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Positive solutions for boundary value problems of
fourth-order nonlinear singular differential equations

in Banach space
Li Xiguang

Abstract—In this paper, by constructing a special non-empty
closed convex set and utilizing Mönch fixed point theory, we
investigate the existence of solution for a class of fourth-order
singular differential equation in Banach space, which improved and
generalized the result of related paper.

Keywords—Banach space, cone, fixed point index, singular differ-
ential equation.

I. INTRODUCTION

THE singular differential equation arises in a variety of
applied mathematics and physics, in recent years, some

results concerning the boundary value problems of fourth-
order nonlinear singular differential equations have been ob-
tained by a variety of method. Thesis [1-2] investigated the
following equation:{

x(4)(t) + f(t, x(t)) = θ t ∈ (0, 1)

x(0) = x
′′

(0) = x(1) = x
′′

(1) = θ

In thesis [1], the sufficient and necessary condition of solution
in C2[0, 1]

⋂
C3[0, 1] was got, where f(t, x) is sub-linear with

respect to x. In thesis [2], f(t, x) = a(t)g(x), this is a form of
variable separation. Thesis [3] investigated the equation with
integral boundary condition:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(4)(t) + f(t, x(t)) = θ t ∈ (0, 1)

x(0) = x(1) =

∫ 1

0

g(t)x(t)dt

x
′′

(0) = x
′′

(1) =

∫ 1

0

h(t)x
′′

(t)dt

Motivated by the work of [3-4], this paper investigates the
following equation in Banach space:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(4)(t) + f(t, x(t)) = θ, t ∈ (0, 1),

a1x(0) − b1x
′

(0) = θ,

c1x(1) + d1x
′

(1) = θ,

a2x
′′

(0) − b2x
′′′

(0) = θ,

c2x
′′

(1) + d2x
′′′

(1) = θ,

(1)

where f ∈ [J × P \ {θ}, P ], J = (0, 1), the nonlinear
term f(t, x) may be singular at t = 0, 1 and x = θ, i.e.
‖f(t, x)‖ → ∞(t → 0+, 1−, or x → θ+), ai > 0, ci >
0, bi ≥ 0, di ≥ 0(i = 1, 2), by constructing a special non-
empty closed convex set and utilizing Mönch fixed point
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theory, we get the existence of positive solution for problem
(1). Comparing with the paper above mentioned, this paper
is different. First, the result is more generally; second, the
method is fixed point theory about cone, this is different from
thesis [4] completely. Last, the result exists in abstract space,
this is different from thesis [1,2,4]. The organization of this
paper is as follows, we shall introduce some definitions and
lemmas in the rest of this section, the main result will be
stated and proved in section 2, finally, we give a examples to
demonstrate our result.

Let (E, ‖.‖) be a Banach space, P is a normal cone in E,
the normal constant of cone P is 1, the partial order induced by
cone ≤: x ≤ y ⇔ y − x ∈ P. Let I = [0, 1], R+ = [0,+∞),
we consider problem (1) in C[I, E]. Obviously (C[I, E], ‖.‖c)
is also a Banach space, where ‖.‖c = max

t∈I
‖x(t)‖. x(t) is

solution of problem (1) if and only if x ∈ C2(I)
⋂
C4(J)

and satisfies all equations of (1). If x(3)(0+) and x(3)(1 − 0)
exist, we call it a solution of C(3)(I), if x(t) > θ for ∀t ∈ J,
we call it positive solution.

Suppose x(t) : [0, 1] → E is continuous and

lim
δ→0+

∫ 1

δ

x(s)ds exists, we call general integration
∫ 1

0

x(s)ds

is convergent in abstract space, similarly we can define the
convergence of other general integration in abstract space.

Denote α the Kuratowski non-compactness measure. In
this paper, we use α(.) and αc(.) to denote the Kuratowski
non-compactness measure in space E and space C[I, E]
respectively

For convenience, we list the following lemmas:

Lemma 1.1[5] Let S ⊂ C[I, E] be bounded and equicon-
tinuous in J, then αc(S) = sup

t∈I
α(S(t)), where S(t) = {x(t) :

x ∈ S}(t ∈ I).

