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Abstract— Fuzzy logic can be used when knowledge is 
incomplete or when ambiguity of data exists. The purpose of 
this paper is to propose a proactive fuzzy set- based model for 
reacting to the risk inherent in investment activities relative to 
a complete view of   portfolio management. Fuzzy rules are 
given where, depending on the antecedents, the portfolio size 
may be slightly or significantly decreased or increased. The 
decision maker considers acceptable bounds on the proportion 
of acceptable risk and return. The Fuzzy Controller model 
allows learning to be achieved as 1) the firing strength of each 
rule is measured, 2) fuzzy output allows rules to be updated, 
and 3) new actions are recommended as the system continues 
to loop. An extension is given to the fuzzy controller that 
evaluates potential financial loss before adjusting the 
portfolio. An application is presented that illustrates the 
algorithm and extension developed in the paper. 

Keywords— Portfolio Management, Financial Market Monitoring, 
Fuzzy Controller, Fuzzy Logic,  

I.INTRODUCTION

RISK assessment models and strategies to control  risks 
suggested in the literature do not take into account ambiguity.  
In recent models authors have relied on probability theory to 
present their solution to the problem of risk assessment.  
However, it has been long established that probability models 
do not address the problem of ambiguity [1].     

Ellsberg  [2] was one of the earliest authors to 
demonstrate that the fundamental rules governing probability 
are rendered invalid if the likelihood of events cannot be 
expressed in binary terms.  A number of subsequent empirical 
studies (for example, [3], [4], [5], [6])   have confirmed 
Ellsberg’s paradox. 

Since the assessment of risks in the course of  portfolio 
selection  cannot be expressed in quantifiable terms,  experts 
have to often rely on verbal expressions.  Such verbal 
expressions entail both uncertainty and ambiguity.  
Uncertainty is caused by the fact that the threats are 
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prospective in nature and the possibility of their occurrence 
cannot be foreseen in precise terms.  Ambiguity in responses 
to questions asked is attributable to the lack of precision in 
verbal descriptions, such as “high” ‘moderate” or “low”. In 
view of the fact that traditional two-valued logic of probability 
judgments is inadequate to handle the combined presence of 
uncertainty and ambiguity, the calculus of fuzzy sets is 
utilized in the proposed model to allow effective and 
systematic handling of imprecise and imperfect information. 

 A fuzzy set controller is discussed in Section III after 
presentation of the background on financial risk assessment in 
portfolio management  with its primary reliance on non-fuzzy 
set based techniques and then a description of fuzzy logic 
fundamentals including fuzzy controllers in Section  II.  
Application is made to an investment situation within the 
typical limits of 99% in Section IV. Section V presents 
conclusions and benefits of this fuzzy controller approach. 

II.  BACKGROUND 

A selection process for a stock portfolio was developed 
by Markowitz ([7], [8]). The seminal work by Markowitz [7] 
proposes a vector x of asset weights which sum to 1 be chosen 
such that linear combinations [sub p] = x[sup ]  of the 
expected asset returns  (expected excess returns) which 
represent the expected return on a portfolio, maximized for a 
specified level of “risk”, [sub p], (the standard deviation of 
the portfolio). The efficient frontier is the curve of  ( [sub p],  

[sub p])  traced by portfolios whose return/risk tradeoff is 
optimal in this sense [9].   

Continuous time, mean-variance portfolio selection has 
been studied using a stochastic linear-quadratic (LQ) optimal 
control and backward stochastic differential equations 
(BSDEs). The LQ problem was reduced to solving a 
stochastic Riccati equation which was a fully nonlinear and 
singular BSDE with random coefficients.  It was demonstrated 
that the efficient frontier in the mean-standard deviation 
diagram was a straight line and as such risk-free investment is 
a distinct possibility even when the interest rate is random 
[10]. 

A.  Basics of Financial Risk: 
As early as 1971, the estimation of risk in portfolio 

selection models  was recognized to be problematic since the 
true values of the parameters of the distribution of returns are 
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not known with  certainty  but must be estimated from both 
objective and subjective information.  A model was developed 
that considered the decision maker’s lack of perfect 
information about the model’s parameters, but Bayesian 
methods were assumed for risk measurement and, a normal 
linear regression structure was employed [11].  

