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Abstract—In this paper, an automatic control system design 
based on Integral Squared Error (ISE) parameter optimization 
technique has been implemented on longitudinal flight dynamics of 
an UAV. It has been aimed to minimize the error function between 
the reference signal and the output of the plant. In the following 
parts, objective function has been defined with respect to error 
dynamics. An unconstrained optimization problem has been solved 
analytically by using necessary and sufficient conditions of 
optimality, optimum PID parameters have been obtained and 
implemented in control system dynamics. 

Keywords—Optimum Design, KKT Conditions, UAV, 
Longitudinal Flight Dynamics, ISE Parameter Optimization. 

I. INTRODUCTION

N recent years, development of feasible techniques for on-
board mission management systems for Unmanned Aerial 

Vehicles (UAVs) has been seriously taken into account. From 
that point, existing UAV systems are generally guided 
remotely, which helps to control the flight trajectory of UAV 
by an integrated on-board auto pilot. Existing areas of use of 
UAVs are mainly concentrated on reconnaissance missions, 
observation, border security, combat missions etc. Moreover, 
there are some existing research projects dealing with a 
variety of possible applications of UAVs such as uninhabited 
combat aircraft, intervention rotorcraft, road traffic 
surveillance, pursuit, search and rescue helicopters, power 
cable inspection UAVs or forest fire surveillance aircraft [1]. 
During all of these missions UAVs are expected to be fault 
tolerant, to work in high precision, to be able to coordinate the 
coupling effects within the system dynamics and to have high 
maneuverability, and in order to be able to accomplish all of 
the desired performance characteristics, high fidelity in 
dynamic modeling should be achieved, where efficient control 
system design providing optimum performance limits should 
be accomplished.  

In that sense, in this paper, an automatic control system 
design for longitudinal flight dynamics based on Integral 
Squared Error (ISE) parameter optimization technique has 
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been implemented on UAV dynamics.  
In literature, there are some existing studies on ISE 

parameter optimization technique such as establishing a 
hierarchy of dynamic accuracy with the ISE [2], constrained 
least square design of Finite Impulse Response (FIR) filters 
[3], decoupled method for approximation of signals by 
exponentials [4], an approach for handling the nonlinearities 
of High-Voltage-Direct-Current (HVDC) electric power 
transmission system for stability analysis [5], least squared 
error FIR filter design [6], optimal gain scheduling controller 
for a diesel engine [7], limitations on maximal tracking 
accuracy [8], mapping error of linear dynamic systems caused 
by reduced-order model [9]; besides, there are very limited 
amount of applications in literature related with ISE 
parametric optimization on aircrafts / UAVs. As a matter of 
fact, in many control applications in order to find an optimal 
solution for a given problem, optimal control theory is widely 
used, but in this case specifically parameter optimization is 
necessary and will be conducted through ISE parameter 
optimization technique.  

In the first part of the paper, longitudinal dynamic modeling 
of an UAV will be presented. In the second part, mathematical 
background behind the ISE parameter optimization technique 
will be given. In the third section, closed-loop time domain 
results will be presented to complete the work.  

II. LONGITUDINAL DYNAMICS OF AN UAV

Before getting into the control system design, longitudinal 
flight characteristics should be analyzed. For this purpose, 
Equations of Motion (EoMs) governing the longitudinal 
flight, taken from [10], have been used for analysis as given in 
(1), where the first two are force equations in x and z
directions, respectively, while M is the moment equation in y
direction. 
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where u' change of velocity in longitudinal flight,  
' change of angle of attack in longitudinal flight, pitch 
angle, change of pitch angle from equilibrium point, so 
that `u = u / U0 and `  = w / U0, where u is perturbation 
velocity in X direction, w is perturbation velocity in Z 
direction and U0 is the steady state velocity in longitudinal 
flight. In addition, all capital C’s with necessary subscripts 
represent corresponding stability derivatives, (Table II), of the 
UAV which are calculated with respect to the characteristic 
properties of UAV (Table I). 

After the introduction of EoM, characteristic properties of 
UAV have been calculated in Table-1 and Table-2, 
respectively [11]. 

Since we are only interested in the change of pitch angle 
( ) with respect to a given elevator deflection ( e ) in 
longitudinal flight, only the e/   transfer function (TF) will 
be taken into consideration [10]. Using the characteristic 
properties and calculated stability derivatives, it is possible to 
construct the nominal plant TF of  e/   as: 

0836.00859.01.006836.002424.0
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Also the corresponding modes in longitudinal flight and 
their characteristic properties could be simply derived from 
the denominator of (2), as shown in Table-3 [10].  

As it is possible to see from both short period and phugoid 
mode, UAV is lightly damped (under-damped) in phugoid 
mode, while the damping ratio in short period mode is 
considerably good. After having an insight related with the 
open loop dynamics of the UAV, it is also possible to have a 
look at the frequency domain response of open loops 
dynamics. Therefore, Bode plot of   TF has been plotted and is 
presented in Figure-1. 

Fig.1 Frequency domain response of  / e TF. 

