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PI Control for Second Order Delay System with
Tuning Parameter Optimization

R. Farkh, K. Laabidi and M. Ksouri

Abstract—In this paper, we consider the control of time delay sys-
tem by Proportional-Integral (PI) controller. By Using the Hermite-
Biehler theorem, which is applicable to quasi-polynomials, we seek
a stability region of the controller for first order delay systems. The
essence of this work resides in the extension of this approach to
second order delay system, in the determination of its stability region
and the computation of the PI optimum parameters. We have used
the genetic algorithms to lead the complexity of the optimization
problem.

Keywords—Genetic algorithm, Hermit-Biehler theorem, optimiza-
tion, PI controller, second order delay system, stability region.

I. INTRODUCTION

SYTEMS with delays represent a class within infinite
size largely used for the modeling and the analysis of

transport and propagation phenomena (matter, energy or in-
formation) [7, 15]. They naturally appear in the modeling of
processes found in physics, mechanics, biology, physiology,
economy, dynamics of the populations, chemistry, aeronautics
and aerospace. In addition, even if the process itself does not
contain delay, the sensors, the actuators and the computational
time implied in the development of its control law can generate
considerable delays [7]. The latter have a considerable influ-
ence on the behavior of closed-loop system and can generate
oscillations and even instability [3].

PID controllers are of high interest thanks to their broad
use in industrial circles [2]. Traditional methods of PID
parameter tuning are usually used in the case of the systems
without delays [5], [6]. A robust PI/PID design via numerical
optimization for delay processes was proposed in [20]. Padma
Sree and Sirinivas [8] propose PI/PID controllers design for
first-order delay system by extracting the coefficients of the
numerator and denominator of the closed-loop transfer func-
tion. Shafie and Shenton [9] proposed a graphical technique
based on the D-partition method for PID controller tuning.
Xiang et al [19] used the Nyquist stability criterion to solve the
stabilization problem of second-order unstable delay process
by PID controller. A tuning method using a first-order set-
point filter was proposed for PI controller setting of unstable
first-order delay system [18]. In [16], Roy and Iqbal have
explored PID tuning of first order delay system using a first
order Pad approximation and the Hermite-Biehler stabilization
framework. An analytical approach was developed in [11, 12,
13] and allowed the characterization of the stability region
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of delayed systems controlled via PID. Indeed, by using the
Hermit-Biehler theorem applicable to the quasi-polynomials
[1, 13], the authors have developed an analytical characteriza-
tion of all values of the stabilization gains (Kp,Ki,Kd) of the
regulator for the case of first order delay system. In [17], Silva
et al have determined all feedback gain values that stabilize a
second order delay plant.

In our work we extend the Silva et al approach [17] to a
second order delay system using PI controller. Also, we look
for optimum regulators under constraint of a global criterion
which takes into account the ponderation actions of several
conditions related to the error signal (i.e: speed, precision
and/or control signal).

This paper is structured as follows: in section 2, we
present the theorem of Hermit-Biehler applicable to the quasi-
polynomials. Section 3 is devoted to the problem formulation
for first order delay system controlled via PI controller. The
extension of this approach is developed in section 4 where
a solution for the second order delay system stabilization
problem is detailed. In order to obtain optimal regulator in
the zone of stability, a description of the genetic algorithms is
presented in section 5. Section 6 is reserved for simulations’
results.

II. PRELIMINARY RESULTS FOR ANALYZING TIME DELAY
SYSTEM

Several problems in process control engineering are related
to the presence of delays. These delays intervene in dynamic
models whose characteristic equations are of the following
form [10, 11]:

δ(s) = d(s)+e−L1sn1(s)+e−L2sn2(s) + ...+e−Lmsnm(s)
(1)

Where: d(s) and n(s) are polynomials with real coefficients
and Li represent time delays. These characteristic equations
are recognized as quasi-polynomials. Under the following
assumptions:

(A1) deg(d(s)) = n and deg(ni(s)) < n for i = 1, 2, ...,m
(A2) L1 < L2 < ... < Lm