Almost three decades later, a decision method was 
utilized  to determine an asset liability management model for 
casualty insurers based on a stochastic, method requiring 
scenario aggregation and ex ante decision rules that allow for 
multiple scenarios. Again, these findings suggest that the 
insurance companies would prefer accurate representations of 
uncertainties [12]  which are lacking in stochastic 
applications. Yet, stochastic methods appear prevalent in the 
literature to address uncertainty and ambiguous information 
inherent in portfolio management having to do with risk and 
return.

Robust optimization is a field that does seek to address 
uncertainty in parameter estimation [13].  Utilizing this theory, 
a model was proposed that considered the total deviation of 
the realized expected returns from their nominal estimates to 
be less than or equal to some robustness budget. The 
magnitude of which stems from one’s tolerance for total 
estimation error, protecting the investor against movements in 
expected returns up to the designated amount of the original. 
A norm can be set to measure distance of the deviation by 
either linear or non-linear methods [14].  

Still, while emphasis on the mitigation of estimation and 
model risk in portfolio management has grown in importance 
and quantitative techniques have become commonplace in the 
investment industry,   robust portfolio optimization remains 
typically rooted in statistical estimation methods [15] . In the 
robust portfolio optimization problem, the classical 
formulations of Value-at-Risk (VaR) can be extremely 
sensitive to errors in the mean and covariance matrix of the 
returns. Even with perfect knowledge of the distribution, the 
computation of VaR amounts is computationally cumbersome 
and not easily resolved by numerical techniques [16].  

VaR is defined as the maximum loss on the portfolio 
where confidence levels are set between 95% to 99%  and the 
time horizon  is between one and ten days. Again incomplete 
knowledge is problematic since the actual profit and loss 
distribution can only be inferred not known with certainty. 
The assumption of a normal distribution has been utilized 
frequently but is often historically inaccurate. A bounded 
approach was proposed by Luciano and Marena [17] for its 
computational ease in situations where risk evaluation has to 
be performed quickly. The lower bound is thus interpreted as 
the worse-case scenario at a given confidence level when only 
marginal quantiles are known and uncertainty is evident. 

Risk has frequently been modeled by utility theory. 
Utility implications from Markowitz’s theory that the investor 
chooses a portfolio solely on expected value and variance ( 
assumed to be the risk) have, therefore,  been studied 
extensively. The optimal portfolio selection problem under 
Knightian uncertainty considers the decision maker’s portfolio 
consisting of one risky and one risk-free asset. Expected 
utility is used to derive bounds on the no-transaction region 
for both optimistic and pessimistic decision makers resulting 

in a closed interval for the standard expected utility but not 
necessary closed for the Choquet expected utility [18].  Thus, 
types of standard utility functions can impact the transaction 
area in both risk and risk-free scenarios. 

Sharpe [19] was one of the first to propose a simplified 
method for the efficient set of portfolios under the 
assumptions of regression theory. The maximum Sharpe ratio 
determines the portfolio with the highest return/risk tradeoff 
achievable from the assets. Recently, therefore, an approach 
estimating mean excess returns and their covariance matrix 
has been developed to determine the maximum Sharpe matrix 
[9].

Since market and credit risks are generally modeled 
simultaneously, separate risk factors associated with pure 
market portfolio or pure credit portfolio models, have been 
tested by both  linear and non-linear models [20]. Linear 
programming has been used to simultaneously minimize 
general risk or dispersion measures by first transforming the 
general risk minimization problem to a minimax problem , 
setting up necessary and sufficient conditions and solving the 
dual problem for both optimal portfolios and their sensitivities 
[21]. A minimax type risk function was also studied by Teo 
and Yang  [22]  in which the investor attempts to restrict the 
standard deviation for each of the available stocks. Again, the 
portfolio optimization problem is formulated as a linear 
programming problem based on capital asset pricing between 
the market portfolio and each individual return using 
nonsmooth methods. A conic programming has been used in a 
worst case Value-at-Risk (VaR) and robust portfolio 
optimization problem [16]. 

