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Positive Solutions for a Class of Semipositone
Discrete Boundary Value Problems with Two

Parameters
Benshi Zhu

Abstract—- In this paper, the existence, multiplicity and
noexistence of positive solutions for a class of semipositone
discrete boundary value problems with two parameters is
studied by applying nonsmooth critical point theory and
sub-super solutions method.
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I. INTRODUCTION

LET Z and R be the set of all integers and real numbers
respectively. For a, b ∈ Z, define Z(a) = {a, a+ 1, · · ·},

Z(a, b) = {a, a+ 1, · · · , b} when a ≤ b.
In this paper, a class of semipositone discrete boundary

value problem with two parameters
{ −�2u(t− 1) = λf(u(t)) + μg(u(t)), t ∈ Z(1, N),
u(0) = 0, u(N + 1) = 0,

(1)
is considered, where λ, μ > 0 are parameters, N ≥ 4 is
a positive integer, �u(t) = u(t + 1) − u(t) is the forward
difference operator, �2u(t) = �(�u(t)), f : [0,+∞) → R

is a continuous positive function satisfying f(0) > 0, and
g : [0,+∞) → R is continuous and eventually strictly positive
with g(0) < 0.

It is easy to see that for fixed μ > 0, λf(0) + μg(0) < 0
whenever λ > 0 is sufficiently small. Then (1) is called
a semipositone problem. Semipositone problems derive from
[8], where Castro and Shivaji initially called them nonpositone
problems, in contrast with the terminology positone problems,
put forward by Cohen and Keller in [11], where the nonlinear-
ity was positive and monotone. Semipositone problems arise in
bulking of mechanical systems, design of suspension bridges,
chemical reactions, astrophysics, combustion and management
of natural resources. For example, see [1, 20, 22, 23].

In general, studying positive solutions for semipositone
problems is more difficult than that for positone problems.
The difficulty is due to the fact that in the semipostione case,
solutions have to live in regions where the nonlinear term is
negative as well as positive. However, many methods have
been applied to deal with semipositone problems, the usual
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approaches are quadrature method, fixed point theory, sub-
super solutions method and degree theory. We refer the readers
to the survey papers [9, 18] and references therein.

Due to its importance, in recent years, continuous semiposi-
tone problems have been widely studied by many authors, see
[5, 6, 12–16, 19, 21, 24, 25]. However, there were only a few
papers on discrete semipositone problems. One can refer to
[2, 4, 7, 17]. In these papers, semipositone discrete boundary
value problems with one parameter were discussed, and sub-
super solutions method and fixed point theory were used to
study them. To the author

′
s best knowledge, there are no

results established on semipositone discrete boundary value
problems with two parameters. Here a different approach to
deal with this topic will be presented. In [13], Costa, Tehrani
and Yang applied the nonsmooth critical point theory devel-
oped by Chang [10] to study the existence and multiplicity
results of a class of semipositone boundary value problems
with one parameter. It is also an efficient tool in dealing with
the semipositone discrete boundary value problems with two
parameters. For knowledge about difference equation, one can
see [3].

The main objective in this paper is to apply the nonsmooth
critical point theory to deal with the positive solutions of
semipositone problem (1). More precisely, the discontinuous
nonlinear terms

f1(s) =

{

0 if s ≤ 0,
f(s) if s > 0,

and

g1(s) =

{

0 if s ≤ 0,
g(s) if s > 0.

will be considered.
Next, consider the slightly modified problem
{ −�2u(t− 1) = λf1(u(t)) + μg1(u(t)), t ∈ Z(1, N),
u(0) = 0, u(N + 1) = 0.

(2)
Just to be on the convenient side, the following formulas
h(s) = λf(s) + μg(s), h1(s) = λf1(s) + μg1(s), H(s) =
λF (s) + μG(s), H1(s) = λF1(s) + μG1(s) are defined,
where F (s) =

∫ s

0
f(τ)dτ , G(s) =

∫ s

0
g(τ)dτ , F1(s) =

∫ s

0
f1(τ)dτ =

{

0 if s ≤ 0
F (s) if s > 0

, G1(s) =
∫ s

0
g1(τ)dτ =

{

0 if s ≤ 0
G(s) if s > 0

.
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In section 3, it will be proved that the sets of positive
solutions of (1) and (2) do coincide . Moreover, any nonzero
solution of (2) is nonnegative.

