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Abstract—The purpose of this study is to design a portable virtual 
piano. By utilizing optical fiber gloves and the virtual piano software 
designed by this study, the user can play the piano anywhere at any 
time. This virtual piano consists of three major parts: finger tapping 
identification, hand movement and positioning identification, and 
MIDI software sound effect simulation. To play the virtual piano, the 
user wears optical fiber gloves and simulates piano key tapping 
motions. The finger bending information detected by the optical fiber 
gloves can tell when piano key tapping motions are made. Images 
captured by a video camera are analyzed, hand locations and moving 
directions are positioned, and the corresponding scales are found. The 
system integrates finger tapping identification with information about 
hand placement in relation to corresponding piano key positions, and 
generates MIDI piano sound effects based on this data. This 
experiment shows that the proposed method achieves an accuracy rate 
of 95% for determining when a piano key is tapped. 

Keywords—virtual piano, portable, identification, optical fiber 
gloves.

I. INTRODUCTION

HE piano is an instrument with a long history, and a lovely 
timbre enjoyed widely. The piano, however, is an 

instrument with many limitations; its expensive price, large size, 
and inconvenience to move. To solve the spatial and movement 
problems associated with traditional pianos, this study presents 
a portable virtual piano system. This system used finger 
bending information detected by optical fiber gloves to 
distinguish the tapping motions of piano keys. We designed an 
image tracking method which provided hand position and 
movement information using video images and linking them 
with corresponding scales. The finger tapping identification 
results and corresponding scales were then integrated to play 
MIDI sound effects. 

In recent years, data gloves have been widely promoted and 
applied to many research fields [1], such as human-computer 
interaction [2]-[5], gesture recognition [6]-[13], virtual reality 
[13]-[16], and medical aid and rehabilitation [14]-[16]. The 
most common data glove application is gesture recognition. 
Gesture recognition is extremely critical for sign language 
recognition systems. Currently, data gloves are classified into 
three types: 

(1) Optical fiber data gloves [4], [6]-[8] 
(2) Resistive data gloves [2]-[3], [8]-[11] 
(3) Mechanical data gloves [5], [12], [15]-[16] 
Generally speaking, the attrition rate of the optical fiber 

gloves is the lowest among the three types of gloves, whereas 
the attrition rate of the resistive gloves is the highest. 
Mechanical gloves have a higher accuracy rate for gesture 
identification; however, they can be too heavy for some 
applications. Some data gloves are already sold commercially, 
such as Power Glove, Cyber Glove, and 5DT Glove [17]-[18]. 
Prices are higher for those products with better accuracy and 
stability. For the purposes of this paper, we used Data Glove 5 
virtual reality gloves produced by the 5DT company, as Fig. 1 
shows. The optical fiber sensors in each finger of the glove 
extract information on the degree of finger bending. These 
gloves meet the needs of this paper because they provide 
accurate information, are comfortable, and easy to wear. 

Fig. 1 Optical fiber gloves 

II.SYSTEM DESIGN

As Fig. 2 shows, this system framework includes three units: 
finger tapping identification, hand movement and positioning 
identification, and system integration and MIDI sound effect 
simulation. The following are introductions of the three major 
units. 
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A. Finger Tapping Identification 
Based on a model of typical finger behavior (shown in Fig. 

3), a fast and accurate method are proposed to determine when 
fingers made key tapping motions. Finger bending information, 
amplitude changes, and duration of finger bending are 
extracted using optical fiber gloves. This information forms a 
basis for calculation and identification of finger tapping 
motions. 

Fig. 3 Finger tapping behavioral model 

Different glove users have inconsistent relaxed states for 
their fingers. Finger tapping speeds and amplitudes vary as well. 
Therefore, before using the system, users were asked to 
initialize calibration. The calibration required every finger to 
repeat a tapping motion three times and recorded the measured 
values to adjust the parameters in the tapping identification 
algorithm. The proposed tapping identification algorithm 
included four steps: 

Step 1. Bending Information Extraction of Optical Fiber 
Gloves 

The optical gloves used in this study can read finger bending 
information up to 200 times per second; values range between 
the whole numbers 0 and 4,095 (12 bits). Figure 4(a) shows the 
bending information read by a single glove finger. When a 
finger bends downwards, the measured value becomes smaller. 
When the bending motion is restored, the measured value 
becomes larger. 