The above examples relate exclusively to the problems 
inherent in uncertainty in portfolio management yet each uses 
stochastic approaches, simulation or linear 
programming/regression to address the problems. Indeed. 
uncertainty utilizing fuzzy sets is underrepresented in the 
literature on portfolio management. Duval and Featherstone 
[23] developed a fuzzy logic alternative to the traditional 
mean variance model and compromise programming 
approach. The model’s application was focused on the 
agribusiness industry. Thus, while it had results that suggested 
investments in publically traded food and agribusiness stocks 
allow farmers to capture additional benefits beyond market 
diversification options, its focus was limited. Importantly, 
given the previous reliance on stochastic approaches, minimax 
models, linear programming, and/or simulation models, the 
use of fuzzy logic provided realistic results with an innovative 
approach to address uncertainty in decision making. 

 More in line with the focus of portfolio management,  a 
fuzzy logic controller was posited by Khoshnevisan et al. [24]   
to minimize cumulative hedging error based on the Black-
Scholes [25] options pricing functional form. This model 
formulated a risk-free scenario such that the minimum return 
was equal to the risk-free rate i and expected present value of 
the terminal option payoff  seeks the maximum of the wealth 
invested or the expected return on the risk-free asset over the 
investment horizon. The selected tracking error function 
utilized utility functions where the replicating portfolio value 
at time t is linear. The model then considers the best performer 
to be least risky. Based on a simple hGA model, a fuzzy logic 
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controller (FLC) process was proposed as the ideal interface 
between man and machine allowing prioritization between  
exploitation and exploration for long term options.  The FLC 
was utilized such that at each periodic rebalancing point, k 
percent of funds are allocated to the best-performing risk asset 
with  (90-k) percent to the other risky asset to keep the 
portfolio self-balancing after the initial investment.  A rule 
system determined that k would be raised or lowered slightly  
if the square of the risk differential is small. The decision 
process is thus considered over time and an interpretation of 
risk.

B. Basics of Fuzzy Logic for Risk 
 Fuzzy logic ([26], [27]) can be used to make decisions, where 
a fuzzy subset A of a set X is a function of X into [0,1]. We can 
write A = i/xi to mean that the value of the function A on xi is 

i. The number i (0 i 1) denotes the degree of membership of 
xi in A. Ordinary sets can be viewed in this way where i = 0 or 

i =1. [For elementary operations on fuzzy sets, see Dubois and 
Prade [27].] 
 Of primary importance to this work  is Zebda's [28] definition 
of  fuzzy probabilities as: 
      Qijk = ijk / ak                                                         (1)
where, if at time t the system is at state i and receiving input j, it 
goes to state k at time t+1 with fuzzy probability Qijk.
Corresponding fuzzy benefits are defined by fuzzy sets Bijk

where      Bijk =  ßijk / bk
                                                 (2)

 Then using the extension principle ([27]) , the averaged 
benefit is defined by: 
      E (Bij) =  cijl / bl where                             (3) 
      cijl = Max                             Min   { ijk, ßijk}      (4) 
            (a1,...ap,b1 ,...bp ) -1(bl)     k 

k  ax bx  if k ax =1 
where bl = 
                    0 otherwise 
Here, (a1, ...,ap,b1 ,...,bp ) =  axbx

                             (5)
The preceding concepts are needed for the expected loss 
functions to be incorporated into the fuzzy controller as the 
cost is considered important to the quality program. 

