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Pontrjagin Duality and Codes over Finite
Commutative Rings

Khalid Abdelmoumen, Mustapha Najmeddine, Hussain Ben-Azza

Abstract—We present linear codes over finite commutative rings
which are not necessarily Frobenius. We treat the notion of syndrome
decoding by using Pontrjagin duality. We also give a version of Del-
sarte’s theorem over rings relating trace codes and subring subcodes.
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I. INTRODUCTION

We recall some notions of algebra useful for the following
discussion ( see [3] for more background). The reader may
skip to the next sections.

Here, we consider an unitary ring A, which is not necessar-
ily commutative. An A−module I is said injective if for any
injection i : M → N of A−modules and for every linear
application f : M → I , there exists a linear application
g : N → I such that f = g ◦ i. A submodule N of
an A−module M is said essential if for every submodule
L �= 0, we have N ∩ L �= 0. We denote by Soc(M) the
socle of an A−module M which is the intersection of all
essential submodules, and J(A) is the Jacobson radical (it is
the intersection of all non-trivial maximal ideals of A). For a
left ideal I , resp. a right ideal K, of A the annihilators are
l(I) = {a ∈ A : aI = 0} and r(I) = {a ∈ A : Ia = 0}. An
Artinian ring A is said quasi-Frobenius if for any left ideal I
and right ideal K, we have

l(r(I)) = I, r(l(K)) = K. (1)

Furthermore, if Soc(A) � A/J(A), then A is said Frobe-
nius. If the ring is commutative, then the two notions coincide,
and the relation (1) becomes l2(I) = I .

Wood [1] has shown the fundamental result that The
MacWilliams relation holds for a code if and only if the
ring is quasi-Frobenius, in the framework of linear functional-
based duality. This result singles out the class of codes
over quasi-Frobenius rings. But we make emphasis here on
finite commutative rings, not necessarily Frobenius, and on
Pontrjagin duality.

In the sequel of this paper, we consider a finite commutative
ring A of cardinality q. Paragraph II introduces the concept
of linear codes over a ring. Paragraph III recalls Pontrjagin
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duality and basic facts ( such as a module over A is isomorphic
to its bidual) . Paragraph IV presents syndrome decoding. In
Paragraph V the control matrix is introduced for a A−code
with a free dual, and we also show how a code is decomposed
in terms of its local codes (that is codes over local rings). In
paragraph VI, we present an example. Paragraph VII gives
a version of Delsarte’s theorem for the ring extension A ⊆
B, requiring the existence of a nondegenerate bilinear ’form’
with values in the Pontrjagin dual of A and that the subring
A is Frobenius. The last section is a conclusion for further
investigations.

II. DEFINITIONS

Definition 1: 1) A linear code C over A of length n is
a submodule of A

n

. ( we also say that C is a linear
A−code.)

2) A linear code of length n free over A of rank k is said
an [n, k]−code over A.

Definition 2: 1) The Hamming distance between x and
y in A

n

is d(x, y) = |{i ∈ {1, . . . , n} : x
i
�= y

i
}|.

2) The Hamming weight of x ∈ A
n

is w(x) = d(x, 0).
3) The minimal distance of a code C is d(C) =

min{d(x, y) : x �= y ∈ C} = min{w(c) : c ∈ C \ {0}}.
Definition 3: Let C be an [n, k]−code linear over A with

basis (e
1
, . . . , e

k
) .

1) The matrix G ∈ M
k,n

(A) with lines e
i
, 1 ≤ i ≤ k is

said the generator matrix of C.
2) The message m ∈ A

k

is encoded by the codeword c =
mG ∈ C.

III. PONTRJAGIN DUALITY

A general background reference for Pontrjagin duality is [7].
Let M be an A−module and T = R/Z � {z ∈ C :| z |= 1}
the one dimensional torus.

Definition 4: A charater of M is a group homomorphism
from (M,+) to T.
A character χ is trivial over a subset N of M if ∀x ∈
N,χ(x) = 1. We define a addition on characters by : for
χ and χ′ and all x ∈M ,

(χ+ χ′)(x) = χ(x)χ′(x).

The set of characters M̂. is an abelian group. We define for a
character χ ∈ M̂ , a scalar a ∈ A and an element x ∈M

(a · χ)(x) = χ(ax).

