Planning rigid body motions and optimal control problem on Lie group $S O(2,1)$

Nemat Abazari, Ilgin Sager

Abstract

In this paper smooth trajectories are computed in the Lie group $S O(2,1)$ as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.

Keywords-Optimal control, Hamiltonian vector field, Darboux vector, Maximum Principle, Lie group, Rigid body motion, Lorentz metric

I. Introduction

AN optimal control problem is used for rigid body motions and formulation on Lie group $S O(2,1)$ where the cost function to be minimized is equal to the integral of the Lorentz inner product of Darboux vector of a timelike curve. This problem is analogous to the elastic problem in [1], [4]. The coordinate free maximum principle [2], [3] is applied to solve this problem. In [4] the author applied an integrable case where the necessary conditions for optimality can be expressed analitically and the corresponding optimal motions are expressed in a coordinate free manner. These optimal motions are showed to trace helical paths. In this study, the optimal control problem formulation is considered as the general theory of optimal control for the motion planning application, framed curves and left-invariant Hamiltonian systems are applied to this particular setting. Frenet frame of the curve is applied to the LorentzMinkowski space to solve the problem and a particular set of curves is analyzed that satisfies these necessary conditions and provides analytic solutions for the corresponding optimal motions. An application of the Maximum Principle to this problem results in a system of first order differential equations that yields coordinate free necessary conditions for optimality. This system minimizes the cost function of elastic energy which is spent to track a timelike curve in Minkowski space.

II. Frenet frame

The Lorentz-Minkowski space is the metric space $E^{3}=$ $\left(R^{3},<,>\right)$ where the metric is given by

Nemat Abazari, Department of Mathematics, Islamic Azad universityArdabil Branch, Ardabil, Iran, E-mail: nematabazari@gmail.com.
Ilgin Sager, Department of Mathematics, Izmir University of Economics, Izmir, Turkey, E-mail: ilgin.sager@ieu.edu.tr.

$$
\begin{equation*}
<x, y>=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \tag{1}
\end{equation*}
$$

The metric $<,>$ is called as Lorentzian metric.
Let H^{2} denote the hyperbolioid $x_{1}^{2}-\left(x_{2}^{2}+x_{3}^{2}\right)=1, x_{1}>0$
The isometry group for a hyperbolic plane H^{2} is denoted by $S O(2,1)$. Recall that $S O(2,1)$ is the group that leaves the bilinear form $<,>$ in E^{3} invariant.

$$
\begin{equation*}
<A x, y>+<x, A y>=0 \tag{2}
\end{equation*}
$$

is satisfied for any 3×3 matrice A on the Lie algebra L of $S O(2,1)$.

It is verified that L is equal to the space of matrices

$$
A=\left[\begin{array}{ccc}
0 & a_{1} & a_{2} \tag{3}\\
a_{1} & 0 & -a_{2} \\
a_{2} & a_{3} & 0
\end{array}\right]
$$

Definition A vector $v \in E^{3}$ is called
1.Spacelike if $\quad<v, v \gg 0$ or $v=0$
2.Timelike if $\quad<v, v><0$
3.Lightlike if $\quad<v, v>=0$ and $v \neq 0$

Definition For a curve α in E^{3}, α is spacelike (resp. timelike, lightlike) at t if $\alpha^{\prime}(t)$ is a spacelike (resp. timelike, lightlike) vector. If it is for any $t \in I$, the curve α is called spacelike (resp. timelike, lightlike).

In this paper it is supposed that α is a timelike curve parametrized by lenght-arc s. In this case $T(s)=\alpha^{\prime}(s)$ as the unitary tangent vector at s is a timelike vector and moreover $\mathrm{T}(\mathrm{s}) \neq 0$ is the spacelike vector independent with $T(s)$.