(2)
One can consider the quasi-polynomials δ∗(s) described by :

δ∗(s) = esLmδ(s)
δ∗(s) = esLmd(s) + es(Lm−L1)n1(s)

+es(Lm−L2)n2(s) + ... + nm(s)
(3)

The zeros of δ(s) are identical to those of δ∗(s) since esLm

does not have any finite zeros in the complex plan. However,
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the quasi-polynomial δ∗(s) has a principal term since the
coefficient of the term containing the highest powers of s and
es is nonzero. If δ∗(s) does not have a principal term, then
it has an infinity roots with positive real parts [1, 13].

The stability of the system with characteristic equation (1)
is equivalent to the condition that all the zeros of δ∗(s) must
be in the open left half of the complex plan. We said that
δ∗(s) is Hurwitz or is stable. The following theorem gives a
necessary and sufficient condition for the stability of δ∗(s) .
theorem 1[10, 11, 12, 13]
Let δ∗(s) be given by (3), and write:

δ∗(jω) = δr(ω) + jδi(ω) (4)

where δr(ω) and δi(ω) represent respectively the real and
imaginary parts of δ∗(jω) . Under conditions (A1) and (A2),
δ∗(s) is stable if and only if:

1: δr(ω) and δi(ω) have only simple, real roots and these
interlace,

2: δ
′
i(ω0)δr(ω0) − δi(ω0)δ

′
r(ω0) > 0 for some w0 in

[−∞, +∞]

where δ
′
r(ω) and δ

′
i(ω) denote the first derivative with respect

to w of δr(ω) and δi(ω), respectively.
A crucial stage in the application of the precedent theorem

is to verify that and have only real roots. Such a property can
be checked while using the following theorem .
theorem 2[10, 11, 12, 13]
Let M and N designate the highest powers of s and es which
appear in δ∗(s) . Let η be an appropriate constant such that the
coefficient of terms of highest degree in δr(ω) and δi(ω) do
not vanish at ω = η . Then a necessary and sufficient condition
that δr(ω) and δi(ω) have only real roots is that in each of
the intervals −2lπ + η < ω < 2lπ + η, l = l0, l0 +1, l0 +2...
δr(ω) or δi(ω) have exactly 4lN + M real roots for a
sufficiently large l0 .

III. PI CONTROL FOR FIRST ORDER DELAY SYSTEM

We consider the functional diagram of figure 1, in which
the transfer function of delayed system is given by (5)

G(s) =
K

1 + Ts
e−Ls (5)

Where K , T and L represent respectively the state gain, the
constant time and the time delay of the plant. These three
parameters are supposed to be positive.

Fig. 1. Closed-loop control of a time delay system

The PI Controller is described by the following transfer
function:

C(s) = Kp +
Ki

s
(6)

Our objective is to analytically determine the region in the
(Kp,Ki) parameter space for which the closed-loop system is
stable.
theorem 3[10, 11, 12, 13]
The range of Kp value, for which a solution to PI stabilization
problem for a given stable open-loop plant exists, is given by:

− 1

K
< Kp <

T

KL

√
α2

1 +
L2

T 2
(7)

Where α1 the solution of the equation tan(α) = −T
Lα in the

interval [π
2 , π].

Proof. The closed loop characteristic equation of the system
is given by:

δ(s) = (KKi + KKps)e
−Ls + (1 + Ts)s (8)

we deduce the quasi-polynomials:

δ∗(s) = eLsδ(s) = (KKi + KKps) + (1 + Ts)seLs (9)

substituting s = jw , we have:
δ∗(jω) = δr(ω) + jδi(ω)

where:{
δr(ω) = KKi − ω sin(Lω) − Tw2 cos(Lω)

δi(ω) = w [KKp + cos(Lω) − Tw sin(Lω)]
(10)

Clearly, the parameter Ki only affects the real part of δ∗(jω)

whereas the parameter Kp affects the imaginary part. Accord-
ing to the first condition of theorem 1, we should check that
the roots of δi and δr are simple. By using the theorem 2,
while choosing , M = 2, N = l = 1 and η = π