Fuzzy Controllers
A fuzzy controller system can be thought of as a 

variation of the typical expert system in which rules and 
available facts are used to draw a conclusion. The diagram of 
a general fuzzy controller is shown below: 

Input 

Output 

Figure 1.  Fuzzy Controller 

As diagrammed, the process module receives input in the form 
of a crisp or fuzzy data set. Additional input is in the form of a 
fuzzy rule or rules based on fuzzy set theory and relevant 
fuzzy set definitions that also act as input to the fuzzy 
controller. The Condition Interface determines the degree to 
which the input satisfies the "if" condition of the fuzzy-
defined rule. Then based on the strength of each rule, and the 
definition of each fuzzy set in the rules, the Fuzzy Controller 
module fires each rule according to its strength to provide 
fuzzy output. The Action Interface defuzzifies this fuzzy 
output into a course of action. The result of the course of 
action taken provides input into the system. Thus, the Fuzzy 
Controller model allows learning to be achieved as 1) the 
firing strength of each rule is measured, 2) fuzzy output 
allows rules to be updated, and 3) new actions are 
recommended as the system continues to loop. This provides 
the Knowledge Base relevant for any expert system. 

III.MODEL 

 Several versions of fuzzy controllers have been developed 
for use in a wide variety of fields [see, [29]. [30], [31], [32], 
[33], [34], [35])] The fuzzy controller proposed in this paper 
is based upon the work of Yager [36] which has also been 
applied to measuring productivity by controlling cost variance 
[1]. 
 First, we assume that our Knowledge Base is made up of 
rules that have the following form:  When V is Aj and U is Bj,
then W is Cj. The index j refers to the jth rule in the 
Knowledge Base and the sets Aj, Bj, and Cj are allowed to be 
fuzzy sets. We further assume that all fuzzy sets are normal 
convex. A fuzzy set A is a trapezoidal  subset of R if there 
exists four points of R, a, b, c, and d such that : 

 A(x) = 0 if x  a                                            (6) 
A(x)  A(y) if  a   y x b     (7) 
A(x)= A(y) if   b  y x c      (8) 
A(x)  A(y) if  c   y   x  d                   (9) 
A(x) = 0 for  x  d                         (10) 

The most common trapezoidal set is the triangular shape 
where b = c. Then, if A is a fuzzy set by the -level of A we 
mean the set A ={x  A  (x)> 0}. Of course, A  is 
identified with its characteristic function A (x) = 1 if A(x)>

 and A (x) = 0 otherwise. 
A. Algorithm 
1. Consider the Rj rule: 
      Rj: when V is Aj and U is Bj then W is Cj
2. Associated to the rule Rj, define a fuzzy set Fj by: 
      Fj = Aj Bj Cj.
3. Define the measure of how well x,y,z fits rule Rj as: 
      Fj(x,y,z) = Minimum {Aj(x),Bj(y),Cj(z)}
   where x,y,z are in the domains of Aj,Bj, and Cj.
4. Assume the following: V is A and U is B where A and B 

are fuzzy sets.
5. Define Dj = Fj A B where Dj measures how well the 

input "V is A" and "U is B" fits the rule Rj.
6. Let maximumx denote the maximum as x ranges over all of 

its allowable value, such that Maximumx Minimum 

Process
Action 
Interface

Condition
Interface 

Fuzzy 
Controller

Fuzzy
Rules

Fuzzy Set 
Definitions
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{Aj(x),A(x)} denotes the possibility of having Aj given 
A. We denote this possibility by Poss[Aj  A].                        

7. Define fuzzy set Sj for rule Rj by:  
   Sj(z) =  Minimum  {Poss (Aj A), Poss (Bj B), Cj(z)} where 

Sj(z) measure for Rj how much z fits the then part of the 
rule, given that the inputs are U is A and V is B.             

8. Let Tj = Minimum{Aj(x0
), Bj(y0

)} where xo, Yo is crisp 
input (given by sensors) Minimum {Poss (Aj A), Poss 
(Bj B)] = Tj  if A and B are crisp x

0
 and Yo

9. Then Tj measure how strongly Rj should apply given that 
we have inputs U= Xo and V = Yo where Xo and Yo are 
crisp values.  

10. Then, Sj = Minimum {Tj, Cj(z)} denotes how rule Rj is 
fired when the then part of the rule Cj(z)is dampened by 
the firing strength Tj of the rule Rj.

11.Define S(z) = Maximumj Sj(z) as how much action z 
should be taken given the input and given the fact that 
we wish to fire all rules Rj with strength Tj.