As it is also possible to see from Fig.1, phugoid mode 
dynamics ( n_pm = 1.1152 rad/sec) are affected in a great 
manner for a given e deflection. Furthermore, if the open 
loop time domain responses of  / e TF are plotted, it is 
probable to detect the responses as given in Fig.2, where Fig.2 
represents the open loop (OL) time domain step response and 
the OL time domain impulse response, respectively.  

III. CONTROLLABILITY

During PID parameter optimization process, which is going 
to be presented in the next section, control system design 
analysis will be implemented in system dynamics. And just 
before getting into the optimum design part, the controllability 
characteristic of the UAV system will be investigated.  

TABLE III
CHARACTERISTIC PROPERTIES OF LONGITUDINAL FLIGHT.

Phugoid Mode Short Period Mode 

pm = 0.0147  sm = 0.517  
pm = 1.1152 rad/sec sm = 2.1152 rad/sec 

Tpm = 61.1027 sec Tsm = 0.9127 sec 

TABLE II
STABILITY DERIVATIVES AND INPUTS OF UAV.

Symbol / Quantity Symbol / Quantity 

Cxu = -0.0264 CZa’ = -0.0347 
Cxa = 1.2821 CZa = -0.1381 
CD = 0.0132 CZq = -3.30 
CL = 1.3210 CMa’ = -0.0347  
CW = -1.3210 CMa = -0.0312 
Lt/c = 1 CMq = -3.30 
CZu = -2.6424 CX e = 0 
CZ e = -0.71 CM e = -0.71 

TABLE I
CHARACTERISTIC PROPERTIES OF UAV.

Symbol Quantity  

m mass 5 [kg] 
U0 steady state velocity 12 [m/sec] 
g gravitational force 9.807 [m/sec2]
S wing area 0.4205 [m2]
Svertical tail vertical tail wing area 0.1323 [m2]

air density 1.226 [kg/m3]
Iyy moment of inertia 0.1204 [m4]
Lt/c chord length 0.235 [m] 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:9, 2008

1079

Fig.2 OL time domain responses of  / e TF. 

It is known that the controllability matrix of a system, as 
defined in [12], is as 

][ 1BAABBCA n
tnxn (3)

so that the controllability matrix must satisfy  

nCRank t )( (4)

condition. In this way, the system is called reachable or 
controllable. If given controllability conditions are applied to 
given system dynamics, obtained results are as given in (5).  

1000
4649.2100

3250.24649.210
4097.03250.24649.21

tC nCRank t 4)( (5)

With such controllability analysis, it has been proved that 
the longitudinal UAV system is controllable, which enables 
the opportunity to implement the parameter optimized control 
system design method.  

IV. INTEGRAL SQUARED ERROR PARAMETER OPTIMIZATION

Optimization is a process which simply searches for any 
existing feasible and optimum solutions under specific 
circumstances. Here, the main goal is to minimize the 
performance index (PI), which is usually denoted by J, under 
the dynamical constraints of the physical system. In literature, 
numerous performance indices are defined for an optimal 
control system design. But in this paper, Integral Squared 
Error (ISE) parameter optimization method will be used.  

As it is possible to see from Fig.3, in given control system 
design, there are three control parameters ( Ki, Ti and Td ) to be 
optimized, which are suggested PID controller parameters.  

Fig.3 Simulink block diagram of optimal parameters system design. 

Benefiting from [13-15], it is possible to characterize ISE 
parameter optimization method performance index as 

0

2 )( dttePI ISE (6)

where error function (E(s)) is commonly defined as 

)()(1
)()(

sHsG
sRsE (7)

Here, G(s) is the TF of the nominal plant, R(s) is the (step) 
input TF and H(s) is the TF of the feedback line. According to 
these, for analysis, error function of the suggested optimized 
control system design has been derived from Fig.3 as 
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where G(s) is the nominal plant (including the actuator 
dynamics), PID(s) is the transfer function of the PID 
controller. As it is likely to see from (8), given system 
dynamics is not extremely complicated and an explicit error 
function can be easily calculated. Steady state error 
incorporated performance indices are relatively easier to work 
with and they usually supply analytic solutions. Therefore, in 
order to make some simplifications in the performance index, 
in the following section Parseval’s Theorem will be used. 

A. Parseval’s Theorem 

Previously presented performance index, portrayed from 
[13-15], was defined as 

dtteJtetftfdttftfJ
0

2
21

0
21 )()()()()()( (9)

As it is likely to see from (9) performance index is 
evaluated in time (t) domain, but our error function (E(s)) was 
obtained in s-domain. Thus, if J could be expressed in terms 
of Laplace (s)-domain, then error function could be used for 
calculation purposes and will lead to great simplifications in 
the calculation. According to Parseval’s theorem, integral 
given in (9) could be defined as 
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As it could be seen from (10) and (11), given integral 
provides the translation from time domain to s-domain. 
Generally, in linear dynamical systems F(s) is obtained as 
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where n is the degree of the system dynamics. Using (12) and 
(11), it is possible to obtain transfer function of system 
dynamics in integral form such as 
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where the value of the integral could be obtained in terms of 
ci’s and di’s. In literature, there are several calculated integral 
tables which obtain a solution to the integral given in (13) and 
some of them are given for information in (14). 