4 , we observe
that δi(ω) has simple roots for any Kp checking (7)[1, 13].

the application of the second condition of theorem 2, led us
to:
E(ω0) = δ

′
i(ω0)δr(ω0) − δi(ω0)δ

′
r(ω0) > 0

for ω0 = 0 (a value that annul δi(ω)) we obtain:
E(ω0) = (

KKp+1
L )KKi > 0 which implies Kp > −1

K since
K > 0 and Ki > 0.
This proofs the first inequality given by (7) in Theorem 3.
We consider that z = Lω , we get:

δr(z) = K

[
Ki − z

KL
(sin(z) +

T

L
z cos(z))

]
(11)

It results that a(z) = z
KL (sin(z) + T

Lz cos(z)) then

δr(z) = K [Ki − a(z)] (12)

for z0 = 0, we obtain :

δr(z0) = K(Ki − a(0)) = KKi > 0 (13)

for zj �= z0, j = 1, 2, 3..., we obtain:

δr(zj) = K(Ki − a(zj)) (14)

Interlacing the roots of δr(z) and δi(z) is equivalent to
δr(z0) > 0 (since Ki > 0), δr(z1) < 0, δr(z2) > 0... We
can use the interlacing property and the fact that δi(z) has
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only real roots to establish that δr(z) possess real roots too.
From the previous equations we get the following inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δr(z0) > 0

δr(z1) < 0

δr(z2) > 0

δr(z3) < 0

δr(z4) > 0
...

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Ki < a1

Ki > a2

Ki < a3

Ki > a4

...

(15)

where the bounds aj for j = 1, 2, 3... are expressed by:

aj = a(zj) (16)

Now, according to these inequalities, it is clear that we need
only odd bounds (which to say a1,a3...). It has to be strictly
positive to get a feasible range for the controller parameter
Ki. From [10, 12], aj is positive (for the odd values of j ) for
every Kp verifying (7). Hence, the conditions giving by (15)
are reduced to:

0 < Ki < min
j=1,3,5...

{aj} (17)

IV. PI CONTROL FOR SECOND ORDER DELAY SYSTEM

A second order system with delay can be mathematically
expressed by a transfer function having the following form:

G(s) =
K

s2 + a1s + a0
e−Ls (18)

Where K is the static gain of the plant, L is the time delay
and a0 and a1 are the plant parameters. The parameters are
always positive. The characteristic equation of the closed-loop
system is given by:

δ(s) = K(Ki + Kps)e
−Ls + (s2 + a1s + a0)s (19)

we deduce the quasi-polynomial δ∗(s)

δ∗(s) = eLsδ(s) = K(Ki+Kps)+s(s2+a1s+a0)e
Ls (20)

by replacing s by jw , we get:

δ∗(jω) = δr(ω) + jδi(ω) (21)

with:{
δr(ω) = KKi + (ω3 − a0ω) sin(Lω) − a1ω

2 cos(Lω)

δi(ω) = w
[
KKp + (a0 − ω2) cos(Lω) − a1ω sin(Lω)

]
(22)

Clearly, the parameter Ki only affects the real part of δ∗(jω)

whereas the parameter Kp affects the imaginary part. Let’s put
z = Lw, we get:

{
δr(z) = KKi + sin(z)( z3

L3 − a0
z
L ) − a1

z2

L2 cos(z)

δi(z) = z
L (KKp + cos(z)(a0 − z2

L2 ) − a1
z
L sin(z))

(23)

Step1. The application of the second condition of theorem 2,
led us to:
E(z0) = δ

′
i(z0)δr(z0) − δi(z0)δ

′
r(z0) > 0

from (13) we get:
δ
′
i(z) =

KKp

L − sin(z)(a0 + 2a1z
L2 − z3

L3 ) + cos(z)(a0
L − 3z2

L3 −
a1

z2

L2 )

for z0 = 0 (a value that annul δi(z)) we obtain:
E(z0) = δ

′
i(z0)δr(z0) = (

KKp+a0
L )KKi > 0

which implies Kp > −a0
K since K > 0 and Ki > 0.

