
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

565

Abstract—In this paper, the periodic surveillance scheme has
been proposed for any convex region using mobile wireless sensor
nodes. A sensor network typically consists of fixed number of
sensor nodes which report the measurements of sensed data such as
temperature, pressure, humidity, etc., of its immediate proximity
(the area within its sensing range). For the purpose of sensing an
area of interest, there are adequate number of fixed sensor
nodes required to cover the entire region of interest. It implies
that the number of fixed sensor nodes required to cover a given
area will depend on the sensing range of the sensor as well as
deployment strategies employed. It is assumed that the sensors to
be mobile within the region of surveillance, can be mounted on
moving bodies like robots or vehicle. Therefore, in our
scheme, the surveillance time period determines the number of
sensor nodes required to be deployed in the region of interest.
The proposed scheme comprises of three algorithms namely:
Hexagonalization, Clustering, and Scheduling, The first algorithm
partitions the coverage area into fixed sized hexagons that
approximate the sensing range (cell) of individual sensor node.
The clustering algorithm groups the cells into clusters, each of
which will be covered by a single sensor node. The later
determines a schedule for each sensor to serve its respective cluster.
Each sensor node traverses all the cells belonging to the cluster
assigned to it by oscillating between the first and the last cell for
the duration of its life time. Simulation results show that our
scheme provides full coverage within a given period of time using
few sensors with minimum movement, less power consumption,
and relatively less infrastructure cost.

Keywords—Sensor Network, Graph Theory, MSN,
Communication.

I. INTRODUCTION

HE wireless sensor networks [1, 4] have wide range of
application such as environment monitoring (temperature,

pressure, humidity, etc.), security and surveillance, fire
alarming system, life support system, maritime navigation,
and other potential applications [10, 5, 7]. Apart from cost
constraint, one fundamental technical limitations of a sensor
node is its low energy budget. In order to keep the cost of
sensor network down, an application may follow of the
following two approaches:

A. K. Prajapati is a PhD student with the Department of Computer Science
and Engineering, Oakland University, Rochester, MI, 48309-4401 USA
(e-mail: akprajap@oakland.edu or ashokkp@ieee.org; phone: +1- 248-
678-2565).

Use larger quantity of low capacity tiny sensor
nodes, or

Use limited number of sensor nodes with higher
capabilities.

Tiny sensor nodes with low battery life will not able to do
any complex computation as fast drainage of energy will lead
the network to a quick death. Generally, sensor nodes are
deployed in inaccessible, non-friendly regions for sensing the
data. Therefore, it is not possible to provide service or replace
the deployed sensor nodes. Replacing the spent batteries will
not only be very costly but at times impossible. Therefore,
battery life is crucial to the survival of a sensor network. It
leads us to evolve a planning (scheduling both sensing and
transmission of data) for operation of sensor nodes with low
energy budgets. Therefore, coverage problem is key to any
application involving environmental sensing through a
wireless sensor network.

Various algorithms exist to handle coverage problems. For
example, in k-coverage [8], each point in the region is
monitored by at least k sensor nodes at a time. It
implicitly assumes that there are more sensor nodes than the
number of cells in the region to be covered. The k-set of
sensor nodes are activated periodically to sense the data.
Therefore, no sensor will remain active for entire duration of
sensing. A significant amount of energy can thus be saved
while target area is fully covered with active set of sensors [2].
There are many variations of k-coverage algorithm, some of
which use disjoint sets of sensors and other use non-disjoint
sets [3]. When the numbers of available sensors are less than
the number of cells in the coverage area then monitoring by
static sensors is not possible. The basic problem of coverage
by mobile sensor nodes is that it does not allow for continuous
monitoring. But if an application is tolerant to discrete
periodic monitoring, it is possible to design appropriate
schedules for periodic monitoring of the region with only a
few mobile sensors. Mobile sensor nodes being more
sophisticated can also be designed to support energy-aware
operations. For example, with little extra computation they
may perform data aggregation as well as compression to
avoid unnecessary data transmissions. As a consequence, the

PoPCoRN: A Power-Aware Periodic
Surveillance Scheme in Convex Region using

Wireless Mobile Sensor Networks
A. K. Prajapati

T

276

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

566

network life also can prolong. The contribution of this work is
summarized below.