Lemma 1.2[5] Let H be a countable set of strongly
measurable function x : I → E such that there exists a
M ∈ L[I, R+] such that ‖x(t)‖ ≤ M,a.e.t ∈ I for all

x ∈ H . Then α(H(t)) ∈ L[I, R+] and α({

∫
I

x(t)dt|x ∈

H}) ≤ 2

∫
I

α(H(t))dt.

Lemma 1.3[5] Let E be a Banach space, and Q be a
closed and convex subset of E and x0 ∈ Q. Assume that the
continuous operator A : Q → Q has the following property:
V ⊂ Q is countable, V ⊂ co(A(V )

⋃
{x0}) ⇒ V is relatively

compact. Then A has a fixed point in Q.
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Let Gi(t, s) be the Green function of the following equation:⎧⎨
⎩

x′′(t) = 0, t ∈ (0, 1),

aix(0) − bix
′

(0) = 0,

cix(1) + dix
′

(1) = 0,

then

Gi(t, s) =

⎧⎪⎨
⎪⎩

ϕi(t)ψi(s)

ρi
, 0 ≤ s ≤ t ≤ 1

ϕi(s)ψi(t)

ρi
, 0 ≤ t ≤ s ≤ 1

(2)

where ρi = aici + aidi + bici, ϕi(t) = ci + di − cit, ψi(t) =
bi + ait(i = 1, 2), 0 ≤ t ≤ 1. Obviously we have

δiGi(t, t)Gi(s, s) ≤ Gi(t, s) ≤ Gi(s, s), Gi(t, s) ≤ Gi(t, t),

where δi = ρi

(ai+bi)(ci+di)
(i = 1, 2).

For convenience, we list the following assumptions:
(H1) f ∈ C[J × P \ {θ}, P ], and there exists a non-negative
measurable function K and m ∈ C[R+, R+] such that
∀t ∈ J, x ∈ P \ {θ} we have ‖f(t, x)‖ ≤ K(t)m(‖x‖) .

(H2)

∫ 1

0

G2(s, s)K(s)m[Cδ1δ
2
2G1(s, s)G2(s, s)r,R]ds <

+∞, ∀R > r > 0. where m[a, b] := sup
a≤v≤b

m(v),

C =

∫ 1

0

G1(s, s)G2(s, s)ds.

(H3) There exists φ∗ ∈ P ∗ (P ∗ is a dual cone of
P ), e ∈ P \ {θ}, ‖φ∗‖ = 1 = P ∗(e) such that for
t ∈ J, x ∈ P \ {θ} we have φ∗(f(t, x)) ≥ φ(t) and

0 <

∫ 1

0

G2(s, s)φ(s)ds < +∞.

(H4) There exists a L ∈ L1[0, 1] such that for
any b > a > 0, B ⊂ Pb \ Pa, t ∈ J we have

α(f(t, B)) ≤ L(t)α(B) and 0 < 4η

∫ 1

0

G2(s, s)L(s)ds < 1,

where Pa = {x ∈ P |‖x‖ < a}, η =

∫ 1

0

G1(s, s)ds.

We define operator Tk : C[I, R] → C[I, R] as following:

(Tky)(t) =

∫ 1

0

G2(t, s)K(s)y(s)ds, y ∈ C[I, R],

obviously Tk : C[I, R] → C[I, R] is completely continuous.
Lemma 1.4[6] Suppose that conditions(H1)− (H3) hold

and r(TK) < 1, then for y ∈ C[I, R], ‖y‖c = max
t∈I

|y(t)|,

there exists ‖.‖∗c which is equivalent to ‖.‖c satisfying
(1)‖TKy‖∗c ≤

r(TK)+1
2 ‖y‖∗c , ∀y ∈ C[I, R];

(2) ‖ϕ‖∗c ≤ ‖ψ‖∗c , ϕ, ψ ∈ C[I, R], ϕ(t) ≤ ψ(t), ∀t ∈ I.