The curvature of α at s is defined as $k_{1}(s)=\left|T^{\prime}(s)\right|$. The normal vector $N(s)$ is defined by

$$
\begin{equation*}
N(s)=\frac{T(s)}{k_{1}(s)}=\frac{\alpha^{\prime \prime}(s)}{\left|\alpha^{\prime \prime}(s)\right|} \tag{5}
\end{equation*}
$$

Moreover $k_{1}(s)=<T(s), N(s)>$ is the curvature of the curve α. The binormal vector $B(s)$ is defined by

$$
\begin{equation*}
B(s)=T(s) \times N(s) \tag{6}
\end{equation*}
$$

where $B(s)$ is unitary and spacelike vector. And $k_{2}(s)=<$ $N^{\prime}(s), B(s)>$ is defined as the torsion of the curve α. For each $s,\{T, N, B\}$ is a unit orthonormal base of E^{3} which is called the Frenet trihedron of α.

By differentiation each one of the vector functions of the frenet trihedron frame $R=(T|N| B) \in L$ about the curve $\alpha: I \rightarrow E^{3}$ described by the following differential equations:

$$
\begin{align*}
\alpha^{\prime}(t) & =T \\
T^{\prime} & =k_{1} N \\
N^{\prime} & =k_{1} T+k_{2} B \tag{7}\\
B^{\prime} & =-k_{2} N
\end{align*}
$$

where k_{1} curvature, k_{2} torsion of the timelike curve α, [6].

$$
\left[\begin{array}{l}
T^{\prime} \tag{8}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & k_{2} \\
0 & -k_{2} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

These equations form a rotation motion with Darboux vector $w=-k_{2} T-k_{1} B$, [5]. Also momentum rotation vector is expressed as follows:

$$
\begin{align*}
T^{\prime} & =w \times T \tag{9}\\
N^{\prime} & =w \times N \\
B^{\prime} & =w \times B
\end{align*}
$$

Moreover
$<w, w>=k_{2}^{2}<T, T>+k_{1}^{2}<B, B>=k_{1}^{2}-k_{2}^{2}$.
Since T is timelike and B is spacelike unitary vectors then

$$
<T, T>=-1 \text { and }<B, B>=1
$$

In this study, this Frenet frame is used to plan rigid body motions by appliying the Maximum Principle to optimal control systems defined on the Lie group [2]. An element $g(t) \in M$ is defined as:

$$
g(t)=\left(\begin{array}{cc}
1 & 0 \tag{10}\\
\alpha(t) & R(t)
\end{array}\right)
$$

where $R(t) \in L$. There is also associated with (7) via the relations

$$
\begin{gather*}
{\left[\begin{array}{cc}
1 & \alpha(t)
\end{array}\right]^{T}=g(t) \overrightarrow{e_{1}}} \\
{\left[\begin{array}{ll}
0 & T
\end{array}\right]^{T}=g(t) \overrightarrow{e_{2}}} \tag{11}\\
{\left[\begin{array}{ll}
0 & N
\end{array}\right]^{T}=g(t) \overrightarrow{e_{3}}} \\
{\left[\begin{array}{ll}
0 & B
\end{array}\right]^{T}=g(t) \overrightarrow{e_{4}}}
\end{gather*}
$$

where $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}, \overrightarrow{e_{4}}$ is the standard orthonormal frame in E^{4}.

Proposition 1 The left-invariant differential equation:

$$
\frac{d g(t)}{d t}=g(t)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{12}\\
0 & 0 & k_{1} & 0 \\
1 & k_{1} & 0 & -k_{2} \\
0 & 0 & k_{2} & 0
\end{array}\right)
$$

where $g(t) \in M$ is equivalent to the Frenet frame (7).
Proof: It follows from differentiating (11) w.r.t to t that