12.Define S*(z) = [ j Tj x Sj(z)]/ jTj as the weighted 
average of all information coming from all rules. 

13.Consider the zj level of each Sj as: CTj = {z/ Cj(z)   Tj} as 
an interval on the convex set; CTj = [aj, bj]. 

14. Consider the midpoint mj of CTj as mj = (aj + bj)/2
15. Defuzzifying for action z* is: 
    z* = [ j mj Tj]/ jTj
(This algorithm is due to Yager [36] and Shipley, et al. [37].) 

IV.APPLICATION

An example of how a fuzzy controller can be used to 
monitor and react to variations in a typical portfolio 
management problem is presented. The application concerns 
re-evaluation of a portfolio over the previous 20 days 
(approximately one month of trading opportunity) in which 
the risk/return ratio has been as high as 14% but in which the 
average is 4 %. The following application is based on Table 1 
below. 

TABLE 1.
Risk/Return over 20-Day Personal Investments of 50-Stock 
Portfolio
Day 
Number 

Risk/Return 
Ratio 

Day 
Number 

Risk/Return  
Ratio 

1 .04 11 .00 
2 .06 12 .02 
3 .08 13 .04 
4 .02 14 .02 
5 .00 15 .00 
6 .04 16 .06 
7 .08 17 .14 
8 .02 18 .04 
9 .02 19 .02 
10 .06 20 .04 

Using 99% limits the following chart can be constructed with 
the risk/return of the portfolio plotted as shown in Figure 2 
below.  

                                                            * 
    .124 

                                                                           
      *        *                                                           .080  
       *                 *            *                      
 -*----------*---------------*-----------*---*---------   .040 
         *       *  *      *   *           * 

           *             *       *                                     .000 

Figure 2.  Interval Plotting of Risk/Return for 20-Day Portfolio 

Generally, the risk/return for one day is out of the 
acceptable limits of the investor. Since this could significantly 
impact the financial status of the investor depending on the 
amount of the trade, the controller could be used to make 
adjustments to reduce the portfolio size. On the other hand, if 
all risk/return proportions are clustered close to the mean, the 
controller would suggest appropriate reduction in monitoring, 
freeing the investor for other risk versus risk-free asset 
investigations and necessitating minor adjustments to trading 
frequency and thus changes in portfolio size. For simplicity, 
while numerous rules may be proposed based on changes to 
market  risk and return realized, this application considers 
only the following three rules from the perspective of a risk-
averse trader: 

R1 : If within the upper and lower bounds and a 
positive change occurred in the percentage of 
risk with a negative change in return observed 
since the last trade, then decrease significantly 
the portfolio size. 

R2: If within the upper and lower bounds and  a 
positive change occurred in the percentage of 
risk with no change in return since the last 
trade, then decrease slightly  the portfolio size. 

R3: If within the upper and lower bounds and a 
negative change occurred in the percentage of 
risk with positive change in return observed 
since the last trade, then increase significantly 
the portfolio size. 

For the risk averse investor, the assumption is made that 
12% risk will be preferable with a return on investment of 
20%. However, further assuming that it is desired that the 
portfolio risk/return be clustered within 1-sigma (.028) of the 
mean (.04)  function F1 will be  deemed  “Acceptable” as 
indicated in Figure 3.  
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Figure 3. " Acceptable" According to Proportion Risk/Return 

Moderately Acceptable” indicates some state of flux such 
that the risk/return proportion on most days are within 2-
sigma of the mean. Although some may be close to the UCL 
or outside of the UCL this is generally only one or two stocks 
at high risk or low return impacting the portfolio. Thus F2
would be the convex function shown in Figure 4. 

Figure 4.  "Moderately Acceptable" According to Proportion 
Risk/Return 

Finally, “Unacceptable” would be any portfolio with 
consistent risk/return  proportions above the 3-sigma UCL 
such that F3 would be described by Figure 5. 