It proposes energy efficient area monitoring
centralized algorithm i.e., whole sensor network is
controlled by a base station controller.

This scheme is driven by mainly three
algorithms, hexagonalization, clustering, and
sensor scheduling, the first two algorithms are
executed once, at the time of deployment, in the base
station, and the scheduling algorithm runs at every
sensor node.

This paper is organized into following five sections:
section II presents a quick review of some previous work
related to it. Section III presents an analysis of some
theoretical background. Subsequently, section IV discusses
the details of the proposed coverage scheme for periodic
surveillance. Section V describes simulation and results of
experiments. The paper ends with concluding remarks in
section VI.

II. RELATED WORK

Basically gathering of sensory data from environment
is made possible by deploying a set of static sensors [11, 2,
3, 15, 6]. These low cost sensors are, as described earlier;
operate with low power and low resources in hazardous
environment or those inaccessible by human beings. Since
replacement of node batteries in hostile environment is not
possible, a full re-deployment has to be carried out every time
after the deployed network dies. An exercise that should best
be avoided as long as possible. Therefore, most of the work in
the sensor network is centered around the survival of the
network [1]. As a result many energy efficient area coverage
strategies have been developed for sensor networks. Mobility
of sensor nodes [12, 9, 14] adds another important dimension
to the wireless sensor networks.

The mobile sensor nodes introduce dynamic coverage
and measurement of environmental data [12, 9, 14]. In
the paper [13], authors have designed an energy efficient
mobile wireless sensor network, which is also not cost
effective for certain kind of applications. Such networks
are able to give full coverage of the sensing region for
continuous monitoring and one region may be monitored by
different sensor nodes at different times as dictated by front-
end applications, if they are algorithmically well-designed.
The PoPCoRN has been designed in such a way which
includes full coverage along with power-awareness but it
is more suitable for the applications which need periodic
surveillance as well as relatively high power, high
computational ability, slightly more storage, high sensing
ability, etc. Because use of such high power sensor nodes
would increase overall cost of a sensor network but on
the other hand, requirement of the mobile sensor nodes

are very less due to the dynamic nature of the nodes which
makes PoPCoRN more suitable for such applications and
turns out to be efficient in terms of cost, energy, coverage,
capacity and network life with respect to tradition sensor
networks.

III. BACKGROUND

This section is concerned with the theoretical background
that will help in understanding how mobility of sensor
nodes can be program controlled to cover a sensing
region by a small number of mobile sensor nodes within a
pre-specified interval. It is assumed that all mobile sensor
nodes movable with same speed. The interval of sensing that
would guarantee coverage of the entire area is dependent on
the number of available sensor nodes. Therefore, once the
interval of sensing is specified, number of sensor nodes can
easily be estimated to be deployed for gathering sensory data
from the entire coverage area within the specified interval as
per the application’s requirements.

The area within the sensing range of a sensor node is
considered as a unit sensing area. Each unit sensing area is
approximated to a hexagon referred to as a cell, here-in-
after. Each sensor has to cover a single cluster or a set of
connected cells within the interval as per an application’s
requirement.

A Partitioning of Coverage Area
But, before the theory behind the process of gathering

sensory data by a sensor from its assigned cluster of cells, is
discussed, the coverage area is to be partitioned into
hexagonal cells which represent a close packing of the area as
in Fig. 2. This partitioning process is named here as
hexagonalization.

For hexagonalizing any convex region, first it is needed to
find the bounding box of the region. The bounding box is a
rectangular region defined by coordinates of its left-
bottom corner (0; 0), and right-top corner (xmax; ymax). Let
sensor range be R. Then a regular hexagon with circum-radius
R approximates the cell area. The in-radius r of such a
hexagon with circum-radius R can be found with the help of
the following simple geometrical formula.

r= R sin300

r=R 3
2

The rectangular region representing the bounding box
is divided into an m n grid of rectangular cells. Since
the sides of bounding box may not be exact multiples of R,
The approximation errors due to division is distributed
equally among all the cells of the grid. So each cell is of size
(R + e) (R + e`), where e = (xmax % R) = m and e` = (ymax
% R) =n. In order to find the closed hexagon packing of the
bounding box using the above grid, sides of hexagon can be
categorized into three ways,

(i) Type 1 line, parallel to x-axis (horizontal lines),

277

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

567

(ii) Type 2 lines, intersecting x-axis at an angle of 300

(iii) Type 3 lines, intersecting x-axis at an angle of 1200.