$$
\begin{align*}
& {\left[\begin{array}{ll}
1 & \alpha^{\prime}(t)
\end{array}\right]^{T}=\frac{d g(t)}{d t} \overrightarrow{e_{1}}=g(t) \overrightarrow{e_{2}}=\left[\begin{array}{ll}
0 & T
\end{array}\right]^{T}} \\
& {\left[\begin{array}{ll}
0 & T
\end{array}\right]^{T}=\frac{d g(t)}{d t} \overrightarrow{e_{2}}=g(t)\left(k_{1} \overrightarrow{e_{3}}\right)=k_{1}\left[\begin{array}{ll}
0 & N
\end{array}\right]^{T}} \\
& {\left[\begin{array}{ll}
0 & N
\end{array}\right]^{T}=\frac{d g(t)}{d t} \overrightarrow{e_{3}}=g(t)\left(k_{1} \overrightarrow{e_{2}}+k_{2} \overrightarrow{e_{4}}\right)} \tag{13}\\
& =k_{1}\left[\begin{array}{ll}
0 & T
\end{array}\right]^{T}+k_{2}\left[\begin{array}{ll}
0 & B
\end{array}\right]^{T} \\
& {\left[\begin{array}{ll}
0 & B
\end{array}\right]^{T}=\frac{d g(t)}{d t} \overrightarrow{e_{4}}=g(t)\left(-k_{2} \overrightarrow{e_{3}}\right)=-k_{2}\left[\begin{array}{ll}
0 & N
\end{array}\right]^{T}}
\end{align*}
$$

then equating the L.H.S to the R.H.S yields (7).

The system (12) can be expressed conveniently in coordinate form by defining the following basis for the Lie algebra of M denoted by m

$$
\begin{align*}
& A_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \tag{14}\\
& A_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right], B_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \tag{15}\\
& B_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad B_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{align*}
$$

Using these notations, it follows that (12) can be expressed as:

$$
\begin{equation*}
\frac{d g(t)}{d t}=g(t)\left(B_{2}+k_{1} A_{1}-k_{2} A_{3}\right) \tag{19}
\end{equation*}
$$

To minimize the elastic energy of the curve, this is equivalent minimizing the function:

$$
\begin{equation*}
J=\frac{1}{2} \int<w, w>d t=\frac{1}{2} \int\left(k_{1}^{2}-k_{2}^{2}\right) d t \tag{20}
\end{equation*}
$$

where $w=-k_{2} T-k_{1} B$ is the Darboux vector.
The motion $g(t) \in M$ of the left-invariant differential system (15) which minimizes the expression (16) is computed on a given interval $[0, T]$ subject to the given boundary conditions $g(0)=g_{0}, g(T)=g_{T}$ on the next section.

III. Hamiltonian lift on M

Due to the similarity in between optimal control problem and elastic problem, this optimal control problem is considered as elastic problem and the applicability of Maximum Principle is obvious. The Maximum Principle states that the optimal paths are the projections of the extremal curves onto the base manifold, where the extremal curves are solutions of the certain Hamiltonian systems on the cotangent bundle. For the problem, the manifold is M and the cotangent bundle is $T^{*} M$. The appropriate pseudo-Hamiltonian on $T^{*} M$ is defined as:

$$
\begin{align*}
H(p, u, g) & =p\left(g(t) B_{2}\right)+k_{1} p\left(g(t) A_{1}\right)-k_{2} p\left(g(t) A_{3}\right) \\
& -p_{0} \frac{1}{2}\left(k_{1}^{2}-k_{2}^{2}\right) \tag{21}
\end{align*}
$$

where $p():. T M \rightarrow \mathbb{R}$. In this study, the regular extremals where $p_{0}=1$ (ignoring abnormal extremals where $p_{0}=0$) is carred.
The cotangent bundle $T^{*} M$ can be written as the direct product $M \times m^{*}$ where m^{*} is the dual of the Lie algebra m of M.
The original Hamiltonian defined on $T^{*} M$ can be expressed as a reduced Hamiltonian on the dual of the Lie algebra m^{*}. The linear functions $M_{i}=\hat{p}\left(A_{i}\right), p_{i}=\hat{p}\left(B_{i}\right)$ for $i=1,2,3$ where $\hat{p}: m \rightarrow \mathbb{R}$ are the Hamiltonian lifts of left-invariant
vector fields on M, because $p\left(g(t) A_{i}\right)=\hat{p}\left(A_{i}\right)$ for any $P=(g(t), \hat{p})$ and any $A_{i} \in m$. If M_{i}, p_{i} is a collection of linear functions generated by the basis A_{i}, B_{i} in m then the vector ($M_{1}, M_{2}, M_{3}, p_{1}, p_{2}, p_{3}$) is the coordinate vector of \hat{p} relative to the dual basis A_{i}^{*}, B_{i}^{*}. The Hamiltonian (17) becomes

$$
\begin{equation*}
H=p_{2}+k_{1} M_{1}-k_{2} M_{3}-\frac{1}{2}\left(k_{1}^{2}-k_{2}^{2}\right) \tag{22}
\end{equation*}
$$