We define operator S : C[I, E] → C[I, E] as following:

(Sv)(t) =

∫ 1

0

G1(t, τ)v(τ)dτ,

by (2) we have⎧⎨
⎩

(Sv)
′′

(t) = −v(t), 0 ≤ s ≤ t ≤ 1,

a1(Sv)(0) − b1(Sv)
′

(0) = θ,

c1(Sv)(1) − d1(Sv)
′

(1) = θ.

(3)

Lemma 1.5 Problem (1) has a solution if and only if the
following problem (4)⎧⎨

⎩
(v)

′′

(t) + f(t, (Sv)(t)) = θ, 0 ≤ s ≤ t ≤ 1,

a2(v)(0) − b2(v)
′

(0) = θ,

c2(v)(1) − d2(v)
′

(1) = θ,

(4)

has a solution.
Proof: In fact, by (3), if x is solution of problem (1),

then v = x
′′

is a solution of problem (4); Conversely, if v is a
solution of problem (4), let x = Sv, by (3) x

′′

= (Sv)
′′

= −v,
so x = Sv is a solution of problem (1).

By lemma 1.5, we only need to consider problem (4). In
order to overcome the difficulty caused by singularity, we
construct a cone

Q = {x ∈ C[I, P ]|x(t) ≥ δ2G2(t, t)x(s), ∀t, s ∈ I}, (5)

it is easy to see Q �= θ and Q is a cone in C[J,E], since
the normal constant of cone is 1, ∀x ∈ Q, t ∈ I , we have
x(t) ≥ δ2

ϕ2(s)ψ2(t)
ρ2

‖x‖c.
In order to use Mönch fixed point theory, we construct a

special closed convex set:

W = {x ∈ Q|φ∗(x(t)) ≥

∫ 1

0

G2(t, s)φ(s)ds, t ∈ I},

by H3, it is easy to see x(t) =

∫ 1

0

G2(t, s)φ(s)ds.e ∈W, so

W �= ∅. Obviously, W is a closed convex set, ∀x ∈ W we
have x �= θ, so there exists a r > 0 such that

PCr

⋂
W = ∅, (6)

where PCr
= {x ∈ C[I, P ]|‖x‖c < r}. We define operator A

as following:

(Av)(t) =

∫ 1

0

G2(t, s)f(s, (Sv)(s))ds, t ∈ [0, 1]. (7)

II. CONCLUSION

Theorem 1 Suppose that conditions (H1) − (H3) hold,
then A : W →W is continuous.

Proof: We first show ∀v ∈ W,Av is reasonable. For
v ∈W, it is easy to see

‖Sv‖ = ‖

∫ 1

0

G1(t, τ)v(τ)dτ‖

≤

∫ 1

0

G1(τ, τ)dτ‖v‖c

≤ η‖v‖c,

(8)

where η =

∫ 1

0

G1(τ, τ)dτ. On the other hand, by (5) we can

get

(Sv)(t) =

∫ 1

0

G1(t, τ)v(τ)dτ

≥

∫ 1

0

G1(t, τ)δ2G2(τ, τ)v(t)dτ

≥ δ1δ2G1(t, t)

∫ 1

0

G1(τ, τ)G2(τ, τ)dτv(t)

= Cδ1δ2G1(t, t)v(t),
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since the cone is normal, we have

‖(Sv)(t)‖ ≥ Cδ1δ2G1(t, t)‖v(t)‖
≥ Cδ1δ

2
2G1(t, t)G2(t, t)‖v‖c,

combine (6), (8), (9) and (H1), we get

‖f(t, (Sv)(t))‖ ≤ K(t)m[Cδ1δ
2
2G1(t, t)G2(t, t)r, η‖v‖c].