Step2. We pass to the verification of the interlacing condition
of δr(z) and δi(z) roots. For such purpose, we are going
to determine the roots from the imaginary part, which is
translated by the following relation:

δi(z) = 0 ⇒
⎧⎨
⎩

z = 0

or

KKp + cos(z)(a0 − z2

L2 ) − a1
z
L sin(z) = 0

⇒
⎧⎨
⎩

z = 0

or

KKp + cos(z)(a0 − z2

L2 ) = a1
z
L sin(z)

⇒
⎧⎨
⎩

z = 0

or
f(z) = g(z)

We notice that z0 = 0 is a trivial root of the imaginary part.
The others are difficult to solve analytically. However, this
can be made graphically. Two cases are presented. In each
case the positive real roots of δi(z) will be denoted by zj

,j = 1, 2, 3, arranged in increasing order of magnitude.
First case: −a0

K < Kp < Ku

In this case, we graph the curves off(z) , of g(z) and the
line h defined by z = L

√
a0 which are presented in figure 2.

Where Ku is defined in second case.

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi 9pi/2 5pi
−20

−15

−10

−5

0

5

10

15

20
f(z)

g(z)

z5

z3

z4

z6

z2
z1

h

Fig. 2. Representation of the curves of f(z), of g(z) and of h (Case:
−a0

K
< Kp < Ku)

We notice that for −a0
K < Kp the curve of f(z) intersects the

curve of g(z) twice in the interval [0, π]. Also we can see the
following properties:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1 ∈ [0 , π/2]

z3 ∈ [3 π/2 , 2 π]

z5 ∈ [7 π/2 , 4 π]
...

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z2 ∈ [π/2, π]

z4 ∈ [5π/2, 3π]

z6 ∈ [9π/2, 5π]
...

i.e zj verify

⎧⎨
⎩

z1 ∈ [0 , π/2]

and
zj ∈ [

(2j − 3)π
2 , (j − 1)π

]
for j ≥ 2

and we have

⎧⎨
⎩

z1 < z = L
√

a0

and
zj > z = L

√
a0, for j ≥ 2

Second case: Kp ≥ Ku

Figure 3 represents the case where Kp = Ku, and Ku is the
maximal value of Kp such as the plots of f(z) and g(z) are
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tangent in the interval [0, π].

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi
−20

−15

−10

−5

0

5

10

15

20

f(z)
g(z)

z2
z1

z3

z4

h

Fig. 3. Representation of the curves of f(z), of g(z) and of h (Case:
Kp = Ku)

The plot in Figure 4 corresponds to the case where
Kp > Ku and the plot of f(z) does not intersect g(z) in the
interval [0, π] .

To verify that δi(z) possess only simple roots we used

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi
−20

−15

−10

−5

0

5

10

15

20
f(z)
g(z)

z1

h

Fig. 4. Representation of the curves of f(z), of g(z) and of h (Case:
Kp > Ku)

Theorem 3. Replacing Ls by s1 in (10), we rewrite δ∗(jω)

as follows:
δ∗(s) = eLsδ(s) = es1δ(s1)

= es1(( s1
L )3 + a1(

s1
L )2 + a0

s1
L ) + K(Kp

s1
L + Ki)

For this new quasi-polynomial, we see that M = 3 and N = 1

where M and N designate the highest powers of s and es

which appear in δ∗(s). We choose η = π
4 that satisfies the

condition giving by theorem 3 as δr(η) �= 0 and δi(η) �= 0.
According to figure 2, we notice that for −a0

K < Kp < Ku,
δi(z) possess four roots in the interval

[
0, 2π − π

4

]
=

[
0, 7π

4

]
including the root at origin. As δi(z) is odd function of z so,
it possesses seven roots in

[−2π + π
4 , 2π − π

4

]
=

[−7π
4 , 7π

4

]
.

