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Abstract—The paper involves a chain of activities from
synthesis, establishment of the methodology for characterization and
testing of novel protective materials through the pilot production and
application on model supports.

It summarizes the results regarding the development of the pilot
production protocol for newly developed self-cleaning materials. The
optimization of the production parameters was completed in order to
improve the most important functional properties (mineralogy
characteristics, particle size, self-cleaning properties and
photocatalytic activity) of the newly designed nanocomposite
material.

Keywords—Cultural heritage. Materials compatibility. Pilot
production. Self-cleaning.

I. INTRODUCTION

EGRADATION phenomenon of the porous building
materials, especially in the field of the Cultural Heritage,

presents a commonly acknowledged problem. Namely, a
constant exposure to numerous environmental conditions,
pollutants of inorganic and organic origins, significantly
contributes to deterioration processes of the porous building
materials [1]-[3]. Deterioration processes are irreversible,
involving both chemical and physical changes of the material,
always starting at the surface of the material and penetrating
steadily into the bulk.

Regarding the known degradation and deterioration
problems of the building materials, a part of research in the
field of photocatalysis has been focused in the development of
self-cleaning and photocatalytic active building materials [4].
The increasing interest in combining photocatalytic active
materials with building materials has been widely recognized
[5]–[9] as well as most of the attention and research activities
were driven to the application of nano-sized TiO2
semiconductor as photocatalytic active material [10], [11]. It is
a known fact that TiO2 based materials possess self-cleaning
properties which include photocatalytic activity (promote
decomposition of various organic and inorganic pollutants)
and photo-induced surface hydrophilicity activated by UV-A
light irradiation. The well-known synergy of the
photocatalytic action and hydrophilicity effect is very
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important in sustaining the surface with self-cleaning property
[12]. The deterioration, degradation and damage of the porous
building materials could be avoided by their adequate surface
protection. Based on these facts, the photocatalysts based on
TiO2 / nano-coatings could provide decomposition of the
organic compounds and inhibit the attachment of the
organic/inorganic substances on the coated surface [13].

The main aim of this paper was to present the established
pilot production of the developed TiO2/LDH coating
precursors in order to be used for protection of the Cultural
Heritage immovable objects. A newly developed coating
precursor was produced by using the established pilot
production line in the HEROMAT project [14]. The functional
properties (mineralogical characteristics, particle size
distribution, suspension stability, photocatalytic activity and
self-cleaning properties) were evaluated.

II.DEVELOPMENT AND OPTIMIZATION OF THE PILOT
PRODUCTION LINE

The newly synthesized nanomaterials, based on the layered
double hydroxides - LDH (e.g. anionic clays) and the
photocatalytic active TiO2, were developed in two step
production:
� new materials (TiO2/LDH) were synthesized by modified

low super saturation co-precipitation method (with a
constant pH value) – synthesis protocol,

� suspension stabilization process was performed by
dilution procedure with adding an appropriate
polyelectrolyte stabilizer. The amount of the newly
synthesized nanomaterial was 1 wt.%.

The pilot scale production was optimized in order to satisfy
the requirements of ISO 9001/2008, ISO 14001/2004
standards. During construction and development of the
production line (Fig. 1) it was realized that additional
optimization of certain process parameters (raw materials
flow, pH value range, stirring rates during synthesis and time
for stabilization, etc.) was required in order to significantly
decrease the cost of the pilot scale production. At the same
time it was mandatory to keep the properties such as particle
size distribution, self-cleaning efficiency and photocatalytic
activity on the same level. The following processes parameters
were optimized:
� raw material flow rate during the synthesis and

stabilization,
� pH value range; during the synthesis step it was kept

constant, while during the stabilization step it was slightly
increased,

� stirring rate during stabilization was considerably
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increased in order to decrease the stirring time (from 24
hours to 30 minutes).

Fig. 1 Scheme of the pilot scale production

III. MATERIALS AND CHARACTERIZATION METHODS

For the development of protective coatings, inorganic-
inorganic nano composites based on layered double
hydroxides (LDH) associated with the photocatalytic active
TiO2 were synthesized. Commercially available precursors
were continuously added together with the alkali solution in
order to maintain a constant pH value during the synthesis (9.2
– 9.3). After the dilution of the synthesized material,
stabilization procedure was performed resulting with a
photocatalytic suspension [14].

The developed suspension was deposited by spray
technique on the surface of the laboratory produced model
substrates (Brick 1 and Render 2, dimensions 4x5x2 cm).
These model substrates were prepared in accordance with the
following characteristics of the historical materials sampled
from the Bač Fortress, Serbia: chemical and mineralogical
composition, mechanical, textural, surface and mechanical
properties [14]. The quality control, regarding the phase
composition of the synthesized nanocomposite, was performed
by XRD analysis (Philips PW1710 device). The following
experimental conditions were used: CuKα radiation with
1.5408 Å wavelengths in the 10 – 60° of 2� range, scan rate
0.02°, 0.5s per step.

The particle size distribution (PSD) of the prepared stable
suspensions was performed with Malvern Instruments, zeta-
nanoseries, NanoZS under the following conditions: refraction
index of the investigated suspension, n=1.55, light absorption,
a=0.3 and pH≈9. The results are presented in Fig. 2.