By (H2), we have

‖Av)(t)‖

= ‖

∫ 1

0

G2(t, s)f(s, (Sv)(s))ds‖

≤

∫ 1

0

G2(t, s)K(t)m[Cδ1δ
2
2G1(t, t)G2(t, t)r, η‖v‖c]ds

< +∞,

so ∀t ∈ I, (Av)(t) is reasonable and (Av)(t) ∈ P , by
Lebesgue dominated convergence theorem, Av ∈ C[I, P ].
Now we show ∀v ∈W, we have Av ∈ Q. By (7),

(Av)(t) =

∫ 1

0

G2(t, τ)f(τ, (Sv)(τ))dτ

≥ δ2G2(t, t)

∫ 1

0

G2(s, τ)f(τ, (Sv)(τ))dτ

= δ2G2(t, t)(Av)(s), ∀t, s ∈ I,

this implies AW ⊂ Q. Next we show AW ⊂ W . ∀v ∈ W,
by (H3),

φ∗((Av)(t)) = φ∗(

∫ 1

0

G2(t, s)f(s, (Sv)(s))ds)

=

∫ 1

0

G2(t, s)φ
∗(f(s, (Sv)(s)))ds

≥

∫ 1

0

G2(t, s)φ(s)ds,

this implies AW ⊂ W . Last, we show A is continuous. Let
Vn, v ∈ W satisfying ‖Vn − v‖c → 0(n → +∞), take R2 =
max{sup

n

‖vn‖c, ‖v‖c}, so ∀t ∈ I, ‖Vn(t) − v(t)‖ → 0(n →

+∞).
By (7), we have

‖(Avn)
′

(t)‖ = ‖

∫ t

0

−c2ψ2(s)

ρ2
f(s, (Svn)(s))ds

+

∫ 1

t

a2ϕ2(s)

ρ2
f(s, (Svn)(s))ds‖

≤

∫ t

0

c2ψ2(s)

ρ2
‖f(s, (Svn)(s))‖ds

+

∫ 1

t

a2ϕ2(s)

ρ2
‖f(s, (Svn)(s))‖ds

= g(t),

exchange the integration order and use condition (H2),∫ 1

0

g(t)dt

=

∫ 1

0

∫ t

0

c2ψ2(s)

ρ2
‖f(s, (Svn)(s))‖ds

+

∫ 1

0

∫ 1

t

a2ϕ2(s)

ρ2
‖f(s, (Svn)(s))‖ds

≤ 2

∫ 1

0

G2(s, s)K(s)m[Cδ1δ
2
2G1(s, s)G2(s, s)r,R]ds

< +∞,

so ‖(Avn)
′

(t)‖ ∈ L[0, 1], for any t1, t2 ∈ I, vn ∈W , we have

‖(Avn)(t1) − (Avn)(t2)‖

= ‖

∫ t2

t1

(Avn)
′

(t)dt‖

≤

∫ t2

t1

‖(Avn)
′

(t)‖dt,

by the absolute continuity of Lebesgue integration, {Avn}
is equicontinuous on I , by Lebesgue dominated convergence
theorem,

‖(Avn)(t) − (Av)(t)‖ → 0(n→ ∞), ∀t ∈ I,

so for t ∈ I, {Avn(t)} is relatively compact, by Ascoli-
Arzela theorem {Avn} is relatively compact in C[I, E], so
we claim that ‖Avn − Av‖c → 0(n → ∞. If this is false,
then there exists ε0 > 0 and {vni

} ⊂ {vn} such that
‖Avni

− Av‖c > ε0(i = 1, 2, 3...), since {Avn} is relatively
compact in C[I, E], then {Avni

} has a convergent subse-
quence, no loss of generality, we still assume lim

i→∞
Avni

= y,

consequently, lim
i→∞

‖Avni
− y‖c = 0, contradicts to y = Av,

so A is continuous in W .

Theorem 2 Suppose that conditions (H1) − (H4) hold.
If

lim
u→+∞

m[r1, u]

u
< λ1, ∀u > r1 > 0, (9)

where λ1 is the first eigenvalue of TK , then problem (1) has
at least one positive solution.