Now, consider a cell c[i; j] of the grid, define modX = i%4
and modY = j%4. The line type is determined by use of
following rules:

Rule 1. if (modX%2 = 0 ^ modY %2 = 0) then line
type=1.

Rule 2. if (modX = modY ^ modX%2 6= 0) then line
type=2,

Rule 3. if (modX 6= modY ^ modX%2 6= 0) then line type=3

The mid point of a line segment which defines a side of a
hexagon is the point where in-circle of that hexagon will
touch the corresponding side. Hence, from the knowledge of
geometry, the coordinates (px; py) of the mid point can be
calculated as

px = 3i cX; py = j cY;

where cX = 4
R and cY= 2

r . Again from simple geometrical
properties, it is easy to compute the end points of a line when
mid point of the line (px; py), and parameters cX and cY are
provided.

Consider the line labeled as (2) (i.e., line type 2) in Fig. 1.
The end points of this line be denoted by C(x1; y1) and A(x2;
y2). The mid point has coordinates (px; py). Therefore, it is
obvious from Fig. 1 that the coordinates of end points are (x1

= px + cX, y1 = py + cY), and (x2 = px - cX, y2 = py - cY).
We can actually prove that the line CA intersects x-axis at an
angle 30± as follows. Let the angle be denoted by , then

= tan-1 CB
BA =tan-1 2

2
cY
cX =tan-1

2
r
R =tan-1 2(3)/2R

R =300

It can also be proved that the end points of:

The line type 1 are (px-2cX; py), and (px+2cX; py),
and that of
The line type 3 are (px- cX; py + cY), and (px +
cX; py- cY).

Furthermore, line types 1 and 3 lines will intersect x-axis at
angles 00 and 1200 respectively. It can, therefore, be
concluded as stated by following theorem.
Theorem III.1: Hexagonalization process described above
produces a close packing of a given finite convex region into
regular hexagons each with a circum-radius of R.

Proof. It is already known that any finite rectangular region
can be closely packed by a set of identical regular hexagons
with circum-radii R each. For finding a close packing of any
finite convex region, we proceed as follows:

1. Determine its bounding box. This gives a finite
rectangular region.

2. Find a close packing of the bounding box.
3. Delete all hexagons which fall outside the boundary of

the convex region.

Fig. 1 Hexagon formation

B. Sensing Coverage using Concurrent Graph Search
Once cell partitioning of the coverage area is available

from hexagonalization process, the abstract underlying
structure of this area can be viewed in the form of a graph as
follows:

Each cell is mapped to a vertex of the graph,
A pair of vertices in the graph is connected by an
edge if and only if the cells represented by these
two vertices are adjacent, i.e., they have a common
border.

For example, the underlying graph for the coverage area
depicted in Fig. 2 will be as shown in Fig. 3.

Fig. 2 Hexagonalized region

Using the graph abstraction the coverage problem simply
can be viewed as a concurrent graph search problem. The
search is initiated by placing the mobile sensor at different
nodes and letting each sensor visit a cluster of connected
nodes. The search is designed in way that all sensors can
complete sensing within required time interval. Assuming that
the sensors have identical capabilities, it simply means that the

278

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

568

clusters to be covered by the sensors are approximate of same
size. Therefore, the clustering or grouping of connected cells
of the region of coverage is performed in such a way that it
only produces clusters of approximate same size. However, it
is easy to see that the requirement regarding connectedness of
cluster nodes is expected to interfere in the process of desired
clustering. Fortunately, the underlying graph structure of a
coverage area as indicated earlier is quite regular. Taking
advantage of this regularity in graph structure, a technique can
be devised that will ensure that this clustering process
produces clusters of only two sizes which differs by 1 only.

Fig. 3 Underlying graph of hexagonalized region

To provide a clear abstraction of the problem of
clustering and scheduling sensor movements, certain
theoretical results are discussed here in the form of three
theorems which appear below. The results of these theorems
form the basis of our approach in designing sensing coverage
of a given region by mobile sensors.