Thus M̂ is an A−module.
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Definition 5: 1) The orthogonal of a submodule N of
M is the submodule of M̂ :

N
⊥
= {χ ∈ M̂ : χ = 1 over N}

2) The dual of M̂ , denoted ̂̂M, is called the bidual of M.
3) The orthogonal of a submodule H de M̂ is the submod-

ule of M :

H
⊥
= {x ∈M : (∀χ ∈ H), χ(x) = 1}.

4) The bi-orthogonal of N is the orthogonal N
⊥⊥ ⊂M of

N
⊥
.

Theorem 1 (Extension): If N is a submodule of M , then
the modules M̂/N and N

⊥
are isomorphic .

Theorem 2 (Separation): Suppose that M is a module of
finite cardinality. Let N be a submodule and x ∈M.

1) A necessary and sufficient condition for x = 0 is that
for all χ ∈ M̂, χ(x) = 1.

2) x ∈ N if and only if every character of M trivial on N
is also trivial at x.

3) The module M is rflexive (i.e., isomorphic to its bidual).
4) The modules N and N

⊥⊥
are isomorphic.

IV. SYNDROME DECODING

Let C be a linear A−code of length n, of minimal distance

d and t =
[
d− 1

2

]
.

Definition 6: The syndrome of x ∈ A
n

is s(x) =
(χ(x))χ∈C⊥ .

Proposition 1: Let x ∈ A
n

. Then x ∈ C iff s(x) = 1 =(
1

χ

)
χ∈C⊥ where 1

χ
= 1 ∈ T.

Proof
That the condition is necessary is a consequence of the
orthogonal of C. Conversely, suppose that s(x) = 1. then
for all χ ∈ C

⊥
, χ(x) = 1. So, x ∈ C

⊥⊥
= C. �

Proposition 2: Two elements x and y of An have the same
class in An/C iff they have the same syndrome.
Proof
Note that every character χ : An → T is a group morphism to
the multiplicative group T . The group T

|C⊥| is equiped with
pointwise multiplication. We have:

x̄ = ȳ ⇐⇒ x− y ∈ C
⇐⇒ s(x− y) = 1
⇐⇒ χ(x− y) = 1, ∀χ ∈ C⊥

⇐⇒ χ(x)χ(y)−1 = 1, ∀χ ∈ C⊥

⇐⇒ χ(x) = χ(y), ∀χ ∈ C⊥

⇐⇒ s(x) = s(y)

�
Remark 1: Let y be the received word and e the associated

error vector . Then c = y − e ∈ C and s(y) = s(e).

Proposition 3: Let e be the error vector of weight ≤ t and
syndrome s. Then e is the unique vector of weight ≤ t and
with syndrome s.
Proof

Let e′ ∈ A
n

of weight ≤ t and s(e) = s(e′). Then, by the
proposition 2, we have e− e′ ∈ C.

w(e− e′) = d(e− e′)
= d(e, e′)
≤ d(e, 0) + d(0, e′)
≤ w(e) + w(e′)
≤ 2t < d

So e− e′ = 0 and e = e′. �
Based on these results, we describe a syndrome decoding

algorithm which computes the error vector:
Input : received noisy word y ∈ A

n

.
Output : codeword c nearest to y.

1) Compute the syndrome s(y) of y.
2) Determine the class ȳ of y modulo C.
3) Determine the vector e ∈ ȳ of weight ≤ t with s(y) =

s(e).
4) Return c = y − e ∈ C.

V. CONTROL MATRIX

Let C be an [n, k]−code linear over A such that C
⊥

is free
over A.

Proposition 4: All the bases of C
⊥

have the same cardi-
nality and C

⊥
is an [n, n− k]−code linear over A.

Proof
Let h be the cardinal of a basis of C

⊥
. By theorem 1, C

⊥
and

Ân

/C are isomorphic, and∣∣∣C⊥
∣∣∣ = ∣∣∣Ân

/C

∣∣∣ = ∣∣∣An

/C

∣∣∣ = [An

: C
]
=

∣∣An ∣∣
|C| .