The following are the main results.

Theorem 1. Suppose that there are constants C1 > 0, α > 1
and β > 2 such that when s > 0 is large enough,

f(s) < C1s
α, (3)

sf(s) ≥ βF (s) > 0, (4)

and
lim

s→+∞
g(s)

s
= 0. (5)

Then for fixed μ > 0, there is a λ̄ > 0 such that for
λ ∈ (0, λ̄), problem (2) has a nontrivial nonnegative solution.
Hence problem (1) has a positive solution.

Remark 1. By (4), there are constants C2, C3 > 0 such
that for any s ≥ 0,

F (s) ≥ C2s
β − C3. (6)

(4) and (6) imply that

lim
s→+∞

f(s)

s
= +∞,

which shows that f is superlinear at infinity.

Remark 2. (5) implies that g is sublinear at infinity.
Moreover, it is easy to know that

lim
s→+∞

G(s)

s2
= 0.

Hence G is subquadratic at infinity.

Theorem 2. Suppose that the conditions of Theorem 1 hold.
Moreover, g is increasing on [0,+∞). Then there is a μ∗ > 0
such that for μ > μ∗, problem (1) has at least two positive
solutions for sufficiently small λ.

Theorem 3. Suppose that the conditions of Theorem 1 hold.
Moreover, f is nondecreasing on [0,+∞). Then for fixed μ >
0, problem (1) has no positive solution for sufficiently large
λ.

II. PRELIMINARIES

In this section, some basic results on variational method
for locally Lipschitz functional I : X → R defined on a
real Banach space X with norm ‖ · ‖ are recalled. I is called
locally Lipschitzian if for each u ∈ X , there is a neighborhood
V = V (u) of u and a constant B = B(u) such that

|I(x)− I(y)| ≤ B‖x− y‖, ∀x, y ∈ V.

The following abstract theory has been developed by Chang
[10].

Definition 1. For given u, z ∈ X , the generalized directional
derivative of the functional I at u in the direction z is defined
by

I0(u; z) = lim sup
k→0 t→0

1

t
[I(u+ k + tz)− I(u+ k)].

The following properties are known:
(i) z → I0(u; z) is sub-additive, positively homogeneous,

continuous and convex;
(ii) |I0(u; z)| ≤ B‖z‖;
(iii) I0(u;−z) = (−I)0(u; z).

Definition 2. The generalized gradient of I at u, denoted
by ∂I(u), is defined to be the subdifferential of the convex
function I0(u; z) at z = 0, that is,

w ∈ ∂I(u) ⊂ X∗ ⇐⇒ 〈w, z〉 ≤ I0(u; z), ∀ z ∈ X.

The generalized gradient ∂I(u) has the following main prop-
erties:

(1) For all u ∈ X , ∂I(u) is a non-empty convex and
w∗-compact subset of X∗;

(2) ‖w‖X∗ ≤ B for all w ∈ ∂I(u);
(3) If I, J : X → R are locally Lipschitz functional, then

∂(I + J)(u) ⊂ ∂I(u) + ∂J(u);

(4) For any λ > 0, ∂(λI)(u) = λ∂I(u);
(5) If I is a convex functional, then ∂I(u) coincides with

the usual subdifferential of I in the sense of convex analysis;
(6) If I is Gâteaux differential at every point of v of a

neighborhood V of u and the Gâteaux derivative is continuous,
then ∂I(u) = {I ′(u)};

(7) The function

ζ(u) = min
w∈∂I(u)

‖w‖X∗

exists, that is, there is a w0 ∈ ∂I(u) such that ‖w0‖X∗ =
minw∈∂I(u) ‖w‖X∗ ;

(8) I0(u; z) = max{〈w, z〉|w ∈ ∂I(u)};
(9) If I has a minimum at u0 ∈ X , then 0 ∈ ∂I(u0).

Definition 3. u ∈ X is a critical point of the locally
Lipschitz functional I if 0 ∈ ∂I(u).

Definition 4. I is said to satisfy Palais-Smale condition
((PS) condition for short), if any sequence {un} such that
I(un) is bounded and ζ(un) = minw∈∂I(un) ‖w‖X∗ → 0 has
a convergent subsequence.