Theorem III.2: Suppose k mobile sensors are available for
gathering sensory data from n cells of a convex region. Then
a sensor will cover a cluster of size either n

k or n
k .

Proof: Let n = mk + r, where r < k.
(i) If n is a multiple of k then r = 0, so each cluster is of size

n/k.

(ii) If n is not divisible by k, then r < k, and we can
rewrite the expression for n as

n = m(k - r) + r(m + 1)
n = (k - r) n

k + r (n
k + 1)

n = (k -r) n
k + r n

k

Since x = x + 1,

Hence, at most two clusters sizes n
k (i.e. m) and n

k

(i.e. (m + 1)) exist.

Theorem III.3: Consider the underlying graph G for a given
convex region C. Let s be a boundary vertex of G where the
search commences. Suppose, the search proceeds by visiting
next unvisited vertex with least number of unexplored edges,
then search will always proceed from boundary G to its inside.

Proof: Let all the vertices of the underlying graph G be stored
in a list. The information stored in each node of the list is:

1. Degree of the vertex (number of unexplored edges
incident at the node),

2. Pointers to its neighbors

Start searching G by picking a random vertex s from
its boundary. Since each of the boundary vertexes has a
degree strictly lower than six, the next vertex of least degree
which is connected to the chosen start vertex s should belong
to boundary of G. Only when no boundary vertex is left the
search enters an interior vertex (a vertex with degree six). But
the chosen interior vertex, being connected to an already
visited boundary vertex, will have a degree strictly less than
six; a fact, obvious from Fig. 4. Once a vertex is visited, it is
marked "visited" as shown in the Fig. 4 by dotted lines. A
visited vertex will not be considered for search again. So, the
remaining set of unvisited vertices together can be viewed as a
reduced graph G` obtained by deleting the visited vertex along
with edges incident on it (see Fig. 5). The deletion of edges
reduces degree of the neighbors of visited vertex by one as
shown in Fig. 5. Therefore, every time a boundary vertex s of
a graph G is visited, each time different vertex, say s` of the
reduced graph G` = G –{s} is picked as in Fig. 5. The process
is repeatedly executed until unvisited vertex is left. There-
fore, the search will always progress from boundary of G to its
inside as stated.

Fig. 4 Start vertex visited

The execution of graph search as explained in theorem
III.3, produces a search tree in form of a simple open path is
obtained as shown in the Fig. 6 by the sequence of nodes
connected by thick lines. This simple path is partitioned into k
simple paths each representing a cluster of desired size. The
clusters and the vertices in each cluster are connected
(indicated by separate dotted contours) as obvious from the
Fig. 6.

279

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

569

Fig. 5 Reduced graph after visiting start vertex

Fig. 6 Path produced by graph search and the resulting clusters

IV. COVERAGE SCHEME

For simplicity, the coverage process is broken down into
three distinct tasks, namely, hexagonalization, clustering, and
sensor scheduling. Here each algorithm has been discussed
separately.

A Hexagonalization Algorithm
This algorithm finds a close packing of the coverage region

into minimum number of hexagons with circum-radius of each
being equal to sensing range of the sensor type. It executes
once at the central controller before deployment of the sensor
nodes. Effectively, it finds the minimum number of static
sensor nodes that will be required to cover a given region. On
the basis of underlying geometrical properties for
hexagonalization explained in section III, we divide the
process of hexagonalization into several parts:

One part determines the line type of a hexagonal
cell,
The other part determines the end points of the
respective lines.

Algorithm: Hexagonalization

hexgonalization() {

// This algorithm is executed only once
// at base station before deployment of

// sensor nodes. It divides the area into
// hexagons. A convex polygonal area P is
// provided as input to this algorithm.
// bbox: bounding box.
// xmax: maximum x-coordinate of bbox.
// ymax: maximum y-coordinate of bbox.
// R: sensing range of each sensor node.
// rin: in-radius of hexagon approximating
 // unit sensing area.

p[2]; // Array of type point for storing end
 //points of the line segments.

rin = p3(R+e`)/2;
rowbbox = xmax/(R+e);
colbbox = ymax/(R+e`);

for (i=1; i<=rowbbox; i++) {
for (j=1; j<=colbbox; j++) {

type = setType(i%4, j%4);
p = findPoint(type, i, j);
draw line segment with end
points
p[0],and p[1];

}
}
for (each hexgon h) if (h P) exclude h;

}

The procedure setType is invoked to determine the type of
the line to drawn while the procedure findPoint is required to
determine the end points of the lines to be drawn.