It follows from [2] that calculating $\frac{\partial H}{\partial k_{1}}=\frac{\partial H}{\partial k_{2}}=0$ yields the optimal controls:

$$
\begin{equation*}
k_{1}=M_{1}, k_{2}=M_{3} \tag{23}
\end{equation*}
$$

substituting (19) into (18) gives the optimal Hamiltonian:

$$
\begin{equation*}
H=p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right) \tag{24}
\end{equation*}
$$

In addition substituting the expressions (19) into (12) the optimal motions are the solutions $g(t) \in M$ of the differential equation:

$$
\frac{d g(t)}{d t}=g(t)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{25}\\
0 & 0 & M_{1} & 0 \\
1 & M_{1} & 0 & -M_{3} \\
0 & 0 & M_{3} & 0
\end{array}\right)
$$

To solve the equation (21) for $g(t) \in M$, it is necessary to solve the ekstremal curves M_{1}, M_{2}, M_{3} for a special case.

IV. SOLVING THE EXTREMAL CURVES

To compute the corresponding Hamiltonian vector fields from the left-invariant Hamiltonian (20) the Lie bracket table (a) obtained for the basis (14):

$[]$,	A_{1}	A_{2}	A_{3}	B_{1}	B_{2}	B_{3}
A_{1}	0	A_{3}	A_{2}	0	B_{3}	B_{2}
A_{2}	$-A_{3}$	0	$-A_{1}$	B_{3}	0	B_{1}
A_{3}	$-A_{2}$	A_{1}	0	B_{2}	$-B_{1}$	0
B_{1}	0	$-B_{3}$	$-B_{2}$	0	0	0
B_{2}	$-B_{3}$	0	B_{1}	0	0	0
B_{3}	$-B_{2}$	$-B_{1}$	0	0	0	0

table (a)
where the Lie Bracket is defined as $[X, Y]=X Y-Y X$.
The time derivatives of M_{i}, p_{i} along the Hamiltonian flow are described by the Poisson bracket given by the equation:

$$
\begin{equation*}
\{\hat{p}(.), \hat{p}(.)\}=-\hat{p}([., .]) \tag{26}
\end{equation*}
$$

$$
\begin{align*}
& M_{1}{ }^{\prime}=\left\{M_{1}, H\right\}=\left\{M_{1}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \tag{27}\\
& =\left\{M_{1}, p_{2}\right\}+M_{1}\left\{M_{1}, M_{1}\right\}-M_{3}\left\{M_{1}, M_{3}\right\} \\
& =-p_{3}+M_{3} M_{2} \\
& M_{2}{ }^{\prime}=\left\{M_{2}, H\right\}=\left\{M_{2}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \\
& =\left\{M_{2}, p_{2}\right\}+M_{1}\left\{M_{2}, M_{1}\right\}-M_{3}\left\{M_{2}, M_{3}\right\} \\
& =0 \\
& M_{3}{ }^{\prime}=\left\{M_{3}, H\right\}=\left\{M_{3}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \\
& =\left\{M_{3}, p_{2}\right\}+M_{1}\left\{M_{3}, M_{1}\right\}-M_{3}\left\{M_{3}, M_{3}\right\} \\
& =p_{1}+M_{1} M_{2} \\
& p_{1}^{\prime}=\left\{p_{1}, H\right\}=\left\{p_{1}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \\
& =\left\{p_{1}, p_{2}\right\}+M_{1}\left\{p_{1}, M_{1}\right\}-M_{3}\left\{p_{1}, M_{3}\right\} \\
& =-p_{2} M_{3} \\
& p_{2}^{\prime}=\left\{p_{2}, H\right\}=\left\{p_{2}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \\
& =\left\{p_{2}, p_{2}\right\}+M_{1}\left\{p_{2}, M_{1}\right\}-M_{3}\left\{p_{2}, M_{3}\right\} \\
& =p_{1} M_{3}+p_{3} M_{1} \\
& p_{3}^{\prime}=\left\{p_{3}, H\right\}=\left\{p_{3}, p_{2}+\frac{1}{2}\left(M_{1}^{2}-M_{3}^{2}\right)\right\} \\
& =\left\{p_{3}, p_{2}\right\}+M_{1}\left\{p_{3}, M_{1}\right\}-M_{3}\left\{p_{3}, M_{3}\right\} \\
& =p_{2} M_{1}
\end{align*}
$$