Lemma 1. (Mountain Pass Theorem [10]) Let X be a real
Hilbert space and I be a locally Lipschitz functional satisfying
(PS) condition. Suppose I(0) = 0 and

(i) There exist constants ρ > 0 and a > 0 such that
I(u) ≥ a if ‖u‖ = ρ;

(ii) There is an e ∈ X such that ‖e‖ > ρ and I(e) ≤ 0.

Then I possesses a critical value c ≥ a. Moreover, c can be
characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),

where

Γ = {g ∈ C([0, 1], X)| γ(0) = 0, γ(1) = e}.
Next the definitions of the subsolution and the supersolution

of the following boundary value problem
{ −�2u(t− 1) = μg(u(t)), t ∈ Z(1, N),
u(0) = 0, u(N + 1) = 0.

(7)
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are given.
Definition 5. If u1(t), t ∈ Z(0, N+1) satisfies the following

conditions
{ −�2u1(t− 1) ≤ μg(u1(t)), t ∈ Z(1, N),
u1(0) ≤ 0, u1(N + 1) ≤ 0,

then u1 is called a subsolution of problem (7).
Definition 6. If u2(t), t ∈ Z(0, N+1) satisfies the following

conditions
{ −�2u2(t− 1) ≥ μg(u2(t)), t ∈ Z(1, N),
u2(0) ≥ 0, u2(N + 1) ≥ 0,

then u2 is called a supersolution of problem (7).

Lemma 2. Suppose that there exist a subsolution u1 and
a supersolution u2 of problem (7) such that u1(t) ≤ u2(t) in
Z(1, N). Then there is a solution ǔ of problem (7) such that
u1(t) ≤ ǔ(t) ≤ u2(t) in Z(1, N).

Remark 3. If (7) is replaced by (1), then similar definitions
and result as definitions 5, 6 and Lemma 2 can be obtained.

III. PROOF OF MAIN RESULTS

Let E be the class of the functions u : Z(0, N + 1) → R

such that u(0) = u(N+1) = 0. Equipped with the usual inner
product and the usual norm

(u, v) =
N
∑

t=1

(u(t), v(t)), ‖u‖ =

(

N
∑

t=1

u2(t)

)1/2

,

E is a N -dimensional Hilbert space. Define the functional J
on E as

J(u) =
1

2

N+1
∑

t=1

[(�u(t− 1))2 − 2H1(u(t))]

=
1

2
uTAu−

N
∑

t=1

H1(u(t)) = K(u)−
N
∑

t=1

H1(u(t)),

where u = {u(1), u(2), · · · , u(N)}, K(u) = 1
2u

TAu and

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

N×N

.

Clearly H1 is a locally Lipschitz function and J(u) is a
locally Lipschitz functional on E. By a simple computation,
the following result

∂

∂u(t)
K(u) = 2u(t)− u(t+ 1)− u(t− 1) = −�2u(t− 1).

holds. By Theorem 2.2 of [10], the critical point of the
functional J(u) is a solution of the inclusion

−�2u(t− 1) ∈ [h1(u(t)), h1(u(t))], t ∈ Z(1, N),

where h1(s) = min[h1(s+0), h1(s−0)], h1(s) = max[h1(s+
0), h1(s− 0)].

Remark 4. It is easy to see that h1(s) = h1(s) = λf(s)+
μg(s) for s > 0, h1(s) = h1(s) = 0 for s < 0. For fixed μ
and sufficiently small λ, λf(0) + μg(0) < 0. Then h1(0) =
λf(0) + μg(0), h1(0) = 0.

Remark 5. If u > 0, then the above inclusion becomes

−�2u(t− 1) = λf(u(t)) + μg(u(t)), t ∈ Z(1, N).

It is clear that A is a positive definite matrix. Let ηmax >
0, ηmin > 0 be the largest and smallest eigenvalue of A
respectively. Denote by u− = max{−u, 0}. Let P1 = {t ∈
Z(1, N)|u(t) ≤ 0}, P2 = {t ∈ Z(1, N)|u(t) > 0}. Notice
that u−(t) = 0 for t ∈ P2 and f1(u(t)) = 0 for t ∈ P1. Then

N
∑

t=1

f1(u(t))u
−(t)

=
∑

t∈P1

f1(u(t))u
−(t) +

∑

t∈P2

f1(u(t))u
−(t) = 0..