Procedure: setType.

linetype setType(x,y) {

// This procedure is called by
// Hexagonalization for calculating
// type of line(see algo. A).
// type: line type.

switch(x) {
case 0: if (y==2) type=1;
case 1: if (y==1) type=2;

if (y==3) type=3;
case 2: if (y==0) type=1;
case 3: if(y==3)type=2;

if (y==1) type=3;
}
return type;

}

Procedure: findPoint

point findPoint(type, i, j) {

// This procedure is called by
// Hexagonalization for calculating
// end points of given line type.
// (px, py): mid point of the line

280

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

570

// whose ends, points are to be computed.

p[2]; // Array of point type for storing
 // end points of the line segments
cX = (R+e)/4;
cY = rin/2;
px = 3i*cX;
py = j*cY;

switch (type) {
case 1: p[0].x = px-2*cX;

p[0].y = py;
p[1].x = px+2*cX;
p[1].y = py;

case 2: p[0].x = px+cX;
p[0].y = py-cY;
p[1].x = px-cX;i
p[1].y = py+cY;

case 3: p[0].x = px-cX;
p[0].y = py-cY;
p[1].x = px+cX;
p[1].y = py+cY;

}
return p;

}

B. Clustering Algorithm
This algorithm takes vertices of the planer graph (i.e.

centers of hexagons) as an input and groups the nodes into as
many clusters as the number of available mobile sensor
nodes. Each cluster has disjoint set of nodes (see theorem
III.3) and nodes in the each cluster are connected. It finds k
disjoint, homogeneous or heterogeneous size clusters
depending on whether k is even or odd respectively.
When k is odd, (k-r) clusters of size m and r clusters of size (m
+ 1) are produced, where r = n%k (see theorem III.2). For
convenience in description, a top level algorithm only
describes the search process as explained in section III.
The data structures which the top level algorithm requires as
input are constructed by the algorithm buildClusterLists with
the input from hexagonalization process described in the
previous section.

Algorithm: Clustering.

buildClusters() {

// This algorithm is executed only
// once at base station before
// deployment of sensor nodes.
// It partitions the underlying graph
// of hexagonalized area into k
// simple open paths or clusters
// where k is the number of available
// sensors. A cluster i is provided by
// list[i], its sequence of vertices.

// m: cluster size, i.e., number of
// vertices in a cluster.
// k1: number of clusters of size
// m, k = k1 when r = n%k=0.
// k2: number of clusters of size m + 1.

if (r 0) {
k1 = k-r;
k2 = r;

}
if (r == 0)

buildClusterLists(m,k, list[1..k]);
else {

buildClusterLists(m,k1, list[1..k1]);
buildClusterLists(m,k2, list[1..k2]);

}
for (i=1; i<=k; i++){

send list[i] to sensor i;
 }
}

Procedure: buildClusterLists.

// This procedure is called by
// clustering for computing clusters.
// It uses a standard method to create
// a doubly linked list which is referred
// to as doublyLinkedList(info,prev,next)
// n: number of clusters to be computed.
// m: cluster size.

buildClusterLists(m, n) {
 if (n 0) {
 pick a vertex v from boundary;
 while(n > 0) {
 mark v;

 nbr reference to neighbor
of v with least
unvisited degree;
list[n]=new doublyLinkedList
(v, null, nbr);
p list[n].next;
for (j=m ¡ 1;j>1;j-) {
 mark p.vertex;
 nbr reference to
 neighbor of p.vertex
 with least unvisited
 degree;
 p=new doublyLinkedList
 (p.vertex, p.prev, nbr);
 p p.next;
}
if (j==1){

p=new
doublyLinkedList(p.vertex,
p.prev, null);

 }
n = n-1;

281

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

571

pick next vertex with least
unvisited degree ;

}
}

}
}

C. Node Scheduling Algorithm
The cluster lists obtained from the previous algorithm are

used as an input to this algorithm. Note that each node of a list
corresponds to a node of the cluster represented by the list.
One list is allocated to each sensor node. The scheduler uses
this list for traversing the cells (vertices) corresponding
cluster. Each list is organized in the form of a doubly linked
list with following information at each node of linked list:

Address of cell corresponding to the node,
Left and right pointers.