The photocatalytic behavior of the coated samples (Brick 1
and Render 2) was investigated by monitoring the change of
Rhodamine B (RhB) concentration under UV/VIS irradiation.
In order to saturate the samples before the photocatalytic
assessment, a preabsorption test with RhB solution (10 ppm
dm-3, 24h) was carried out. After the preabsorption procedure,
the RhB solution was replaced with a fresh solution and the

samples were irradiated for 30, 90, 150 and 210 min
(EVERSUN lamp, intensity of UV-A and Visible light spectra
were 8 Wm-2 and 0.3 Wm-2, respectively). A UV/VIS
spectrophotometer (EVOLUTION 600 spectrophotometer) was
used to carry out the monitoring of the RhB concentration
change at the major absorption peak (at � = 554 nm). The
photocatalytic activity was evaluated based on the efficiency
of RhB degradation at the given absorption peak and
expressed by the following equation:

Photocatalytic activity (%) = [(C0�C)/C0] ·100 (1)

where C0 is the RhB concentration of the sample in the dark at
the defined time and C is the RhB concentration of the sample
under UV/VIS light at the defined time.

Contact angle measurements of the coated model substrates
(Brick 1 and Render 2) were performed with Surface Energy
Evaluation System, Advex Instruments, (Brno, Czech
Republic) in order to evaluate the self-cleaning phenomenon
(hydrophilicity effect) of the coated model substrates
measuring the initial contact angle (�ci). The experimental
fluid was glycerol. The relevant data for the contact angle
measurements were:
� Sample dimensions: 4 x 4 cm,
� Experimental fluid: glycerol
� Volume value of the glycerol drops: 5ml

IV. RESULTS AND DISCUSSION

A. Quality Control for the First Step of the Pilot Scale
Production

Four industrial tryouts were done (Table I) in order to test
the implemented changes of the process parameters (pH value
and temperature).

TABLE I
EXPERIMENTAL CONDITIONS OF THE INDUSTRIAL TESTS

Industrial test pH value Temperature (oC)
Test 1 9.25 33.9
Test 2 8.11 34.2
Test 3 9.31 33.7
Test 4 9.45 34.0

The influence of the pH value and temperature (Table I) on
the mineralogy and particle size distribution (PSD) was
evaluated (Figs. 2 and 3). Namely, the main peaks of the LDH
structure (marked with 0, Fig. 2) in the case of the Test 2 were
not visible as in the case of the Tests 1, 3 and 4. The problem
with the Test 2 was clearly related to the control of the pH
value during the synthesis (Table I) which implies the
importance of this parameter during the synthesis protocol. In
the case of the Tests 1, 3 and 4, the XRD peaks for the LDH
structure are sharp and with high intensities that suggests a
well-defined crystal structure [15].
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Fig. 2 XRD analyses of the sample synthesized in 
1 – 4, 0 - LDH

(a)

(c)

Fig. 3 Particle size distribution (PSD) 
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Fig. 4 Photocatalytic activity of the coatings obtai
of the suspensions of the Tests 1, 3 a

Since the mineralogy and PSD properties w
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B. Quality Control for the Second Step of
Production of the Suspension Test 3

In order to establish the quality control fo
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� PSD analysis and zeta potential assessme
� Self-cleaning properties – measuring th

angle, ���
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Fig. 5 Comparison of the PSD of the fresh and age
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(a)

(b)

Fig. 7 Comparison of the self-cleaning efficiency by measuring the
initial contact angle (�ci) of the fresh and aged suspensions deposited

on (a) Brick 1 and (b) Render 2

The assessment of the self-cleaning properties of the
designed photocatalytic coating was performed by measuring
the initial contact angle, �ci. The decreasing values of the
initial contact angle indicate the existence of a notable self-
cleaning phenomenon of the coated surface of the Brick 1 and
Render 2 model substrates. Moreover, there were no
noticeable differences between the coatings originated from
the fresh and aged photocatalytic suspension (Fig. 7).

According to the obtained results and their analysis, the
following quality testing procedures and methods were
proposed to be applied in a regular control of the produced
photocatalytic suspension:
� Particle size distribution and zeta potential assessment
� Self-cleaning properties – measuring the contact angle,

�ci,
� Photocatalytic activity - (UV/VIS) spectrophotometry

V.CONCLUSIONS

The pilot scale production of the stabilized photocatalytic
suspension was designed and established. During the
development of the pilot production line the optimization of
the production parameters was completed in order to improve
the most important functional properties (mineralogy
characteristics, particle size, self-cleaning properties and
photocatalytic activity) of the newly designed nanocomposite

materials.
Appropriate particle size distribution (no particles higher

than 900 nm) and suspension stability (no significant change
of the value of zeta potential) were achieved for the
photocatalytic suspensions (tests 1, 3 and 4) produced
according to the designed production protocol.

A very good stability of the produced photocatalytic
suspension, Test 3, was confirmed since no changes of the
particle size, self-cleaning properties and photocatalytic
activity were noticed regardless of the storage period (two
months).
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