Similarly, g1(u(t)) = 0 for t ∈ P1. Hence

N
∑

t=1

g1(u(t))u
−(t)

=
∑

t∈P1

g1(u(t))u
−(t) +

∑

t∈P2

g1(u(t))u
−(t) = 0.

Lemma 3. If u is a solution of (2), then u ≥ 0. Moreover,
either u > 0 in Z(1, N), or u = 0 everywhere.

Proof. It is not difficult to see that (�u−(t) +
�u(t))�u−(t) ≤ 0 for t ∈ Z(0, N). In fact, no matter that
�u(t) ≥ 0 or �u(t) < 0, the former inequality holds. Hence
�u−(t) · �u(t) ≤ −(�u−(t))2.

If u is a solution of (2), then

0 =
N
∑

t=1

[�2u(t− 1) + λf1(u(t)) + μg1(u(t))]u
−(t)

= −
N+1
∑

t=1

�u(t− 1)�u−(t− 1)

+

N
∑

t=1

[λf1(u(t)) + μg1(u(t))]u
−(t)

≥
N+1
∑

t=1

(�u−(t− 1))2 = (u−)TAu− ≥ ηmin‖u−‖2.

So u− = 0. Hence u ≥ 0. If u(t) = 0, then

u(t+ 1) + u(t− 1)

= �2u(t− 1) = −λf1(u(t))− μg1(u(t))

= −λf1(0)− μg1(0) = 0.

Therefore u(t + 1) = u(t − 1) = 0. It follows that u = 0
everywhere.

Lemma 4. If (4) and (5) hold, then h1(s)s ≥ β0H1(s) for
large s > 0, where β0 ∈ (2, β).

Proof. Notice that h1(s)s ≥ β0H1(s) is equivalent to
h(s)s ≥ β0H(s) if s > 0. To prove that h(s)s ≥ β0H(s)
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for large s > 0, it suffices to show that

lims→+∞
h(s)s

β0H(s)
> 1.

By (4), for large s > 0, we have

β0F (s)

f(s)s
≤ β0

β
.

Hence, if s > 0 is large, then

h(s)s

β0H(s)
=

λf(s)s+ μg(s)s

β0(λF (s) + μG(s))
=

1 + μg(s)
λf(s)

β0F (s)
f(s)s + β0μG(s)

λf(s)s

≥
1 + μg(s)

λf(s)

β0

β + β0μG(s)
λf(s)s

.

Taking inferior limit on both side of the above inequality,
then

lims→+∞
h(s)s

β0H(s)
≥ lims→+∞

1 + μg(s)
λf(s)

β0

β + β0μG(s)
λf(s)s

≥
lims→+∞(1 + μg(s)

λf(s) )

lims→+∞(β0

β + β0μG(s)
λf(s)s )

.

Since f is superlinear and g is sublinear, lims→+∞
μg(s)
λf(s) = 0.

Then lims→+∞(1 + μg(s)
λf(s) ) = limu→+∞(1 + μg(s)

λf(s) ) = 1.
Moreover, since G is subquadratic and f is superlinear,

limu→+∞
G(s)
f(s)s = lims→+∞

G(s)

s2

f(s)s

s2

= 0. Therefore,

lims→+∞(β0

β + β0μG(s)
λf(s)s ) = lims→+∞(β0

β + β0μG(s)
λf(s)s ) = β0

β .

From the above results, it follows that lims→+∞
h(s)s

β0H(s) ≥
β
β0
> 1.

Lemma 5. If (4) and (5) hold, then J satisfies (PS)
condition.

Proof. Notice that E∗ = E. Let L(u) =
∑N

t=1H1(u(t)).
From Theorem 2.2 of [10], for any given w ∈ ∂L(u) ⊂ E∗,
we have w(t) ∈ [h1(u(t)), h1(u(t))]. Then

w(t) = λf1(u(t)) + μg1(u(t)) if u(t) �= 0,

w(t) ∈ [λf(0) + μg(0), 0] if u(t) = 0.

Therefore

〈w, u〉 =
N
∑

t=1

h1(u(t))u(t) for all w ∈ ∂L(u).

