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Abstract—In the present work, an attempt is made to understand 

electromagnetic field confinement in a subwavelength waveguide 
structure using concepts of quantum mechanics. Evanescent field in 
the waveguide is looked as inability of the photon to get confined in 
the waveguide core and uncertainty of position is assigned to it. The 
momentum uncertainty is calculated from position uncertainty. 
Schrödinger wave equation for the photon is written by incorporating 
position-momentum uncertainty. The equation is solved and field 
distribution in the waveguide is obtained. The field distribution and 
power confinement is compared with conventional waveguide theory. 
They were found in good agreement with each other. 
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I. INTRODUCTION 

ECENTLY there has been a growing interest in 
reconstructing the quantization description of photon. 

Some recent studies have shown that photons can be localized 
in space [1-3]. It is argued that the photon tunneling process 
originates in an inability to localize photons completely in 
space.  

According to Ole Keller [4], when light propagates through 
subwavelength structures, it is far beyond the classical 
diffraction limits. Hence, field confinement in this case can be 
explained by concepts of quantum mechanics. The first-
quantized theory of spatial localization of photons is proposed 
by Ole Keller, in which the spatial field localization is 
smoothly linked to classical electromagnetic theory. Photon 
wave function is also formulated and used to explain photon 
propagation in the media. Photon localization is explained by 
constructing photon wave functions [5-10]. It is shown that a 
single photon cannot be localized in the same sense that a 
massive particle in nonrelativistic quantum mechanics can be 
localized [11].  However, Ole Keller has made following 
arguments regarding photon localization as given in [12]. 
According to Keller, not only the massless particle such as the 
photon, but also the massive particle itself, cannot be localized 
since, when a particle is confined to a small region, 
nonrelativistic quantum mechanics may become no longer 
valid.  Hence, concept of localizability in nonrelativistic 
quantum mechanics is just an ideal.   

 
Shilpa Kulkarni is with Shri Ramdeobaba Kamla Nehru Engineering 

College, Katol Road, Nagpur,(M.S.) 440013, India. Tel.:091-0712-2582844, 
2580011;fax: 091-0712-2583237. (e-mail address: shilpaku@rediffmail.com) 

Sujata R.Patrikar, Dept of Applied Physics, Visvesvaraya National 
Institute of Technology, Nagpur (M.S.), 440010 India.(email: 
sujata_patrikar@rediffmail.com) 

 

 
On the other hand, in relativistic quantum mechanical 

picture, there exists a common property for the localizability 
of all massive particles. It is further argued that it is impossible 
to localize a particle with a greater precision than its Compton 
wavelength, which is because of many-particle phenomena.  
Thus, even though there has been no nonrelativistic quantum 
mechanics of the photon, localizability of the photon can be 
still studied in the sense that a massive particle in relativistic 
quantum mechanics can be localized.   

In practice, an interaction is necessary to locate a particle.  
The photon propagating in a waveguide provides the required 
interaction. Thus, photons inside a waveguide can be localized 
in the same sense that a massive particle can be localized in 
free space.  It is argued that tunneling photons can be regarded 
as evanescent modes and can propagate over a spacelike 
interval [13]. Thus evanescent modes are a quantum 
mechanical rather than a classical phenomenon.  

This has been the motivation for our work. In the present 
work, attempts are made to understand light confinement in a 
subwavelength planar waveguide structure in terms of 
probability of photon localization in the waveguide structure.  

II. OUR IDEA OF UNDERSTANDING PHOTON LOCALIZATION 

Light confinement in a waveguide structure is well 
explained with Maxwell’s equations. Existence of evanescent 
field originates from condition of total internal reflection 
required for light wave propagation inside the waveguide. 
However, when the light wave with wavelength greater than 
waveguide dimension propagates through the waveguiding 
structure, the light propagation and total field distribution can 
be better understood in terms a photon localized in the 
waveguide with a finite tunneling probability through the 
waveguide core. So it becomes a quantum mechanical 
phenomenon. It is known that electron tunneling is well 
described by concepts of quantum mechanics. In quantum 
mechanical picture, a photon and an electron can be treated 
analogously [14]. They exhibit many similar characteristics. 
Electron tunneling has exponentially decaying amplitude in 
classically forbidden region. Thus, evanescent field in the 
cladding of a waveguide which decays exponentially can be 
looked as a barrier tunneling phenomenon, in quantum 
mechanical regime. Barrier tunneling of electrons is explained 
by Schrödinger wave equation.  