$$
\begin{align*}
M_{1}^{\prime} & =-p_{3}+M_{3} M_{2} \tag{28}\\
M_{2}^{\prime} & =0 \\
M_{3}^{\prime} & =p_{1}+M_{1} M_{2} \\
p_{1}^{\prime} & =-p_{2} M_{3} \\
p_{2}^{\prime} & =p_{1} M_{3}+p_{3} M_{1} \\
p_{3}^{\prime} & =p_{2} M_{1}
\end{align*}
$$

A trivial example of an integrable case of vector fields (24) occurs when $p_{1}=p_{2}=p_{3}=M_{1}=M_{2}=M_{3}=0$. Moreover, for these values $p_{1}=p_{2}=p_{3}=M_{1}=M_{2}=M_{3}$ are constant $\forall t$ and therefore the system is integrable. Substituting these values into (15)

$$
\begin{equation*}
\frac{d g(t)}{d t}=g(t) B_{2} \tag{29}
\end{equation*}
$$

This is easily integrated to yield $\alpha(t)=[t, 0,0]^{T}$ with R equal to a 3×3 matrix with zero entries. Therefore, a straight line motion with zero rotation about this line is an optimal rigid body motion. In addition there exists a nontrivial integrable case of the Hamiltonian vector fields (24). This case is considered nontrivial as it gives rise to time-dependent extremal curves. It is observed that $p_{1}=p_{2}=p_{3}=0$ is an invariant surface for the Hamiltonian vector fields (24). Explicity, for $p_{1}=p_{2}=p_{3}=0$ the equations (24) degenerate

```
International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:4, No:4, 2010
```

to:

$$
\begin{align*}
M_{1}^{\prime} & =M_{3} M_{2} \tag{30}\\
M_{2}^{\prime} & =0 \\
M_{3}^{\prime} & =M_{1} M_{2} \\
p_{1}^{\prime} & =0 \\
p_{2}^{\prime} & =0 \\
p_{3}^{\prime} & =0
\end{align*}
$$

This implies that M_{2} is constant that will be denoted by c. In addition $p_{1}=p_{2}=p_{3}=0 \forall t$. It follows that the Hamiltonian vector fields (26) are completely integrable. For these particular curves the Hamiltonian (20) reduces to

$$
\begin{equation*}
H=M_{1}^{2}-M_{3}^{2} \tag{31}
\end{equation*}
$$

It follows that the differential equations (26) are satisfied that the extremal curves are:

$$
\begin{align*}
& M_{2}=c \tag{32}\\
& M_{1}=r \sinh c t \\
& M_{3}=r \cosh c t
\end{align*}
$$

To compute the optimal motions corresponding to the extremal curves (28) is not trivial as the elements of the Lie algebra are time-dependent.