Therefore, q
n

= q
k

q
h

and h = n− k. Thus, C
⊥

is an [n, n−
k]−code. �

A linear A−code is said local when the underlying ring is
local. We will indicate how a general linear A−code C is the
product of local codes and will give a condition for C⊥ to be
free when C is free. We are indebted to and inspired by the
work of [5] for the next proposition. Let M1, ...,Ml be the set
of maximal ideals of A. For each ideal I denote by i(I) =

min{j : Ij = Ij+1} the nilpotency of I. Let Ai = A/M
i(Mi)

i

the local ring with maximal ideal Mi/M
i(Mi)

i . Then

A =

l∏
i=1

Ai (2)

By using the Chinese remainder theorem we get

C =
l∏

i=1

Ci (3)

Thus the decomposition of a ring as (2) induces a decompo-
sition of a code (3) as a product of its ’local codes.’ Also we
have d(C) ≤ min{d(Ci) : 1 ≤ i ≤ l}. Using the property
that the character of a product is the product of characters,
and from (3), we get a decomposition of the dual

C⊥ =
l∏

i=1

C⊥
i (4)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:8, 2011

1221

We recall that an A−module is said projective if it is a
direct summand of a free A−module[9], and since a projective
module over a local ring is free, we have

Proposition 5: Suppose C is free. Then C⊥ is free iff each
of its local codes C⊥

i is projective.
Remark 2: Since a linear A−code C is trivially Noetherian

and Artinian, it admits a composition series ( or a Jordan-
Hölder series), and we may study the concept of its length (
as an A−module), even if the code is not free.

Definition 7: The matrix H ∈ M
n−k,n

(A) formed by the
lines of a basis vectors of the code C

⊥
is called the control

matrix of C.
Proposition 6: Suppose that A = Z/mZ

and that H is the
control matrix of C. Then, for all x, y ∈ A

n

:

1) s(x) = 1 iff Hx
t

= 1.
2) s(x) = s(y) iff Hx

t

= Hy
t

.

Proof
1) That the condition is necessary is trivial .
Conversely, Suppose that Hx

t

= 1. Let

H =

⎛⎜⎝ χ
11

. . . χ
1n

...
. . .

...
χ

n−k,1
. . . χ

n−k,n

⎞⎟⎠
Then for all i = 1 . . . n − k, ei = (χ

i1
, . . . , χ

in
) ∈ C

⊥
.

Let χ ∈ C
⊥
, then there exists a

1
, . . . , a

n−k
in A such that

χ =

n−k∑
i=1

a
i
e
i
. We have

χ(x) =
n−k∏
i=1

(aiei) (x)

=
n−k∏
i=1

e
i
(a

i
x)

=
n−k∏
i=1

(e
i
(x))

a
i
= 1

Therefore, s(x) = 1.
2) uses 1). �
Proposition 7: Let H be the control matrix of a code C.

Then the minimal distance of C is the minimal number of
dependent columns of H.
Proof
Let d be the minimal distance of C, v

1
, . . . , vn column vectors

of H, c = (c
1
, . . . , c

n
) ∈ C of weight w(c) = d and

I = {i ∈ {1, . . . , n} : c
i
�= 0}. Then |I| = d and

∑
i∈I

c
i
v
i
= 0.

So, (vi)i∈I is a dependent family.
Conversely, let (v

i
)i∈J be a dependent family. Then there

exists (α
i
)i∈J ⊂ A such that

∑
i∈J

α
i
v
i

= 0. Let c =

(α
1
, . . . , α

n
) ∈ A

n

such that for all i �∈ J, α
i
= 0. Then

Hc
t

= 1 and c ∈ C. So, |J | ≥ d. �

VI. AN EXAMPLE

We give a simple example illustrating the concepts studied
above.

Let A = Z/4Z and C the linear code over A of length 5 and
generator matrix

G =

(
1 0 1 3 0
0 1 1 0 3

)
Let v

1
= (1, 0, 1, 3, 0) and v

2
= (0, 1, 1, 0, 3) be the lines of

G. We have Â =
{
1, ψ, ψ

2

, ψ
3
}
, such that ψ(1) = ω and

1(1) = 1 ∈ T where ω is a primitive root of order four of
unity . The Pontrjagin dual of A