By Lemma 4, there is a constant M > 0 such that L(u) ≤
1
β0
〈w, u〉+M for u ∈ R

N . Suppose that {un} is a sequence
such that J(un) is bounded and ζ(un) → 0 as n→ ∞. Then
by properties 3 and 7 , there are C > 0 and wn ∈ ∂L(un)
such that |J(un)| ≤ C and

|〈∂K(un)− wn, un〉| ≤ ‖un‖ for sufficiently large n.

It implies that

uTnAun − 〈wn, un〉 ≥ −‖un‖.

Hence

C ≥ 1

2
uTnAun − L(un)

≥ 1

2
uTnAun − 1

β0
〈wn, un〉 −M

= (
1

2
− 1

β0
)uTnAun +

1

β0
[uTnAun − 〈wn, un〉]−M

≥ (
1

2
− 1

β0
)ηmin‖un‖2 − 1

β0
‖un‖ −M.

This implies that {un} is bounded. Since E is finite dimen-
sional, {un} has a convergent subsequence in E.

Lemma 6. For fixed μ > 0, there exist ρ > 0 and λ̄ > 0

such that if λ ∈ (0, λ̄), then J(u) ≥ ηminM
2
1

16 λ−
2

α−1 for ‖u‖ =
ρ.

Proof. By (3) and (5), there are C4, C5 > 0 such that

F1(s) ≤ C1|s|α+1

α+ 1
+ C4 for all s ∈ R, (8)

G1(s) ≤ ηmin

4μ
|s|2 + C5 for all s ∈ R. (9)

The equivalence of norm on E implies that there exists
C6 > 0 such that ‖u‖α+1 ≤ C6‖u‖, where ‖u‖α+1 =
(

∑N
t=1 |u(t)|α+1

)
1

α+1

. Let M1 =
(

ηmin(α+1)

8C1C
α+1
6

)
1

α−1

and ρ =

M1λ
− 1

α−1 . Let ‖u‖ = ρ. It follows from (8) and (9) that there
is λ̄ > 0 such that if λ ∈ (0, λ̄), then

J(u) =
1

2
uTAu−

N
∑

t=1

H1(u(t))

≥ 1

2
ηmin‖u‖2 − λC1

α+ 1

N
∑

t=1

|u(t)|α+1 − λC4N

−ηmin

4μ
· μ

N
∑

t=1

|u(t)|2 − μC5N

≥ 1

4
ηmin‖u‖2 − λC1C

α+1
6

α+ 1
‖u‖α+1 − λC4N − μC5N

= λ−
2

α−1

(

ηminM
2
1

8
− λ

α+1
α−1C4N − λ

2
α−1μC5N

)

≥ ηminM
2
1

16
λ−

2
α−1 .

Lemma 7. There is an e ∈ E such that ‖e‖ > ρ and
J(e) < 0.

Proof. It follows from Remark 1 that F (s) ≥ C2s
β − C3

for s > 0. By the equivalence of the norms on E, there
exists C7 > 0 such that ‖u‖β ≥ C7‖u‖, where ‖u‖β =
(

∑N
t=1 |u(t)|β

)
1
β

. Let v1 be the eigenfunction to the principal
eigenvalue η1 of

−�2u(t− 1) = ηu(t), t ∈ Z(1, N),

u(0) = 0, u(N + 1) = 0
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with v1 > 0 and ‖v1‖ = 1. Let

Gm = min{G(u)|u ∈ [0,+∞)}.
Clearly Gm < 0. Since β > 2, for k > 0,

J(kv1) =
1

2
k2vT1 Av1 − λ

N
∑

t=1

F (kv1(t))− μ
N
∑

t=1

G(kv1(t))

≤ ηmax

2
k2 − λC2(C7k)

β + λC3N − μGmN

→ −∞ as k → +∞
Hence there is a k1 > ρ such that J(k1v1) < 0. Let e =
k1v1. Then ‖e‖ > ρ and J(e) < 0. The second condition of
Mountain Pass Theorem is verified.

Proof of Theorem 1. Clearly J(0) = 0. Lemma 5 implies
that J satisfies (PS) condition. It follows from Lemma 6,
Lemma 7 and Lemma 1, J has a nontrivial critical point û
such that J(û) ≥ ηminM

2
1

16 λ−
2

α−1 . By Lemma 3 and Remark
5, û is a positive solution of (1). The proof is complete.

Proof of Theorem 2. The sub-super solutions method will
be applied to prove the multiplicity results.

