∞, (3)

Hence condition (iii) of Lemma 1 is satisfied.
For given μ > 0, it is sure that Φ(u) − μJ(u) satisfies

nonsmooth (PS) condition. In fact, let {un} ⊂ E be such that
when n→ ∞,

Φ(un)− μJ(un) → c0 ∈ R,

(Φ− μJ)0(un, u− un) ≥ −εn‖u− un‖, for anyu ∈ E,

where εn → 0+.

By (3), the boundedness {un} is obtained. Since H is finite-
dimensional, {un} has a strongly convergent subsequence.

Therefore, noticing that

μ̄ =
μ1hc

2

2

μ1

μN

G̃(d)
Nd2 −

∑N
t=1 max|u(t)|≤c G̃(u(t))

c2

, where h > 1,

by Lemma 1, there exists an open interval Λ1 ⊆ [0, μ̄] and
positive real number σ1 such that for any μ ∈ Λ1, (2) has at
least three solutions on E, whose norms are less than σ1. By
Lemma 2, (1) has at least two positive solutions.

Corollary 1. Suppose that (1), (2) hold and
(4) There are two constants c, d > 0 satisfying c < Nd with

G̃(d) > 0 and

max|u|≤c G̃(u)
c2

<
μ1

μN

G̃(d)

(Nd)2
.

Then for every h > 1, there exists open interval Λ2 ⊆ [0, μ̃],
where

μ̃ =
μ1hc

2

2N

μ1

μN

G̃(d)
(Nd)2 − max|u|≤c G̃(u)

c2

,

and positive real number σ2 such that for any μ ∈ Λ2, (1)
has at least two positive solutions on E, whose norms are less
than σ2.

Proof. Let u0, u1, r be the same as Theorem 1. To prove
Corollary 1, it suffices to prove the condition (ii) of Lemma
1 is satisfied. However, by (4) the following result

sup
Φ(u)≤r

J(u) ≤ N max
|u(t)|≤

√
2rN
μ1

G̃(u(t)) < r
J(u1)

Φ(u1)

holds. Therefore, there exist μ̃,Λ2 and σ2 such that Corollary
1 holds.
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