Proof: By (9), there exists R3 > max{r2, 1} and 0 <
δ < 1 such that

m[r1, u] ≤ δλ1u, ∀u ≥ R3. (10)

Let T ∗
Ky = δλ1TKy, ∀y ∈ C[I, R], then T ∗

K : C[I, R] →
C[I, R] is a bounded linear operator, λ1 is the first eigenvalue
of TK , 0 < δ < 1, r(T ∗

K) = δ < 1, by lemma (1.5), there
exists ‖.‖∗c which is equivalent to ‖.‖c such that ∀y ∈ C[I, R]
we have ‖T ∗

K(y)‖∗c ≤
δ+1
2 ‖y‖∗c . Let

M =

∫ 1

0

G2(s, s)K(s)m[Cδ1δ
2
2G1(s, s)G2(s, s)r,R]ds,

by (H2), M < +∞. Choose R4 > max{R3,
2M∗

1−δ }, where
M∗ = ‖M‖∗c . Let W1 = {v ∈ W |‖y(t)‖∗c ≤ R4, y(t) =
‖Sv(t)‖}. Next we show AW1 ⊂ W1. ∀v ∈ W1, let y(t) =
‖Sv(t)‖, define e(v) = {t ∈ I | y(t) > R3}, by (6) and (10),
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we have

‖(Av)(t)‖

= ‖

∫ 1

0

G2(t, s)f(s, (Sv)(s))ds‖

≤

∫ 1

0

G2(t, s)K(s)m(‖(Sv)(s)‖)ds

=

∫
I\e(v)

G2(t, s)K(s)m(‖(Sv)(s)‖)ds

+

∫
e(v)

G2(t, s)K(s)m(‖(Sv)(s)‖)ds

≤

∫
I\e(v)

G2(t, s)K(s)m[Cδ1δ
2
2G1(s, s)G2(s, s)r2, R3]ds

+δλ1

∫
e(v)

G2(t, s)K(s)‖(Sv)(s)‖ds

≤

∫ 1

0

G2(t, s)K(s)m[Cδ1δ
2
2G1(s, s)G2(s, s)r2, R3]ds

+δλ1

∫ 1

0

G2(t, s)K(s)‖(Sv)(s)‖ds

= (T ∗
Ky)(t) +M.

By lemma (1.4), we have

‖Av‖∗c ≤ ‖T ∗
Ky +M‖∗c

≤ ‖T ∗
Ky‖

∗
c +M∗

≤ δ+1
2 ‖y‖∗c +M∗

≤ δ+1
2 R4 + 1−δ

2 R4

= R4.

(11)

this implies that ∀v ∈ W1 we have Av ∈ W1. Since A is
continuous, by lemma (1.5) we only need to show A has a
fixed point in C[I, P ]. Let V ⊂ W1 be a countable set and
satisfying

V ⊂ co{{u}
⋃

(AV )}, u ∈ W1 (12)

where AV = {Ax|x ∈ V }. First we show V is relatively com-
pact in C[I, P ]. In fact, by (12), we have αc(V ) ≤ αc(AV ).
by theorem 1, AV is equicontinuous in I , by thesis [7] we
have

V (t) ⊂ co{{u(t)}
⋃

(AV )(t),

combine lemma 1, we have

αc(V ) = max
t∈I

α(V (t)),

αc(AV ) = max
t∈I

α((AV )(t)),

α(V (t)) ≤ α(AV (t)),

(13)

where (AV )(t) = {x(t)|x ∈ AV }. Next, we estimate

α(AV )(t). by (7) and lemma 2 we have

α(V (t)) ≤ α((AV )(t))

= α({

∫ 1

0

G2(t, s)f(s, (Sv)(s))ds|v ∈ V })

≤ 2

∫ 1

0

G2(t, s)α({f(s, (Sv)(s))|v ∈ V })ds

≤ 2

∫ 1

0

G2(t, s)L(s)α({(Sv)(s)|v ∈ V })ds

≤ 4

∫ 1

0

∫ 1

0

G2(s, s)L(s)G1(s, τ)α(V (τ))dτds

≤ 4

∫ 1

0

G2(s, s)L(s)ds

∫ 1

0

G(τ, τ)dταc(V )

= 4η

∫ 1

0

G2(s, s)L(s)dsαc(V ),

combine (13) and (H4) we have αc(V ) = 0, this implies
that V is relatively compact in C[I, P ], consequently, our
conclusion follows from lemma 1.3.