V. Optimal motions for the rigid body

The geodesic frame (21) is splited into its translational and rotational part:

$$
\begin{equation*}
\frac{d \alpha(t)}{d t}=R \overrightarrow{e_{2}} \tag{33}
\end{equation*}
$$

and

$$
\frac{d R}{d t}=R\left[\begin{array}{ccc}
0 & M_{1} & 0 \tag{34}\\
M_{1} & 0 & -M_{3} \\
0 & M_{3} & 0
\end{array}\right]
$$

where $R^{-1}=R^{T}$. A basis is described for the Lie algebra m as:

$$
\begin{align*}
& E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], E_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \\
& E_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \tag{35}
\end{align*}
$$

The quantities

$$
\begin{equation*}
R P R^{-1}=\text { constant } \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
R M R^{-1}+\left[X, R P R^{-1}\right]=\text { constant } \tag{37}
\end{equation*}
$$

are conversed for all left-invariant Hamiltonian systems on M where

$$
\begin{aligned}
M & =M_{1} E_{1}+M_{2} E_{2}+M_{3} E_{3} \\
P & =p_{1} E_{1}+p_{2} E_{2}+p_{3} E_{3} \\
X & =x_{1} E_{1}+x_{2} E_{2}+x_{3} E_{3}
\end{aligned}
$$

where x_{1}, x_{2}, x_{3} are the position coordinates of the vector $\alpha(t)=\left[x_{1}, x_{2}, x_{3}\right]^{T}$.
Using these constants of motion (30) is integrated which is stated in the following theorem:

Theorem 3: $R=(T|N| B) \in L$ is the optimal rotation matrix corresponding to the extremals (28) which relates the Frenet frame to a fixed inertial frame where:

$$
\begin{align*}
& T=\left[\begin{array}{c}
-\sinh K t \sinh c t+\frac{c}{K} \cosh K t \cosh c t \\
\frac{r}{K} \cosh c t \\
-\cosh K t \sinh c t+\frac{c}{K} \sinh K t \cosh c t
\end{array}\right] \tag{39}\\
& N=\left[\begin{array}{c}
\frac{r}{K} \cosh K t \\
\frac{c}{K} \\
\frac{r}{K} \sinh K t
\end{array}\right] \\
& B=\left[\begin{array}{c}
\sinh K t \cosh c t-\frac{c}{K} \cosh K t \sinh c t \\
-\frac{r}{K} \sinh c t \\
\cosh K t \cosh c t-\frac{c}{K} \sinh K t \sinh c t
\end{array}\right]
\end{align*}
$$

where $K^{2}=c^{2}-r^{2}$ and r, c are the constant parameters of the curvatures (28).
Proof For these particular curves $p_{1}=p_{2}=p_{3}=0$ the conversation laws (32) and (33) reduce to:

$$
\begin{equation*}
R M R^{-1}=\text { constantt } \tag{40}
\end{equation*}
$$

this constant matrix $R M R^{-1}$ is then conjugated for a particular solution R such that:

$$
\begin{equation*}
R M R^{-1}=\sqrt{M_{1}^{2}+M_{2}^{2}-M_{3}^{2}} E_{2} \tag{41}
\end{equation*}
$$

substituting (24) into (37) gives

$$
\begin{equation*}
R M R^{-1}=\sqrt{c^{2}-r^{2}} E_{2} \tag{42}
\end{equation*}
$$

The constant K is defined with the equation: $K^{2}=c^{2}-r^{2}$. Therefore

$$
\begin{equation*}
M=K R^{-1} E_{2} R \tag{43}
\end{equation*}
$$

is verified. Expressing R in a convenient coordinate from [12]:

$$
\begin{equation*}
R=\exp \left(\varphi_{1} E_{2}\right) \exp \left(\varphi_{2} E_{1}\right) \exp \left(\varphi_{3} E_{2}\right) \tag{44}
\end{equation*}
$$

and substituting (40) into (39) yields:
$M=K \exp \left(-\varphi_{3} E_{2}\right) \exp \left(-\varphi_{2} E_{1}\right) E_{2} \exp \left(\varphi_{2} E_{1}\right) \exp \left(\varphi_{3} E_{2}\right)$
It is shown that:
$M=K\left[\begin{array}{ccc}0 & -\sinh \varphi_{2} \sinh \varphi_{3} & \cosh \varphi_{2} \\ -\sinh \varphi_{2} \sinh \varphi_{3} & 0 & -\sinh \varphi_{2} \cosh \varphi_{3} \\ \cosh \varphi_{2} & \sinh \varphi_{2} \cosh \varphi_{3} & 0\end{array}\right]$
equating M in (34) to (42) gives:

$$
\begin{align*}
& M_{1}=-K \sinh \varphi_{2} \sinh \varphi_{3} \tag{47}\\
& M_{2}=K \cosh \varphi_{2} \\
& M_{3}=K \sinh \varphi_{2} \cosh \varphi_{3}
\end{align*}
$$