5

is Â
5

. We will determine
a control matrix H of C. Let χ = (χ

1
, χ

2
, χ

3
, χ

4
, χ

5
) ∈ Â5

such that χ
1
(1) = ω

1
, χ

2
(1) = ω

2
, χ

3
(1) = ω

3
, χ

4
(1) = ω

4

and χ
5
(1) = ω

5
. We have

χ ∈ C
⊥ ⇐⇒

{
χ (v

1
) = 1

χ (v
2
) = 1

⇐⇒
{

ω
1
ω

3
ω

3

4
= 1

ω
2
ω

3
ω

3

5
= 1

⇐⇒
{
ω

4
= ω

1
ω

3

ω
5

= ω
2
ω

3

Then χ(1) =
(
ω

1
, ω

2
, ω

3
, ω

2
, ω

1
ω

2

3

)
. There exists α

1
, α

2
, α

3

and α
3

in A such that for all i = 1..3, ω
i
= ω

α
i . Then χ =

α
1
ϕ

1
+α

2
ϕ

2
+α

3
ϕ

3
where ϕ

1
(1) = (ω, 1, 1, ω, 1) , ϕ

2
(1) =

(1, ω, 1, 1, ω) et ϕ
3
(1) = (1, 1, ω, ω, ω) . Therefore, C

⊥
is free

and the following matrix

H =

⎛⎝ω 1 1 ω 1
1 ω 1 1 ω
1 1 ω ω ω

⎞⎠
is the control matrix of C. By proposition 7, the minimal
distance of C is d = 3 and this permits to detect 2 errors and

to correct one error, t =
[
d− 1

2

]
= 1. Let c = 11233 ∈ C the

transmitted message and y = 11213 the received noisy word.
In order to detect an error, we compute the syndrome of y :

Hy
t

=

⎛⎝ω2

1

ω
2

⎞⎠ �= 1

Thus the message is erroneous. The class of y modulo C is
y = {x = (x

1
, x

2
, x

3
, x

4
, x

5
) : s(x) = s(y)} .

s(x) = s(y) ⇐⇒ Hxt = Hyt

⇐⇒
⎧⎨⎩ x

1
+ x

4
= 2

x
2
+ x

5
= 0

x
3
+ x

4
+ x

5
= 2

⇐⇒
⎧⎨⎩ x

4
= 2 + 3x

1

x
5

= 3x
2

x
3

= x
1
+ x

2

By theorem 2, C is defined by the equations⎧⎨⎩ x
4

= 3x
1

x
5

= 3x
2

x
3

= x
1
+ x

2

and y = e, with e = 00020. Since d = 3 and w(e) = 1 ≤
t, e is the convenient error. Thus the transmitted codeword is
y − e = 11233 = c.
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VII. TRACE CODES

A. Generalities

Let k = Fq ⊂ K = Fqm be a finite Galois field extension.
For a K-linear code C, we denote by C⊥ the dual code with
respect to the usual inner product, Res(C) = C|k = C ∩ kn
the code restricted to k, and Tr(C) = {Tr(c) : c ∈ C} the
trace code.

Theorem 3 (Delsarte): For a K-linear code C, we have

Res(C)⊥ = Tr(C⊥)

Our aim is to give a version of this theorem over finite
commutative rings, following the proof given in [4].

In the following A,B designate finite commutative rings
with identities and n is a nonnegative integer. We recall the

Definition 1: We say that C ⊆ Bn is a linear B−code if
C is a submodule of Bn.

Suppose that A ⊆ B is a ring extension such that B
is an A−algebra with dimension dimAB = m and basis
(wi)1≤i≤m. Then we define the trace function

TrB/A = Tr : B → A

b �→ TrB/A(b) = TrB/A(bwi)1≤i≤m = Tr((αij)1≤j≤m)

where bwi =
∑m

i=1
αijwj , extended to

Tr : Bn → An, (bi)i �→ (Tr(bi))i.

It is easy to see that for every a ∈ A, we have TrB/A(a) =
ma. Recall that the characteristic of a ring A denoted charA
is the least positive integer p such that for all x ∈ A, px = 0.

Lemma 1: If charA does not divide m, then the trace
function is nonzero.
For an extension A ⊆ B and a linear B−code C, we define
the trace code and the restricted code, respectively:

Tr(C) = {Tr(c) : c ∈ C}
Res(C) = C|A = C ∩An

We recall the following fundamental and well-known
Lemma 2: [3] If A is a ring, then Â is in injective as an

A−module.

B. A form of Delsarte’s theorem

We make the following hypothesis : there exists a nonde-
generate bilinear form βA = β : A×A→ Â extended to

βA : An ×An → Â, (x, y) �→
n∑

i=1

βA(xi, yi).