Firstly it will proved that there exists μ∗ > 0 such that if
μ > μ∗, then the following boundary value problem

{ −�2u(t− 1) = μg(u(t)), t ∈ Z(1, N),
u(0) = 0, u(N + 1) = 0

(10)

has a positive solution u. In fact, since g(u) is increasing
on [0,+∞) and eventually strictly positive, g(u) ≥ −C8 for
u ≥ 0 and some C8 > 0. Let r1 be the eigenfunction to the
principal eigenvalue μ1 of

−�2u(t− 1) = μu(t), t ∈ Z(1, N),

u(0) = 0, u(N + 1) = 0

with r1 > 0 and ‖r1‖ = 1.
Notice that μ1 = 2 − 2 cos π

N+1 and r1(t) = sin πt
N+1

(see [3]). Let C9 > 0 be a constant such that C9 ≤
2 sin2 π

N+1 cos
2π

N+1 . For t ∈ Q1 = {t ∈ Z(1, N)|t = 1 or t =
N}, N ≥ 4, we have (�r1(t))2+(�r1(t−1))2−2μ1r

2
1(t) =

2 sin2 π
N+1 cos

2π
N+1 ≥ C9 > 0.

It will be verified that ψ = μC8

C9
r21 is a subsolution of (10)

for μ large. Notice that

−�2r21(t− 1) = 2r21(t)− r21(t+ 1)− r21(t− 1)

= 2r21(t)− (r1(t) +�r1(t))2
−(r1(t)−�r1(t− 1))2

= 2μ1r
2
1(t)− (�r1(t))2 − (�r1(t− 1))2.

On the other hand, for t ∈ Q1, we have (�r1(t))2+(�r1(t−
1))2 − 2μ1r

2
1(t) ≥ C9, which implies that

C8

C9
[2μ1r

2
1(t)− (�r1(t))2 − (�r1(t− 1))2]− g(ψ(t)) ≤ 0.

Then for t ∈ Q1, −�2ψ(t − 1) ≤ μg(ψ(t)). Next, for
t ∈ Z(1, N)\Q1, we have r1(t) ≥ r̄ for some r̄ > 0
and C8

C9
r21(t) ≥ C10 for some C10 = C8

C9
r̄2 > 0. Hence

ψ(t) = μC8

C9
r21(t) ≥ μC10. Since g is increasing and eventually

strictly positive, there is a μ∗ > 0 such that if μ > μ∗ and
t ∈ Z(1, N)\Q1,

g(ψ(t)) ≥ C8

C9
·2μ1 ≥ C8

C9
[2μ1r

2
1(t)−(�r1(t))2−(�r1(t−1))2].

Hence for t ∈ Z(1, N)\Q1, −�2ψ(t−1) ≤ μg(ψ(t)). Notice
that r1(0) = 0, r1(N+1) = 0. Then ψ(0) = 0, ψ(N+1) = 0.
So we have

−�2ψ(t− 1) ≤ μg(ψ(t)), t ∈ Z(1, N),

ψ(0) ≤ 0, ψ(N + 1) ≤ 0,

i.e., ψ is a subsolution of (10).
Now it is necessary to look for the supersolution of (10).

Let z be a solution of
{ −�2u(t− 1) = 1, t ∈ Z(1, N),
u(0) = 0, u(N + 1) = 0.

(11)

Then

z(s) =

N
∑

t=1

G(s, t)

=
1

N + 1

{

s−1
∑

t=1

[(N + 1)− s]t+
N
∑

t=s

s[(N + 1)− t]

}

=
s[(N + 1)− s]

2
,

where

G(s, t) =

{

t[(N+1)−s]
N+1 0 ≤ t ≤ s− 1,

s[(N+1)−t]
N+1 s ≤ t ≤ N + 1.

Clearly z(s) > 0 for s ∈ Z(1, N), z(0) = 0, z(N + 1) = 0.
Define φ = μσz, where σ > 0 is large enough so φ > ψ in
Z(1, N) and

g(μσz)

σ
< 1.

This is possible since g is a sublinear function. So

−�2φ(t− 1) ≥ μg(φ(t)), t ∈ Z(1, N),

φ(0) ≥ 0, φ(N + 1) ≥ 0,

which shows that φ is a supersolution of (10). Therefore, by
Lemma 2, there is a solution u of (10) such that ψ ≤ u ≤ φ.