Figure 5.  "Unacceptable" According to Proportion 
Risk/Return 

With the "if" part of the rule defined as above, we define 
the "then" part to be the portfolio size  necessary for assuring 
risk/return by the representation for Sj(z) as give in Figures 6 
through 9. 

Figure 6.  Portfolio Size for "Acceptable”

Figure 7.  Portfolio Size for "Moderately Acceptable" 

Proportion 
Risk/Return

Proportion Risk/Return Proportion 
Risk/Return

Proportion 
Risk/Return

Portfolio Size 

Portfolio Size 
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Figure 8.  Portfolio Size for  “Unacceptable” 

To determine the firing strength of each rule, Tj, we 
combine the convex functions and evaluate each rule with 
respect to some risk/return proportion, say 0.060 (3 poorly 
performing stocks in a portfolio of 50) when it was known 
that at the last trading day of the month the risk/return 
percentage was higher at 0.08 due to increased risk. 

.080 

Figure 9.  Fuzzy Functions Defined for Input Risk/Return 
Situation  

Applying the Algorithm in Section 3.1, when R1, T1 = 
0.1177 and C1(z) = 0.8823, and S1 = minimum {0.1177, 
0.8823} = 0.1177 denotes the extent to which rule R1 is fired. 
When R2, T2 =0.3571 and C2(z) = 0.6429, so S2 = 0.3571 
denotes the extent to which rule R2 is fired. When R3, T3 =0, 
C3(z) = 1.00, and S3 = 0.00, which is that rule R3 is not fired. 
Hence, with the proportion of  risk/return, 0.060 as input, R1
and R2 apply and R3 does not apply since 0.060 does not fit 
the "if" condition of R3.

Next, for each Rj an interval on the convex set and the 
mean of the interval is defined such that for R1, a1 = 0 and b1
= 35.292 with m1 = 17.646;  and  for R2, a2 = 46.7855  and 
b2 = 53.2145 with m2 = 50.  This yields, 
Z*=[(.1177)(17.646)+(.3571)(50)]/ (.1177+.3571) = 41.9796 
units which indicates that the portfolio size can be reduced to 

42 investments, since the proportion of  risk/return is within 
the limits, but barely so. 

In the preceding model, the decision maker is reacting to 
the quantified rules determined by the fuzzy controller. Yet, 
the decision maker will be the one to pay the penalty if the 
controller selects an inappropriate rule. The penalty for most 
investors is obviously lost revenue and increased cost of 
trading to react to market risk.  

If we investigate the situation where the portfolio size as 
suggested by the controller based on firing strength is reduced 
to 42 from 50 stocks, but should not have been so drastically 
reduced, we have the situation where R1 was applied when R2
or even R3 should have been applied. Assuming that revenue 
generated from rapid trading is potentially much less than that 
of maintaining functioning stocks, the loss could be, for 
example, $600.00 per day or $27,000 over the 20-day period 
if the portfolio size is reduced (L12 = 27,000). Reducing the 
portfolio size when it should have been increased could be 
higher in lost revenue than simply the cost of massive trading, 
for example, $1000.00 per day or $45,000 for the period (L13
= 45,000). Increasing the portfolio size in order to protect 
from excessive risk would be the cost of increased trading. 
The added cost of increasing the trading could be $160 per 
day or $7200  for the period (L31 = 7200). Maintaining the 
present portfolio size when it could have been reduced could 
be s $3600(L21 = 3600). (For simplicity sake,  crisp values 
have been used to represent the losses. The model does, of 
course, allow losses to be fuzzy values.) 

The decision maker may believe that the likelihood of 
reducing the portfolio size inappropriately instead of 
maintaining the 50 units or increasing the portfolio  size as a 
precautionary measure is: p12 = .2/.7 + .3/.6 and p13 = .9/0 + 
.8/.1 , respectively. This indicates that the decision maker 
believes that there is a significant likelihood of a penalty being 
incurred if R1 is applied inappropriately and the portfolio size 
is reduced, but has little belief that reducing the portfolio size 
is the wrong decision and, thus a low belief that the loss will 
be incurred. Similarly, the second fuzzy probability indicates 
that the decision maker believes strongly that no penalty will 
be incurred due to a wrong decision to reduce the portfolio 
size (R1) rather than increase the portfolio size to at least 60 
(R3). All of this indicates that, in general, the decision maker 
does not think the portfolio size needs to remain at 50 units 
and very strongly that the portfolio size does not need to be 
increased.