Each sensor checks the current node of the list assigned to
it. The sensor picks the address of cell in the current node of
the linked list, senses data from that cell. The sensed data is
then transmitted to base station. After that the sensor picks up
the address of the cell corresponding to the list node pointed
to by its right pointer and continues both sensing and
transmitting next cell’s data. When the right pointer of the
current node points to null, the left pointer is picked up and
the process continues using successive left pointers till left
pointer of the current node points to null. After that the right
pointer is picked up again. Essentially, each sensor node
oscillates between two end vertices of the cluster assigned to
it. The details of the traversal scheme of a single sensor as
outlined above are provided by the scheduler algorithm below.

Algorithm: Sensor Scheduler.

sensorScheduler() {

// This algorithm is to be executed
// by a sensor node. The node traverses
// the cluster or the path using the
// list provided by the base station.

if(list==null) error;
while (true) {

while (list.next null) {
store the data;
list list.next;

}
Transmit data to the base station;
while(list.prev null) {

store the data;
list list.prev;

}
Transmit data to the base station;

}

V. EXPERIMENTS

The simulation has been done using Java 1.5 on a P4
Machine. The coverage area considered is 72,683 (pix) units.
With a homogeneous circular cell of size approximately 1810
units, i.e., with a sensor range of 24 units the coverage region
will consists of approximately 41 cells. But since each cell
area was approximated by its inscribed hexagon (to cover the
whole sensing area without holes) exactly 58 hexagonal cells
are required. So the underlying graph representing the
coverage area consists of 58 vertices. As Fig. 7 depict, indeed
the result of hexagonalization process (see section A) on the
coverage area produced a packing of the area by exactly 58
hexagons.

In order to sense environmental data from the cells we
experimented by varying mobility of sensors. It has been
considered that the factors like speed of a mobile sensor, and
the distance traveled by it for moving from one cell to an
adjacent cell. These parameters are assumed to be unity.
Although we have carried out experiments with actual
distances and different speeds of mobile sensor, the behavior
of the plot remained unchanged, only traversal time varied
with distance and speed. The results has been taken by in-
creasing the number of sensor nodes and calculated time
taken in traversal of whole region at every period. In Fig. 8,
in-circled hexagons show the one end node of every cluster
and number inside circle shows the cluster number. As in our
simulation, there are total 7 clusters and first two clusters have
9 nodes and last five clusters have 8 nodes.

Fig. 7 Hexagonalized area

Fig. 8 Cluster Formation

282

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

572

Fig. 9 Rectangular Region of Same Area as Convex Region in
Fig. 7 with relative error 0.004%

The plot shown in the Fig. 10 is for the number of sensor
nodes versus the traversal time for any convex region
(including rectangular regions). As the number of sensor
nodes increases, traversal time decreases, i.e., traversal time is
inversely proportional to the number of sensor nodes. As it is
clear from the graph, when number of sensor nodes are 58
(for convex region), traversal time is zero because each
sensor node is responsible for sensing data from just one cell
assigned to it. Whereas if only single mobile sensor is
assigned to sense data from all the 58 cells, the traversal time
is maximum, i.e., 57 units. The rectangular region of
approximate same area (72,680) as shown in Fig. 7,
hexagonalized rectangular region (produced from the
simulation) looked like the one in Fig. 9. The number of
sensors required to cover entire region statically is 60. A
single sensor takes 59 units of time in one cycle for traversing
the entire region.

Fig. 10 This graph shows the time taken in traversing the given area
with the increase of sensor nodes using Speed=1 unit, and

Separation between Two Adjacent Nodes=1 unit for Rectangular
Region and Convex Region of same areas with the relative error of

0.004%

The plot in Fig. 11 shows the performance of mobile sensor
network in terms of the network cost. As the size of region
increases, cost of network increases. The cost has been
computed by assuming that every sensor costs one unit,
and the maximum allowed interval for surveillance
monitoring of the region is fixed at 5 units.