In present work, attempts are made to obtain Schrödinger 
wave equation (SWE) for the waveguide photon. Waveguide 
modes are obtained by solving the Schrödinger wave equation 
with appropriate boundary conditions. 
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III.  SCHRÖDINGER WAVE EQUATION  

Solution of Schrödinger wave equation for electron 
tunneling shows a finite probability of transmission across the 
barrier. Since it is probability phenomenon, it can be 
understood in terms of Heisenberg’s uncertainty principle. 
Angik Sarkar and T. K. Bhattacharyya [15] have well 
explained barrier tunneling of electron in terms of 
Heisenberg’s uncertainty principle as follows. When a packet 
of electrons is incident at a potential barrier of some finite 
height and if their position uncertainty ∆x is greater than width 
of the barrier, then there is a definite probability of some 
electrons being on the other side of the barrier. Momentum 
uncertainty is calculated for a given value of ∆x, from which 
energy values are obtained. This analysis gives a good 
justification to the experimental data. 

For understanding photon localization in a subwavelength 
waveguide and existence of evanescent field, we extend the 
above arguments made for an electron to the photon problem. 
We look at the field distribution inside waveguide in the form 
of propagating field and outside the waveguide in the form of 
evanescent field as probability phenomenon and use 
uncertainty principle to describe the field distribution. The 
field distribution is a result of momentum conservation in the 
three regions of the waveguide. Hence the energy distribution 
in the three regions is obtained in terms of momentum 
uncertainties in the three regions. 

The Schrödinger wave equation for an electron as given in 
(1) is modified as that given in (2) & (3), as follows: 
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where symbols have their usual meaning. 
We write the Schrödinger wave equation for the photon as: 
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where ‘a’ is the waveguide height and ‘b’ is the upper and 
lower cladding height. The term ∆µ represents difference in 
refractive indices of core and cladding. 

Equation (2) is derived by using electron-photon analogy in 
Schrödinger wave equation as given in (1). Equation (2) is 
obtained by using position momentum uncertainty principle for 
the photon. The change in momentum is accounted for by 
change in velocity or ultimately by change in refractive index 
in the cladding regions.  

IV.  COMPARISON OF RESULTS OBTAINED BY CONVENTIONAL 

THEORY AND THE PRESENT WORK  

Three layer planar waveguide structure is analyzed to 
validate our proposed Schrödinger wave equation for a 
waveguide photon by calculating power in core and obtaining 
its dependence on propagating wavelength and waveguide 
height. The waveguide has silicon dioxide (SiO2) as the lower 

cladding or substrate, Silicon (Si) core and air as (upper) 
cladding. 

A. Conventional theory 

For waveguide analysis by conventional theory, Maxwell’s 
equations are written as given in [16] for a TE mode condition. 
Single mode waveguide is used for analysis. The eigen value 
equation as given in (4) is solved numerically for obtaining 
axial propagation constant (β) and fraction of power in core 
(η).  
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ko is the wave vector in air and κ is transverse wave vector in 
the waveguide. 
Power in the waveguide is calculated by using (5) as follows. 
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Fraction of power in core or confinement factor is calculated 
as η = Pcore /P. 

B. Proposed theory 

Present work is focused on understanding photon 
localizability in a waveguide. Hence, field confinement in the 
waveguide core is studied. For that, Schrödinger wave 
equations as given by (2) and (3) are solved numerically to 
find field confinement factor. Appropriate boundary conditions 
for continuity of field vector across the core-cladding 
boundaries are used. Equation (2) is used for core region and 
equation (3) is used for the two claddings. The power in core 
in this case is calculated by using the expression η = Pcore /P., 
where P and Pcore  are given by (6) & (7) 
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Where wave vector ψ is obtained by numerically solving (2) 
and (3) 

V. RESULTS  

Fraction of power in core is calculated by using both the 
theories. Dependence of power in core on propagating 
wavelength and waveguide height is studied. The analysis of 
planar Air-Si-SiO2 waveguide structure yields following 
results as depicted in Fig. 1 and Fig. 2. 

A. Dependence on wavelength 

Fractional power in core for various wavelengths is 
calculated for a waveguide of height of 220nm. 
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wavelengths obtained by conventional theory and Schrödinger wave 
equation for planar waveguide of height 220nm 

B. Dependence of fractional power in core on waveguide 
height 

Fractional power in core is calculated for various waveguide 
heights for 1.55µm wavelength. 
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obtained by conventional theory and Schrödinger wave equation 
 

From Fig. 1, it is observed that the trends and values of 
fractional power in core with wavelength obtained from 
Schrödinger wave equation almost matches with conventional 
theory. 

From Fig. 2 also, trends and values of fractional power in 
core with waveguide height obtained from Schrödinger wave 
equation and conventional theory are found in good agreement 
with each other.   

VI. CONCLUSION 

Schrödinger wave equation is obtained for a photon in 
waveguide using by quantum mechanical concepts. It is found 
helpful in obtaining field confinement in a subwavelength 
waveguide structure. In this work, we have made an attempt to 
understand photon localization in the waveguide. This work 

gives a different approach to look at the field confinement 
problem, which can be explored further.  
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Fig. 1 Comparison of field confinement for various propagating 

Fig. 2 Comparison of field confinement for various waveguide heights 