It should be noted that pij is not necessarily the same as 
pji. The uncertainty of the decision maker with respect to 
selecting Ri when Rj should be applied is not the same as 
applying Rj when Ri should be applied. Similarly, the penalty 
of selecting Ri instead of Rj is not the same as the penalty of Rj
instead of Ri. Again, differences in costs and uncertainty relate 
to the phase in the portfolio management process. 
 According to the scenario above: 
E(L1) = L12p12 + L13p13
      = (27,000)(.2/.7 + .3/.6) + (45,000)(.9/0 + .8/.1) 
      = .2/18,900 + .3/16,200 + .9/0 + .8/4500 
E(L2) = L21p21 = 36,000(.6/.3 + .5/.4) = .6/1080 + .5/1440 
E(L3) = L31p31 = (7200)(1/0) 
M = {0; 1080; 1440; 16,200; 18,900} 

Portfolio Size
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M = {0/0; .057/1080; .076/1440; .238/4550; .857/16,200; 
1/18,900} 

1 = .3 2 = .076 3 = 0 
1 = .7 2 = .924 3 = 1 

Using the multiplicative model,
T1' = .0824  T2'= .32996  T3' = 0  
Then Z*' =[(17.646)(.0824) + (50)(.32996)]/ (.0824+.32996) 
= 43.5

This indicates that the potential for loss has had an impact 
on the portfolio size such that the decision maker would 
reduce the portfolio size, but not as dramatically as originally 
indicated by the fuzzy controller. The loss-based fuzzy 
controller recommended in this paper reacts to the low belief 
that reducing the sample size is the wrong decision, while also 
considering that if the portfolio size is reduced to 42 stocks, 
the probability of incurring a loss is relatively high. 

In contrast, if p12 = .7/.2 + .8/.3 such that the decision 
maker believes that R1 may be the wrong decision but a 
relatively low penalty will be incurred, Z*' = 47.60. Thus, the 
portfolio size would be only moderately reduced, and R2
would take precedence over R1. For this model, R3  has  no  
impact  on  the  portfolio  size  since T3 = 0. 

Note that if the decision maker believes that the 
appropriate rule has been applied by the controller, pij = 0 for 
all i  j then E (Li) = 0 for i=1,2,3. Then i=0 and j = 1 such 
that Tj  = jTj indicates that Tj  reduces to Tj such that Z*’ = 
Z*. For the example, the rule would be to reduce the portfolio 
size according to both the fuzzy controller and the loss-based 
fuzzy controller.
V. CONCLUSIONS 

The application as presented is obviously incomplete. 
Other rules may be used that relate to the fact that most of the 
portfolio stocks are within bounds found acceptable to the 
decision maker.  If most of the stocks are yielding satisfactory 
risk/return ratios, the decision maker may decide to hold these, 
incurring more risk on some that he/she believes may return 
higher revenue at a later time. The cost of trading and 
frequency thereof also impacts the decision to allow the fuzzy 
controller to adjust automatically on a daily basis. The rules 
and frequency of firing are at the discrimination of the 
decision maker. The fuzzy controller may, therefore, be set to 
control and adjust or as simply a monitoring technique. The 
addition of the concept of the fuzzy loss-based controller puts 
more decision power into the hands of the investor. However, 
in order to be a strength of the model, the values determined 
(unlike simply setting them as in the example) must be 
realistic. This will require considerable investigation by the 
decision maker, perhaps utilizing simulations, linear 
programming or other stochastically based models or other 
fuzzy logic models to address the uncertainly of the loss 
figures.   
 The model proposed is capable of handling any number of 
rules, and any method for determination of loss. It can be 
tailored easily to the investor and reacts to the risk-taking or 
risk-averseness of the person managing his/her personal 
portfolio. 
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