Step 2. Moving Average Operation 
We used moving average to smooth the data curve which got 

from the optical gloves. This approach is similar to the effect of 
a low-pass filter. Fig. 4(b) shows the results after smoothing. 
Only wide-range bending changes were preserved. In this 
paper, five-points moving average is applied in this step. To 
filter out minor, unintended finger movement, we the average 
value of five measured values, and the average values to is then 
used to replace the measured values. This approach is similar to 
the effect of a low-pass filter. Fig. 4(b) shows the results after 
smoothing. Only wide-range bending changes were preserved. 

Step 3. First-Order Difference Operation 
In first-order difference operations, the data obtained after 

the five-point moving average was used to reveal the relative 
changes in finger bending. The results are shown in Fig. 4(c). 
This method filters baseband sections of signals so that we can 
focus on relative changes in finger bending. 

Step 4. Finger Tapping Identification 
Based on the signals obtained after step 3, we observed that 

when a finger was tapping, the signals would first increase, 
then decrease dramatically, and finally increase. Based on these 
features, we first set two thresholds (T1 and T2) to detect the 
change of the signals. Fig. 4(d) shows the thresholds setting. If 
the detected signals start to become larger and have positive 
values, which are beyond threshold T1, then the tapping motion 

has started. If the detected signals then start to become larger 
and have negative values, which are beyond the threshold value 
T2, the tapping motion has ended. The occurrence of and length 
of time spent tapping can be determined through the 
identification of relative motions. In this identification method, 
the later change is called the restored motion, which is the 
finished motion after finger tapping. After the system detects a 
tapping motion, if the restored motions are not detected within 
the default maximum tapping time of the system, then the 
system automatically finishes recognizing the tapping motion, 
so as to prevent continuing piano sounds from causing sound 
confusion. 

(a)           (b) 

(c)           (d)
Fig. 4 Finger tapping identification process: (a) Original data; (b) 
Moving average operation, (c) First-order difference operation 

(d) Threshold setting and finger tapping identification 

In the tapping identification method above, choosing the 
appropriate threshold values, T1 and T2, is critical for tapping 
identification calculation accuracy. The T1 and T2 threshold 
settings should be set uniquely for each finger. Different users 
also tap at different strengths, therefore, setting T1 and T2 
thresholds can be very difficult. To solve the problem of setting 
threshold values, this paper uses the genetic algorithm as a 
basis and makes online adjustments according to the calibration 
information provided by the user’s initialization so that 
corresponding threshold values can be automatically generated 
for different users. 

We first asked 5 users to participate in training data creation. 
Each finger of every user carried out a tapping motion 10 times 
and the bending signal generated by each finger tapping was 
recorded. The training data containing 250 records of tapping 
motions are collected. Afterwards, we used the genetic 
algorithm to search for appropriate threshold values. Fifty 
chromosomes were randomly generated; each chromosome 
contained 10 sets of T1 and T2 parameters. When the 10 sets of 
T1 and T2 parameters were used in the tapping identification 
calculations, the finger tapping identification was used to set 
the fitness function. After 100 iterations, we retained 5 sets of 
chromosomes that had the highest accuracy rates as references 
of original parameters for different users when they made 
adjustments online. 

For actual online use, each user is asked to perform a tapping 
motion three times for each finger to further fine-tune the 
thresholds. Since there was little time for optimal parameter 
search, we used the 5 most accurate sets of chromosomes as a 
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basis and randomly fine-tuned to generate 20 new 
chromosomes. Three iterations of the genetic algorithm utilized 
the 30 tapping motion records provided by the users online. The 
T1 and T2 parameter collections of chromosomes with the 
highest accuracy rates were then used as the threshold values 
for the system’s actual tests of users. 

B. Identification of hand movement and positioning 
To identify hand movement and positioning, we proposed an 

image-based tracking and positioning method. As shown in Fig. 
5, the digital video camera was set up directly in front of both 
hands. Using digital images obtained from the video camera, 
piano keys corresponding to each finger could be determined. 
The following are introductions to the three major steps of the 
tracking and positioning calculation method used in this study: 

Fig. 5 Identification of hand movement and positioning 

Step 1. Searching for the colored ball and calculating the 
center point 

As shown in Fig. 6(a), a blue ball is attached to one of the 
gloves. Based on the color of the ball, the exact position of the 
colored ball was isolated from the entire image. Then, the 
center position of the colored ball was calculated for further 
tracking, as indicated in Fig. 6(b). In addition, users could 
select appropriate ball colors based on the environment and the 
background to increase searching accuracy.