Hence, we can affirm that δi(z) has exactly 4N + M = 7

in
[−2π + π

4 , 2π + π
4

]
=

[− 7π
4 , 9π

4

]
. In addition, it can be

shown that δi(z) has tow real roots in each of the intervals[
2lπ + π

4 , 2(l + 1)π + π
4

]
and

[−2(l + 1)π + π
4 ,−2lπ + π

4

]
for l = 1, 2.... It fallows that δi(z) has exactly 4lN + M
real roots in

[−2lπ + π
4 , 2lπ + π

4

]
for −a0

K < Kp < Ku .
At the end, according to theorem 3 δi(z) has only real roots
for every Kp in

[−a0
K ,Ku

]
. For Kp ≥ Ku , corresponding

to figure 3 and 4, the roots of δi(z) are not real. We pass

to determine the superior value of Kp. According to the
definition of Ku, if Kp = Ku then the curves of f(z) and
g(z) are tangent in the point α . Which is translated by:⎧⎪⎨
⎪⎩

KKu + cos(α)(a0 − α2

L2 ) = a1
α
L sin(α)

and
d
dz

[
KKu + cos(z)(a0 − z2

L2 )
]

z=α
= d

dz

[
a1

z
L sin(z)

]
z=α

⇒ −2α cos(α)(1 + a1L) + sin(α)(α2 − a0L
2 − a1L) = 0

⇒ tan(α) =
α(2 + a1L)

(α2 − a0L2 − a1L)
(24)

once α is determined, the parameter Ku is expressed by (25):

Ku =
1

K
(a1

α

L
sin(α) − cos(α)(a0 − α2

L2
)) (25)

Now, we state theorem 4 determining the range of for the
second order delay system stabilization controlled by PI
regulator. This is equivalent to theorem 3 for a first delay
system.
theorem 4
Under the above assumptions on K,L ,a0 and a1 , the
range of (Kp values for which a solution exists to the PI
stabilization problem of a open-loop stable plant with transfer
function G(s) is given by:

−a0

K
< Kp <

1

K
(a1

α

L
sin(α) − cos(α)(a0 − α2

L2
)) (26)

Where α the solution of the equation tan(α) =
α(2+a1L)

(α2−a1L−a0L2) in the interval [0, π]

After the determination of the roots of imaginary part δi(z),
we pass to the evaluation of these roots by real part δr(z).

δr(z) = KKi + sin(z)( z3

L3 − a0
z
L ) − a1

z2

L2 cos(z)

= K [Ki − a(z)]
(27)

where a(z) = z
KL

[
sin(z)(a0 − z2

L2 ) + a1
z
L cos(z)

]
. Let’s put

zj , j = 1, 2, 3... the roots of δr(z), for z0 = 0, we have:

δr(z0) = K(Ki − a(0)) = KKi > 0 (28)

for zj �= z0 where j = 1, 2, 3... , we get:

δr(zj) = K(Ki − a(zj))

= K(Ki − aj)
(29)

with a(zj) = aj .
Interlacing the roots of δr(z) and δi(z) is equivalent to
δr(z0) > 0 (since Ki > 0), δr(z1) < 0, δr(z2) > 0... We
can use the interlacing property and the fact that δi(z) has
only real roots to establish that δr(z) possess real roots too.
From the previous equations we get the following inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δr(z0) > 0

δr(z1) < 0

δr(z2) > 0

δr(z3) < 0

δr(z4) > 0
...

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ki > 0

Ki < a1

Ki > a2

Ki < a3

Ki > a4

...

(30)
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From these inequalities, it is clear that the aj odd bounds must
be strictly positive; however the aj even bounds are negative
in order to find a feasible range of Ki . From which we have:

0 < Ki < min
j=1,3,5...