So it is easily shown that:

$$
\begin{align*}
\cosh \varphi_{2} & =\frac{M_{2}}{K}=\frac{c}{K} \tag{48}\\
\sinh \varphi_{2} & = \pm \sqrt{\frac{c^{2}}{K^{2}}-1}= \pm \frac{r}{K}
\end{align*}
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934
 Vol:4, No:4, 2010

in addition form (43):

$$
\begin{equation*}
\tanh \varphi_{3}=-\frac{M_{1}}{M_{3}} \tag{49}
\end{equation*}
$$

therefore

$$
\begin{align*}
\sinh \varphi_{3} & =\mp \frac{M_{1}}{\sqrt{M_{3}^{2}-M_{1}^{2}}}=\mp \sinh c t \tag{50}\\
\cosh \varphi_{3} & = \pm \frac{M_{3}}{\sqrt{M_{3}^{2}-M_{1}^{2}}}=\cosh c t
\end{align*}
$$

in order to obtain an expression for φ_{1}, it is substituted (40) into (30) yields:

$$
\begin{align*}
\frac{d R}{d t} & =\varphi_{1}{ }^{\prime} E_{2} \exp \left(\varphi_{1} E_{2}\right) \exp \left(\varphi_{2} E_{1}\right) \exp \left(\varphi_{3} E_{2}\right) \tag{51}\\
& +\varphi_{2}^{\prime} \exp \left(\varphi_{1} E_{2}\right) E_{1} \exp \left(\varphi_{2} E_{1}\right) \exp \left(\varphi_{3} E_{2}\right) \\
& +\varphi_{3}{ }^{\prime} \exp \left(\varphi_{1} E_{2}\right) \exp \left(\varphi_{2} E_{1}\right) E_{2} \exp \left(\varphi_{3} E_{2}\right)
\end{align*}
$$

therefore

$$
\begin{aligned}
& R^{-1} \frac{d R}{d t}=\varphi_{1}^{\prime} \exp \left(-\varphi_{3} E_{2}\right) \exp \left(-\varphi_{2} E_{1}\right) E_{2} \exp \left(\varphi_{2} E_{1}\right) \exp \left(\varphi_{3} E_{2}\right) \\
& +\varphi_{2}^{\prime} \exp \left(-\varphi_{3} E_{2}\right) E_{1} \exp \left(\varphi_{3} E_{2}\right) \\
& +\varphi_{3}{ }^{\prime} E_{2} \\
& =\varphi_{1}^{\prime}\left[\begin{array}{ccc}
0 & -\sinh \varphi_{2} \sinh \varphi_{3} & \cosh \varphi_{2} \\
-\sinh \varphi_{2} \sinh \varphi_{3} & 0 & -\sinh \varphi_{2} \cosh \varphi_{3} \\
\cosh \varphi_{2} & \sinh \varphi_{2} \cosh \varphi_{3} & 0
\end{array}\right. \\
& +\varphi_{2}{ }^{\prime}\left[\begin{array}{ccc}
0 & \cosh \varphi_{3} & 0 \\
\cosh \varphi_{3} & 0 & \sinh \varphi_{3} \\
0 & -\sinh \varphi_{3} & 0
\end{array}\right] \\
& +\varphi_{3}^{\prime}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & M_{1} & 0 \\
M_{1} & 0 & -M_{3} \\
0 & M_{3} & 0
\end{array}\right]
\end{aligned}
$$