Step 2. Dividing images into blocks 
We vertically divided captured video images into a fixed 

number of blocks. Each block corresponded to a piano key of a 
specific scale, as Fig. 6 (c) indicates. When the colored ball’s 
center point was located in a specific block, we could determine 
the piano scale that corresponded to the fingers. 

Step 3. Region tracking and positioning 
Due to the need for real-time tracking of the colored ball’s 

position, we extended the search region from the current center 
point of the colored ball to 2.5 times the size of the block, as Fig. 
6 (d) shows. Using the local search method can reduce the 
required operations for tracking the colored ball. If the colored 
ball could not be found in the new search region, we returned to 
Step 1 and searched the entire image. Otherwise, we repeatedly 
carried out Steps 2 and 3. 

(a)           (b) 

(c)           (d)
Fig. 6 Hand tracking and positioning: (a) The colored ball 

attachment; (b) Colored ball center point calculation; (c) The 
image divided into blocks; (d) Regional tracking and 

positioning 

C.System integration and simulation of MIDI sound effects 
In this unit, the finger tapping identification information is 

integrated with hand position. If we identified tapping motions, 
then based on hand position, MIDI sound effects simulated the 
virtual piano keys being played. Fig. 7 shows the MIDI 
simulated piano interface applied in the integration system. The 
piano sounds were set using the standard MIDI, with 127 
instrument sounds to choose from. 

Fig. 7 Illustration of MIDI simulated piano software 

III. EXPERIMENT RESULTS

We tested for finger tapping identification using optical fiber 
gloves, hand movement and positioning detection, and the 
ability to play music using this program. To test finger tapping 
identification, the system randomly selected a finger and asked 
the user to tap with the finger. Each test required 50 taps with 
different fingers. A total of 7 users were tested. A total of 350 
records were collected. Table I shows the results. The average 
accuracy rate is 94.9%. 

To test hand movement and position detection, we set the 
resolution of the video camera at 320 240 and evenly divided 
the picture into 20 blocks. The search radius was set to be from 
the center of the colored ball outward to 2.5 times the block 
width (60 pixels). We had to consider the relative positions of 
both hands as well as the video camera so that piano key 
positions corresponding to fingers could match the video 
camera images. Therefore, the relative positions of both hands 
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and the digital video camera were adjusted before undertaking 
the experiment. During testing, the system arbitrarily selected a 
block and asked the user to move inside the block. Each test 
required 50 movements to different blocks. A total of 7 users 
were tested. One hundred and forty tests were recorded. Table 
II shows the results. The average moving time was 1.4 seconds. 

In testing playing music on the virtual piano, we designed a 
piece of music (Fur Elise) for playing. The music required the 
user to press 139 piano keys in different positions. Table III 
shows the seven users’ total required time for successfully 
playing the entire piece of music. On average, users needed 115 
seconds to play the entire piece of music and 0.83 seconds to 
play a note correctly. 

TABLE I
TAPPING IDENTIFICATION OF OPTICAL FIBER GLOVES

      user 

test
1 2 3 4 5 6 7 Average

Average

Accuracy

Correct 336 319 341 331 338 326 334 332.1 

Incorrect 14 31 9 19 12 24 16 17.9 
94.9%

TABLE II
HAND MOVEMENT DETECTION AND POSITIONING EXPERIMENT

      user 

test
1 2 3 4 5 6 7 Average

Time 

(sec.)
66.9 73.9 64 71.2 72.0 73.4 69.4 70.1 

TABLE III
MUSIC PLAYING EXPERIMENT

      user 

test
1 2 3 4 5 6 7 Average

Time 

(sec.)
106 126 104 118 125 113 114 115 

IV. DISCUSSION AND CONCLUSION

The primary goal of this study is to design a portable virtual 
piano. The system has two major parts: the finger bending 
identification of optical fiber gloves and the identification of 
hand movement and positioning. In the calculation of finger 
tapping identification, we used the genetic algorithm as a basis 
and made appropriate threshold value adjustments. The 
experiment results revealed a satisfactory accuracy rate. 

For hand tracking and positioning calculations, if the picture 
resolution of the video camera is higher, the required 
calculations would be increased. In considering the need of 
real-time tracking, then, researchers must select appropriate 
picture resolution to carry out the experiment. In addition, 
during object tracking, search range settings seriously affect the 
outcome. The wider the search range, the greater amount of 
calculation is required. 

These experimental results indicate that on average, hand 

movement requires 1.4 seconds. The reason for this is that the 
required virtual piano keys being tapped are not often exactly 
where they are expected to be. When the system is in actual 
performance, hand movements are not always required, leading 
to better performance outcomes. 
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