{aj} (31)

On the following, we are interesting to prove that the odd aj

are strictly positive and that the even aj are negative in order
to affirm the relation (31).
From figure 2, the roots zj of δi(z) verify:

⎧⎨
⎩

z1 ∈ [0 , π/2]

and
zj ∈ [

(2j − 3)π
2 , (j − 1)π

]
for j ≥ 2

(32)

In addition we have:

⎧⎨
⎩

z1 < L
√

a0

and
zj > L

√
a0, for j ≥ 2

⇒
⎧⎪⎨
⎪⎩

(a0 − z2
1

L2 ) > 0

and

(a0 − z2
j

L2 ) < 0, for j ≥ 2

Proof:

• Let’s prove that a(zj) > 0 for j = 1, 3, 5, 7...
Step 1: According to (32), for z1 we have cos(z1) > 0

and tan(z1) > 0.
We suppose that a(z1) < 0 ⇒[
sin(z1)(a0 − z2

1
L2 ) + a1

z1
L cos(z1)

]
< 0

⇒ sin(z1)(a0 − z2
1

L2 ) < −a1
z1
L cos(z1)

⇒ tan(z1)(a0 − z2
1

L2 ) < −a1
z1
L

⇒ tan(z1) <
−a1

z1
L

(a0− z2
1

L2 )
< 0

Which is absurd, as a result:[
sin(z1)(a0 − z2

1
L2 ) + a1

z1
L cos(z1)

]
> 0 ⇒ a(z1) > 0.

Step 2: According to (32), we have cos(zj) > 0 and
tan(zj) < 0 for zj where j = 3, 5, 7, 9...
We suppose that a(zj) < 0 ⇒[
sin(zj)(a0 − z2

j

L2 ) + a1
zj

L cos(zj)
]

< 0

⇒ sin(zj)(a0 − z2
j

L2 ) < −a1
zj

L cos(zj)

⇒ tan(zj)(a0 − z2
j

L2 ) < −a1
zj

L

⇒ tan(zj) >
−a1

zj
L

(a0−
z2

j

L2 )

> 0

Which is absurd, so
[
sin(zj)(a0 − z2

j

L2 ) + a1
zj

L cos(zj)
]

>

0 ⇒ a(zj) > 0 for j = 3, 5, 7, 9...

• Let’s prove that a(zj) < 0 for j = 2, 4, 6, 8...
For zj , j = 2, 4, 6, 8.... we have cos(zj) < 0 and
tan(zj) < 0 according to (31),
We suppose that a(zj) > 0 ⇒[
sin(zj)(a0 − z2

j

L2 ) + a1
zj

L cos(zj)
]

> 0

⇒ sin(zj)(a0 − z2
j

L2 ) > −a1
zj

L cos(zj)

⇒ tan(zj)(a0 − z2
j

L2 ) < −a1
zj

L

⇒ tan(zj) >
−a1

zj
L

(a0−
z2

j

L2 )

> 0

Which is absurd,so
[
sin(zj)(a0 − z2

j

L2 ) + a1
zj

L cos(zj)
]

<

0 ⇒ a(zj) < 0 for j = 2, 4, 6, 8...

Recapitulation: For every Kp in the interval giving by the-
orem 4, the parameters a(zj) verify the following conditions:⎧⎨

⎩
a(zj) > 0, for j = 1, 3, 5, 7...
and
a(zj) < 0, for j = 2, 4, 6, 8...

(33)

To determine the set of all stabilizing (Kp,Ki) values
for a second order delay system, we propose a procedure
summarized in the following algorithm.

Algorithm for determining PI parameters:
1) Choose KP in the interval suggested by theorem 1 and

initialize j = 1,
2) Find the roots zj of δi(z) ,
3) Compute the parameter aj associated with the zj previ-

ously founded,
4) Determine the lower and the upper bounds for Ki as

follows: 0 < Ki < min
j=1,3,5...

{aj}
5) Go to step 1.

Once the stability domain is determined, the question is
what are the optimum parameters of the PI controller which
guarantee the good performance of the closed-loop system?
On the following, the genetic algorithm is proposed to answer
this need.