Secondly it will be proved that u is a subsolution of (1).
Since λ > 0 and f > 0, it follows that

−�2u(t− 1) ≤ λf(u(t)) + μg(u(t)), t ∈ Z(1, N),

u(0) ≤ 0, u(N + 1) ≤ 0,

which implies that u is a subsolution of (1).
Lastly the question is to look for the supersolution of (1)

and prove the existence of positive solution of (1). Let z be as
in (11). Notice that g is sublinear. Define u = ξz, where ξ > 0
is independent of λ and large enough so u ≥ u in Z(1, N)
and

μ
g(ξz(t))

ξ
<

1

2
.
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Let λ > 0 be so small that

λ
f(ξz(t))

ξ
<

1

2
.

Then

−�2u(t− 1) = ξ ≥ λf(u(t)) + μg(u(t)), t ∈ Z(1, N),

u(0) ≥ 0, u(N + 1) ≥ 0.

Hence u is a supersolution of (1). Thus, by Remark 3, problem
(1) has a solution ũ such that u ≤ ũ ≤ u for μ > μ∗ and λ
small, which is positive for t ∈ Z(1, N).

Now it is time to find the second positive solution of
problem (1). Notice that u and u are independent of λ.
Since f is positive on [0,+∞), by the definition of f1
∑N

t=1 F1(u(t)) ≥ 0. Then for u ∈ [u, u],

J(u) =
1

2
uTAu− λ

N
∑

t=1

F1(u(t))− μ
N
∑

t=1

G1(u(t))

≤ 1

2
uTAu− μ

N
∑

t=1

G1(u(t)) ≤ J0,

where J0 = maxu∈[u,u]

(

1
2u

TAu− μ
∑N

t=1G1(u(t))
)

. On
the other hand, by Lemma 6, one can take appropriate λ̄ such
that if λ ∈ (0, λ̄), then J(u) ≥ ηminM

2
1

16 λ−
2

α−1 > J0 + 1 for
‖u‖ = ρ. Hence by Theorem 1, J(û) > J0. So û /∈ [u, u] and
û �= ũ, which shows that û and ũ are two different positive
solutions of (1). The proof is complete.

Proof of Theorem 3. Just to be on the contradiction side,
let u be a positive solution of (1). Since f is superlinear and
increasing, f(0) > 0, there are C11, C12 > 0 such that for
s ≥ 0, f(s) ≥ C11s + C12. Hence for λ > 0 and s ≥ 0,
λf(s) + μg(s) ≥ λ(C11s + C12) + μGm, where Gm is the
same as that of the proof of Lemma 7. If λ is large enough,
then λC12 + μGm ≥ 1

2λC12. Therefore λf(s) + μg(s) ≥
λC11s+

1
2λC12 for large λ > 0 and s ≥ 0. Multiplying both

side of
−�2y1(t− 1) = λ1y1(t)

by u(t) and summing it from 1 to N , we get

N
∑

t=1

(−�2y1(t− 1))u(t) =
N
∑

t=1

λ1y1(t)u(t).

Multiplying both side of (1) by y1(t) and summing it from 1
to N , we have

N
∑

t=1

(−�2u(t− 1))y1(t) =
N
∑

t=1

(λf(u(t)) + μg(u(t)))y1(t).

It is easy to see that

N
∑

t=1

(−�2u(t− 1))y1(t) =

N
∑

t=1

(−�2y1(t− 1))u(t).

Hence
N
∑

t=1

λ1y1(t)u(t) =
N
∑

t=1

(λf(u(t)) + μg(u(t)))y1(t),

N
∑

t=1

λ1u(t)y1(t) ≥
N
∑

t=1

(λC11u(t) +
1

2
λC12)y1(t),

N
∑

t=1

(λ1 − λC12)u(t)y1(t) ≥
N
∑

t=1

1

2
λC12y1(t).

For λ > λ1

C12
, a contradiction exists. So for a given μ > 0, (1)

has no positive solution if λ is large. The proof is complete.
Example. An example is given to illustrate the result of

Theorem 1. Let f(u) = u3 + 1 and g(u) = (u − 1)
2
3 − 2.

Clearly f and g satisfy the conditions of Theorem 1. Then
problem (1) has at least a positive solution.
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