which leads to

$$
\begin{align*}
& M_{1}=-\varphi_{1}^{\prime} \sinh \varphi_{2} \sinh \varphi_{3}+\varphi_{2}^{\prime} \cosh \varphi_{3} \tag{53}\\
& M_{3}=\varphi_{1}^{\prime} \sinh \varphi_{2} \cosh \varphi_{3}-\varphi_{2}^{\prime} \sinh \varphi_{3} \tag{54}
\end{align*}
$$

therefore

$$
\begin{equation*}
\varphi_{1}^{\prime}=\frac{M_{1} \sinh \varphi_{3}+M_{3} \cosh \varphi_{3}}{\sinh \varphi_{2}} \tag{55}
\end{equation*}
$$

substituting (28), (44) and (46) into (50) yields:

$$
\begin{equation*}
\varphi_{1}^{\prime}=K \tag{56}
\end{equation*}
$$

and integrating with respect to t yields:

$$
\begin{equation*}
\varphi_{1}=K t+\beta \tag{57}
\end{equation*}
$$

where β is a constant of integration and for $\beta=0$ yields:

$$
\begin{equation*}
\varphi_{1}=K t \tag{58}
\end{equation*}
$$

An other hand from (40) yields :
$T=\left[\begin{array}{c}\sinh \varphi_{1} \sinh \varphi_{3}+\cosh \varphi_{1} \cosh \varphi_{2} \cosh \varphi_{3} \\ \sinh \varphi_{2} \cosh \varphi_{3} \\ \cosh \varphi_{1} \sinh \varphi_{3}+\sinh \varphi_{1} \cosh \varphi_{2} \cosh \varphi_{3}\end{array}\right]$
substituting (44) , (46) and (52) into (55) yields $R=(T|N| B)$.
Lemma: The optimal path $\alpha(t) \in E^{3}$ defined by the differential equation (29), with $M_{1}=r \sinh c t, M_{2}=c$ and $M_{3}=r \cosh c t$ are described by:

$$
\frac{d \alpha(t)}{d t}=\frac{1}{K}\left[\begin{array}{c}
r \cosh K t \\
c \\
r \sinh K t
\end{array}\right]
$$

$\alpha(t) \quad=\quad \frac{1}{K} \int\left[\begin{array}{c}r \cosh K t \\ c \\ r \sinh K t\end{array}\right] d t$
$\frac{1}{K^{2}}[r \sinh K t, c t, r \cosh K t]^{T}$

VI. Conclusion

An application of the Maximum Principle to this optimal control problem results in a system of first order differential equations that yields coordinate free necessary conditions for optimality. In this paper, Frenet frame of the curve is applied to the Lorentz-Minkowski space to solve optimal control problem. A particular set of curves is analyzed that satisfies these necessary conditions and provides analytic solutions for the corresponding optimal motions. In this study, the coordinate free maximum principle and the theory of integrable Hamiltonian systems are used to minimize the cost function which is equivalent to integrate the Lorentz inner product of Darboux vector with respect to frenet frame of the curve.

VII. Acknowledgment

The authors wishe to express his/her gratitude to an anonymous referees whose comments and suggestions proved most constructive, informative and useful during the revision of this manuscript.

References

[1] V. Jurdjevic, F. Monroy-Perez (2002), Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops and constrained geodesic problems in nonlinear geometric control theory, World Scientific, Singapore.
[2] V. Jurdjevic, (1997), Geometric Control Theory, Advanced Studies in Mathematics, vol 52. Cambridge University Press, Cambridge.
[3] H.J. Sussmann, (1997), An introduction to the coordinate-free maximum principle, In: Jakubezyk B, Respondek W (eds) Geometry of feedback and optimal control. Marcel Dekker, New York, pp 463-557.
[4] J. Biggs, W. Holderbaum, (2008), Planning rigid body motions using elastic curves, Math. Control Signals Syst. 20: 351-367.
[5] A.Yucesan, A.C. Coken, N.Ayyildiz,(2004), On the darboux rotation axis of Lorentz space curve, Applied Mathematics and Computation, 155:345-351.
[6] R.Lopez, (2008), Differential geometry of curves and surfaces in Lorentz-Minkowski space, University of Granada