Example: Let E = l∞ = {x = (x1, x2, ..., xn, ...) : sup
n

|

xn |< +∞}, for x ∈ E, let ‖x‖ = sup
n

| xn |, then (E, ‖.‖)

is a Banach space, and P = {x ∈ E : xn ≥ 0, n = 1, 2, ...}
is a normal cone in E, the normal constant is 1. Consider
the following infinite system of scalar nonlinear differential
equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−x
(4)
n (t) = cost√

t(t−1)
(1 + ln(1 + xn)

+ 1
n
(tx2n + arctant√

sup
i>1

|xi|
)), t ∈ (0, 1);

xn(0) = xn(1) = x
′′

n(0) = x
′′

n(1) = 0, n = 1, 2, ...
(14)

Problem (14) can be regard as the form of problem (1), where
x(t) = (x1(t), x2(t), ...), f(t) = (f1, f2, ...);

fn(t, x) = cost√
t(t−1)

(1 + ln(1 + xn)

+ 1
n
(tx2n + arctant√

sup
i>1

|xi|
)), t ∈ (0, 1), (15)

it is easy to see f(t, x) is singular at t = 0, 1 and x = θ, now
we check (H1)-(H4) hold. Take k(t) = 1√

t(1−t)
, obviously

f ∈ C[I × P \ {θ}, P ], by (15) we have ‖f(t, x)‖ ≤
1√
t(t−1)

(1 + 2‖x‖‖ +
π

2√
‖x‖

, so (H1) holds and K(t) =

1√
t(1−t)

,m(v) = 1 + 2v +
π

2√
v

, ∀R1 > r1 > 0, it is easy

to get

m[r1, R1] = sup
v∈[r1,R1]

m(v) ≤ 1 + 2R1 +
π
2√
r1
. (16)

and
∫ 1

0

√
s(1 − s)ds =

π

8
,

∫ 1

0

ds√
s(1 − s)

= π, so

∫ 1

0

s(1 − s)K(s)m[s2(1 − s)2r1, R1]ds

≤

∫ 1

0

√
s(1 − s)(1 + 2R1 +

π
2

s(1 − s)
√
r1

)ds

= π
8 (1 + 2R1) +

π

2√
r1
π

< +∞.
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so (H2) holds. Take φ∗ ∈ P ∗ such that ∀x ∈ E satisfying
φ∗(x) = x1, take φ(t) = cost√

t(t−1)
, so φ∗(f(t, x)) ≥ φ(t) >

0, t ∈ (0, 1), x ∈ P \ {θ}, and∫ 1

0

s(1 − s)φ(s)ds <

∫ 1

0

√
s(1 − s) =

π

8
,

so H3 holds. Let q(t, x) = (q1(t, x), q2(t, x)..., ), p(t, x) =
(p1(t, x), p2(t, x)..., ) where qn(t, x) = 1+xn√

t(1−t)
, pn(t, x) =

t

n
√
t(1−t)

(x2n+ arctant√
sup
i≥1

|xi|
), so fn(t, x) ≤ pn(t, x)+ qn(t, x),

for any c > d > 0, B ⊂ Pc \ Pd, it is easy to see
α(q(t, B)) ≤ α(B)√

t(1−t)
, t ∈ (0, 1). By using the diagonal

method, we can choose a subsequence such that α(p(t, B)) =

0, so α(f(t, B)) ≤ α(B)√
t(1−t)

, t ∈ (0, 1). ∀y ∈ C[I, P ], we have

(Tky)(t) =

∫ 1

0

G2(t, s)K(s)y(s)ds

≤

∫ 1

0

s(1 − s)
1√

s(1 − s)
ds‖y‖c

= π
8 ‖y‖c.

(17)

by (17), r(TK) < π
8 , so λ1 ≥ 8

π
, combine (16) we have

lim
u→+∞

m[r1, u]

u
≤ lim

u→+∞

1 + 2u+
π

2√
r1

u
= 2 <

8

π
≤ λ1

so (H4) holds. To sum up, (H1)-(H4) hold. By theorem (2),
problem (14) has at least one positive solution.
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