Fig. 11 This graph is drawn for the cost of the sensor network with
the increase in the Area of the region, Maximum Traversal Time=5

units, and the cost per sensor node=1 unit

VI. CONCLUSION

The periodic surveillance by wireless mobile sensor nodes
represents a special class of sensor network applications. It
has been shown that for periodic monitoring, very low cost
mobile sensor networks can be designed that are able to fulfill
the desired task and even with the same cost as tradition
sensor networks, high power mobile sensor net- works can be
designed. PoPCoRN is better trade off between cast and
period (between two consecutive surveillances). Main
drawback with this schemes are, number of sensor nodes
totally depend on the period of surveillance and sensor nodes
require some more memory to keep the cluster information
and some small processing unit for local processing because
processing is always cheaper than communication. If every
time node accesses information from any central controller, it
would increase the communication cast as well.

ACKNOWLEDGMENT

The author thanks to Dr. G.Sanyal, Dr. R.K. Ghosh, Dr. F.
Mili, and the anonymous reviewers for their continued and
valuable suggestions in improving the work throughout.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks:a survey. Computer Networks, 38:393– 422, 2002.

[2] M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy-efficient target
coverage in wireless sensor networks. 24th IEEE Conference on
Computer Communications, 3:1976 – 1984, March 2005.

[3] J. Carle and D. Symplot-Ryl. Energy-efficient area mon- itoring for
sensor networks. Ad-hoc networking by IEEE Computer Society,
37(2):40 – 46, February 2004.

[4] C.-Y. Chong and K. S.P. Sensor networks: Evolution, opportunities, and
challenges. Proc. of IEEE, 91(8):1247–1256, August 2003.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. In Proceedings of
ACM International Conference on Mobile Computing and Networking,
pages 263–270, August 1999.

[6] T. Huang and Y. Tseng. Coverage problems in wireless sensor
networks. ACM Mobile Networks and Applications (MONET),
special issue on Wireless Sensor Networks, 10(4):519– 528, Aug 2003.

[7] J. M. Kahna, R. H. Katz, and K. S. J. Pister. Next century challenges:
Mobile networking for ‘smart dust’. In 23rd IEEE Conference on
Computer Communications, pages 271 – 278, March 2004.

283

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

573

[8] S. Kumar, T. H. Lai, and J. Balogh. On k-coverage in a mostly
sleeping sensor network. In Proceedings of the 10th annual international
conference on Mobile computing and networking, pages 144 – 158, Sep
2004.

[9] B. Liu, P. Brass, and O. Dousse. Mobility improves coverage of sensor
networks. In Proceedings of ACM Mobihoc’05, pages 300 – 308,
March 2005.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of
ACM International Conference on Mobile Computing and Networking,
pages 88 – 97, September 2002.

[11] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava.
Coverage problems in wireless ad-hoc sensor networks. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’01), 3:1380–1387, April 2001.

[12] T. F. L. Porta, G. Cao, and G. Wang. Movement-assisted sensor
deployment. IEEE Transactions on Mobile Computing, 5(6):640 – 652,
June 2006.

[13] P. S. and L. F.L. Energy efficient mobile wireless sensor networks. In
ASME International Mechanical Engineering Congress and Exposition,
2006.

[14] C. Schindelhauer. Mobility in wireless networks. In 32nd International
Conference on Current Trends in Theory and Practice of Computer
Science, pages 100–116, Sep 2006.

[15] L. Xiang-Yang, W. Peng-Jun, and O. Frieder. Coverage in wireless
adhoc sensor networks. IEEE Transactions on Computers, 52:753– 763,
June 2003.

A. K. Prajapati is a PhD student in the Oakland University Michigan, and
received the B. Tech.(CSE) from KNIT Sultanpur India and M.Tech.(CSE)
from NIT Durgapur India. He has been with UP Technical University, Wipro
Technologies, and Hughes before joining the PhD programme. His research
interests include Wireless Networks, WiMAX, Optimizations, etc. He is a
member of the IEEE.

284