V. GENETIC ALGORITHMS

The Genetic Algorithms (AGs) are iterative algorithms of
global search of which the goal is to optimize a specific
function called criterion of performance or cost function. In
order to find the optimal solution of a problem by using AGs,
we start by generating a population of individuals in a random
way. The evolution from one generation to the following is
based on the use of the three operators’ selection, crossover
and mutation which are applied to all the elements of the
population . Couples of parents are selected according to their
functions costs. The crossover operator is applied with a Pc

probability and generates couples of children. The mutation
operator is applied to the children with a Pm probability and
generates mutant individuals who will be inserted in the new
population. The reaching of a maximum number of generations
is the criterion of stop for our algorithm. Figure 5 shows the
basic flow chart of AGs. The principle of regulator parameters
optimization by the genetic algorithms is shown by figure 6.

It is about the search of parameters Kp , Ki in the area
of stability. This may be made by the selection according
to the optimization criterion J is described by the following
expression:

J = αISE + βIAE + δITAE + γITSE

= α
tmax∑

0
e(t)2 + β

tmax∑
0

|e(t)| + δ
tmax∑

0
t |e(t)| + γ

tmax∑
0

te(t)2

(34)
Where α , β ,δ and γ are ponderation’s factor ranging
between 0 and 1 and whose their sum equalizes 1, can be
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Fig. 5. Steps of the genetic algorithm evolution

Fig. 6. The optimization principle by genetic algorithm

modified according to specifications’ chart [14]. If we want to
minimize the tuning energy, the ITAE criteria and the IAE
are considered. In the case where we privilege the rise time,
we take the ITSE criterion. In order to guarantee the tuning
energetic cost, we choose the ISE criterion. The calculation
steps of the control law are summarized by the following
algorithm:

1) Introduction of the following parameters:
• maxpopindividuals number by population
• initial population
• genmax generation number

2) Initialization of the generation counter (gen = 1)
3) Initialization of the individual counter (j = 1 )
4) For t = 1s to t = tmax efficiency evaluation of jth

population individual fitness(J) = 1
1+J

5) Individual counter incrementing (j = j + 1 ).
• If j < maxpop , going back to step 4
• If not: application of the genetic operators (selec-

tion, crossover, mutation) for the founding a new
population

6) Generation counter incrementing (gen = gen + 1 ),
If , going back to step 3.

7) taking Kpopt and Kiopt which correspond to the best
individual in the last population (individual making the
best fitness).

On the following, the genetic algorithm characterized by
generation number equal to 100, Pc = 0.8 , Pm = 0.08 and

individual number by population equivalent to 20.

VI. SIMULATION RESULTS

We consider a second order delay system described by the
following transfer function [13, 17]:G(s) = 5e−3s

s2+2s+5
In order to determine Kp values, we look for α in interval
[0, π] satisfying tan(α) = 8α

(α2−51) ⇒ α = 2.685 . Kp range
is given by: −1 < Kp < 0.9116.
The system stability region, obtained in Kp,Ki plane is pre-
sented in figure 7. From figure 7, our Kp and Ki population’s

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Kp

K
i

Fig. 7. PI controller stability domain

individuals are choosing between [−1, 0.911] and [0, 0.5]. PI
controller optimum parameters supplied by genetic algorithm
which are Kpopt = 0.3371 and Kiopt = 0.2203. α, β, δ and
γ are choosing successively equivalent to 0.3, 0.2 , 0.2 and
0.3. Figure 8 presents the evolution of the set point, the output
and the control law.

0 5 10 15 20
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Time (s)

output
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Set point

Fig. 8. The optimization principle by genetic algorithm

VII. CONCLUSIONS

In this work, we proposed an extension of Hermit-Biehler
theorem to compute the region stability for second order delay
system controlled by PI regulator. The procedure is based first
on determining the range of proportional gain value Kp for
which a solution to PI stabilization exists. Then, it is shown
that for a fixed Kp inside this range, the integral gain value Ki
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is computing. Lastly, we were interested in search of optimal
PI for a given performance criteria, inside the stability region.
The criterion used to find the PI parameters is based on a linear
combination of classical performance criteria: the ISE, the
IAE, the ITSE and the ITAE. In regard to the complexity
of the optimization problem, we used the genetic algorithms.
The validation of these results has been done on a delayed
second order plant.
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