For C a linear A−code, we define its β−dual as

lβA
(C) = {a ∈ An : βA(a, b) = 0, ∀b ∈ C} ⊆ An

We need the following result which is called the double
annihilator property, which is well documented in [1], [2]

Lemma 3: let C ⊆ C ′ be a linear codes over a Frobenius
ring A. Then

l2βA
(C) = C and lβA

(C ′) ⊆ lβA
(C).

Suppose A ⊆ B is a ring extension such that A is equipped
with the form βA = β. Then, by lemma 2, there exists β′ :
Bn × Bn → Â such that β′

|A2 = β (extension). Furthermore,
we will use the existence of an isomorphism ρ : Â → A
and that β : An × An → Â � A is given by the matrix
M = (mij)n×n with values in A :

β(x, y) =

n∑
i,j=1

mijxiyj .

Note that the group isomorphism ρ : Â → A is obtained
by a standard use of the main theorem of the decomposition
of a finite abelian group in terms of cyclic groups. In the
following, we will identify ρβ with β and make use of the
matrix representation M of β.

Lemma 4: Let f : B → A be a linear map, extended to Bn

by f(b1, ..., bn) = (f(b1), ..., f(bn)). Then for every a, b ∈
Bn, we have β′(f(b), a) = f(β′(b, a)).
Proof
We have

β′(f(b), a) =
∑
i,j

mi,jf(bi)aj =
∑
i

f(bi)
∑
j

mi,jaj

=
∑
i

f(bi
∑
j

mi,jaj) = f(
∑
i

bi
∑
j

mi,jaj)

= f(β′(b, a))

�
In particular, for the trace function, β′(Tr(b), a) =

Tr(β′(b, a)).
Theorem 4: For any linear B−code C, and for A Frobe-

nius, if charA does not divide m, then

Tr(lβ′(C)) = lβ(C|A)

Proof
We show that Tr(lβ′(C)) ⊆ lβ(C|A). Let a = Tr(b) =
(Tr(bi)1≤i≤n), where b ∈ lβ′(C). Then

∀c ∈ C, β′(b, c) = 0. (5)

Let a′ ∈ Res(C). We have

β(a, a′) = β(Tr(b), a) =
n∑

i=1

β(Tr(bi), a
′
i).

Then, by lemma 4 we have β(a, a′) =
∑n

i=1
Tr(β(b, a′)). It

follows from (5) that β(a, a′) = 0.
Conversely, we show the inverse inclusion. By lemma 3,

this is equivalent to showing lβ(Tr(lβ′(C))) ⊆ C|A. Suppose
that this is not the case. Let u ∈ lβ(Tr(lβ′(C))) \ C|A. Then
∃v ∈ lβ(C|A) such that β(u, v) �= 0. note that we are using
the identification ρ : Â � A ; thus β(u, v) is identified with
ρ(β(u, v)). By lemma 1, ∃γ ∈ B such that Tr(γ·β(u, v)) �= 0.
Using lemma 4, we have

β(u, Tr(γv)) = Tr(γβ(u, v)) �= 0.

But ∀x ∈ Tr(lβ′C)), β(u, x) = 0 and γv ∈ lβ′(C). So,
β(u, Tr(γv)) = 0. A contradiction. �
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Remark 3: We may also give a version of this theorem by
considering βB : B2 → B̂ and its restriction βB↓A to A. Then
we may have the following version

Tr(lβB
(C)) = lβB↓A(C|A)

VIII. CONCLUSION

In this paper, we have studied block codes over finite
commutative rings A, giving a concept of syndrome in the
framework of Pontrjagin duality. Also, an analogue of Del-
sarte’s theorem is proved. We note that a comparison between
linear functional-based duality and Pontrjagin duality has been
treated for ’projective codes’[5]. It is well known [6] that the
ring A has a unique decomposition

A = A1

⊕
...
⊕

Am,

where each Ai is a local ring. This in turn gives a decomposi-
tion of the code in terms of ’local codes’, which suggests
further investigation of codes over local rings ( both for
encoding and decoding). With the notation of section VII,
if we suppose that the extension A ⊆ B of local rings is
Galois [9], with Galois group G, then it is easy to see that if
a B−code is G−invariant then Res(C) = Tr(C). This result
and its converse are proved in the case of finite fields in [8].

As a general conclusion, more examination of particular
codes over rings (such as cyclic codes) is possible, with use
of Pontrjagin duality.
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