10

2
0

1 2 dd
cJ

210

2
2

00
2

1
2 2 ddd

dcdcJ

)(2
)2(

213030

32
2

03020
2

110
2

2
3 dddddd

ddcddcccddcJ

)(2

)(c)2c(

)2c()(c

321
2

14
2

3040

4321
2

4
2

043020
2

1

41031
2

22103
2

0
2

1

4
ddddddddd

ddddddddcc

dddccddddd

J

(14)

B. PID Parameter Optimization 

As it could be seen from Fig.3, in the control system block 
diagram, we have three PID controller gains which are Kp, Ti

and Td. In order to find the optimal values of gains, ISE 
parameter optimization method will be applied as follows. 

A generic optimization problem associated with a given 
system can be formulated as 
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where x is a set of nx abstract parameters restricted by lower 
and upper bounds xL and xU, z is a cost function of interest, h
denotes a set of nh equality constraints, g is a set of ng

inequality constraints. 

A constrained optimization problem can be transformed to 
an unconstrained optimization problem by using the Lagrange 
multiplier method as follows  
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where L is Lagrange function, i and i are Lagrange 
multipliers [16]. The optimum of a constrained optimization 
problem is characterized by the saddle point of the Lagrange 
function in the primal and dual solution space. Thus   

 1)   ),,(min xL
x

in the primal space 

 2)   ),,(max xL
x

in the dual space 

The saddle point of the Lagrange function is governed by the 
Karush-Kuhn-Tucker (KKT) necessary conditions. This 
condition ensured that optimum point lies on tangent planes 
with respect to all primal and dual variables. Therefore  

0
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KKT conditions are necessary but not sufficient for a saddle 
point. Additionally, we need that the Lagrange function is 
convex with respect to the optimization variables in the primal 
solution space which is the sufficient condition for optimality.   

According to given UAV dynamics (  / e ), given problem 
is an unconstrained optimization problem. Objective function 
that is going to be minimized in this study is the error 
function, E(s), and corresponding optimization variables are 
Kp, Ti and Td. Consequently, the optimization procedure can 
be summarized as : 

i. Obtain the corresponding error function (8) from 
the suggested block diagram (Fig.3) 

ii. Obtain the performance index representation in 
terms of  ci’s and di’s.

iii. Calculate the optimum solution by applying the 
KKT conditions ( 0/ xJn  ) and verify the 

convexity (Hessian) of the point ( 0/ 22 xJn )

First of all, the error function should be obtained for 
minimization purposes. Previously a general form of error 
function E(s) has been obtained in (8) which leads to 
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for given UAV dynamics. It is possible to see that the order of 
the system is n = 4 and therefore Jn, which corresponds to J4,
needs to be calculated. In this case, coefficients of the integral 
becomes: c0 = 14.9675, c1 = 8.15129, c2 = 6.03156, c3 = 1,  
c4 = 0, d0 = 10.1351*Ti, d1 = 14.9675 + 10.1351*Kp

+ 4.27932*Ti, d2 = 8.15129 + 4.27932*Kp + 10.1351*Td,
d3 = 6.03156 + 4.27932*Td and d4 = 1.

Since we obtained necessary ci’s and di’s, we are able to 
evaluate J4 as 
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After deriving the objective function. J4, using KKT and 
convexity conditions, it is possible to find optimum design 
parameters of the desired control system by solving equations 
given in (16), simultaneously as follows 

Xx
J )(min 4    where }|{ 3

UL xxxRxX (19)

Since the problem is an unconstrained optimization 
problem, KKT necessary conditions reduce to  

04
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J    and 04

iT
J
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By solving (20) it is possible to obtain optimum PID 
parameters as Kp

* = 1.155415, Ti
* = 1.954899, Td

*
 = 0.728157

and if the necessary conditions are verified, they are obtained 
as follows 
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If the sufficient condition of optimality-(Hessian) of the given 
solution parameters is checked, obtained results are as follows
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where it is possible to see that both necessary–sufficient 
optimality conditions are satisfied, which leads us to optimum 
parameters.  

Using calculated ( Kp
*, Ti

* and Td
* ) optimal parameters, 

time domain results of longitudinal flight control system are 
obtained as shown in Fig.4. 

Fig.4 Time domain results of optimized PID controlled UAV system. 

As it is possible to see from Fig.4, the settling time is nearly 
5.5 seconds, which is a considerable value and the maximum 
control effort reached is 1 Newton. Maximum overshoot is 
only 5%, which is also remarkable.  

V. CONCLUSION

In this paper, an optimized control system design based on 
Integral Squarred Error parameter optimization method has 
been aimed. In the first part of the paper, longitudinal dynamic 
modeling has been given and open loop time domain 
responses have been investigated. Objective function has been 
obtained, next KKT necessary and convexity sufficient 
optimality conditions have been applied into the system 
dynamics. Obtained optimal parameters have been used to 
obtain the closed time domain results. It has been observed 
that, optimal parameters are able to shape system dynamics 
relatively good so that the settling time is nearly 5.5 seconds 
and the maximum control effort is 1 Newton, while the 
maximum overshoot is only 5%.  
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