
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2165

Personalisation of SOA Registry Query Results:
Implementation, Performance Analysis and

Scalability Evaluation

Kee-Leong Tan, Karyn Wei-Ju Khoo, and Hui-Na Chua

Abstract—Service discovery is a very important component
of Service Oriented Architectures (SOA). This paper presents
two alternative approaches to customise the query results of private
service registry such as Universal Description, Discovery and
Integration (UDDI). The customisation is performed based on some
pre-defined and/or real-time changing parameters. This work
identifies the requirements, designs and additional mechanisms that
must be applied to UDDI in order to support this customisation
capability. We also detail the implements of the approaches and
examine its performance and scalability. Based on our experimental
results, we conclude that both approaches can be used to customise
registry query results, but by storing personalization parameters in
external resource will yield better performance and but less scalable
when size of query results increases. We believe these approaches
when combined with semantics enabled service registry will enhance
the service discovery methods within a private UDDI registry
environment.

Keywords—Service Oriented Architecture (SOA), Web service,
Service discovery, registry, UDDI

I. INTRODUCTION
ERVICE-LEVEL discoverability is one of the primary
principles within a Service Oriented Architecture (SOA).

Due to the convergence of key technologies and popularity of
Web service, most service-oriented enterprises are taking
advantage of Web services capabilities to improve corporate
agility, time-to-market for new products or services, reduce IT
costs and improve operational efficiency. Among the major
benefits of Web services are features such as pervasive, simple
and platform-neutral. [1]

Implementing discoverability on SOA level basically
requires the use of registry or directory technologies such as
UDDI [2]. The interaction between UDDI and other
components within web services architecture is shown in
Figure 1. Web services architecture consists of specifications
such as Simple Object Access Protocol (SOAP), Web Service
Description Language (WSDL) and UDDI. All these
components support the interaction of a service requester with
a service provider and the potential discovery of the Web
service description.

The service discovery process forms a relationship between
Service Requestor and Service Provider. It also defines a
process for locating service providers and and its associated
service description documents. The provider typically
publishes a WSDL description of its Web service, and the
requester accesses the description using a UDDI or other type
of registry, and requests the execution of the provider's service
by sending a SOAP message to it. The service discovery
process can be grouped into two main groups: static and
dynamic [20]. Static discovery occurs during application
development time where a developer uses a browser or other
user interface to perform a find operation on the service
registry. For dynamic service discovery, the service
implementation details such as service interface location and
network protocol to use are not defined at design time so that
they can be determined at runtime. At runtime, the application
will find for one or more services and based on certain
required parameters in application logic. The application will
choose a Web service to invoke from the find results of the
find operation, extracts necessary information (service
interface location, network protocol, etc) and finally invokes
the Web service.

Fig. 1 Basic Web service architecture

However, present UDDI specification still has limitations,
particularly on semantics information retrieval. Hence, unlike
WSDL and SOAP, UDDI has not yet attained industry-wide
acceptance, and remains an optional extension to SOA. For
example, the present UDDI standard does not provide a built-
in mechanism to personalise or rank its query results, and its
search capabilities are unable to extend beyond the keyword-
based matches [3]. To address some of these limitations, there

S

All authors are members of Mobile Web Service Team,
Asian Research Centre, British Telecommunications Group, 63000
Cyberjaya, Selangor, Malaysia. Their e-mails are:
keeleong.tan@bt.com, weiju.khoo@bt.com and hui.chua@bt.com

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2166

are many on going research and standardisation activities
within the SOA and semantics web communities which result
in the introduction of semantic service markup language such
as DAML-S and OWL-S [4]. Besides that, XML based
languages for business process are also expanding, such as
WSFL, ebXML, BPML, RuleML, and BPEL4WS.

Despite the limitations mentioned above, and the slow
adoption of public UDDI implementation, private UDDI has
gained success within inside-the-enterprise technology and
support from major vendors such as Oracle, Microsoft and
IBM. Based on this, UDDI will be the most popular candidate
for SOA registry implementation. One recent announcement
by Oracle to include UDDI-based registry as part of their
latest Oracle Application Server 10g Release 3 further support
this future trend. [5]

II. PROBLEM DESCRIPTION
As UDDI has gained support from enterprises and major

vendors, it's usage will not be limited to business-to-business
(B2B) scenario, but also into the area of business-to-customers
(B2C) and peer to peer interaction. Within the B2C context, a
business entity owns or implements private or semi-private
UDDI registries. The business entity will have certain business
rules or interests to fulfill, hence arise a need to customise the
results of Web service discovery. One example scenario will
be a business entity that owns private UDDI, may wish to
have a control on the way UDDI query results are displayed to
the service requestor. The control mechanism will be based on
certain business criteria, which will be mapped to certain
parameters.

Let us consider the following example which illustrates this
scenario. We have a telecommunication service operator who
uses a private UDDI registry to store and publish mobile
services to its customers. Besides its in-house developed
services, it also hosts some services offered by third service
providers. The UDDI operator may use UDDI classification
scheme like NAICS [21] and UNSPSC [22] to better describe
and categorise the service functionality. For example, a mobile
game service can use UNSPSC classifications scheme with
value code of 43223208 to describe its functionality.

Now consider a static discovery scenario when a mobile
consumer browses for available mobile game services, UDDI
will perform a find inquiry for all services which has UNSPSC
43223208 value. The registry will return a list of services and
the customer has to make the final decision to determine the
service he intends to subscribe or purchase. However, since
this private registry is owned and hosted by a business entity,
the operator may wish to prioritise the list of services to be
displayed. Example like to show only selected services or rank
services according to pre-defined business rules such as
vendor priority or service popularity. This process should be
automated and its mechanism transparent to consumers.
However, present UDDI inquiry API does not support
complex ranking function, and is not able to support this
requirement.

The requirements become more complicated for dynamic
service discovery scenario as it is the application logic which

has to determine which service to invoke upon receiving more
than two matches in a service discovery result. In such
scenario, there is a need for a unique and linear parameter
which can be used as additional or final reference, to assist in
the final decision making. Hence there is a need to have a
separate mechanism to publish and retrieve these external
parameters.

In this paper, we implement and evaluate two practical
approaches to customise registry query results according to
static and dynamic parameters values as proposed in [19].
However, we have generalized the proposed models into two
broader approaches. The first approach, known as Internal
Parameters Approach has all parameters stored as data
records within the UDDI registry; while the second External
Parameters Approach, has parameters stored in external
resources, such as in text file, database, log files, etc. Both
approaches adhere to UDDI version 2 standards, and
customisation of service discovery results is handled by a
proxy who acts as intermediary to intercept the UDDI query
results, and manipulate the records before returning the final
list to service requestor.

Our contributions are:
(1) We present the existence of a requirement to customize

service registry query results in practical usage scenario.
This happen when a service discovery return two or more
matches and the results listing needs to be personalized
according to certain business criteria.

(2) We propose two approaches that enable the
personalization of registry query results by referencing to
personalization parameters which could be accessed either
within or outside the registry.

(3) The design, implementation and evaluation of the two
approaches. Based on the performance analysis, we have
demonstrated the approaches are feasible as
complementary to semantic enabled service discovery for
enhancing service discovery in a private UDDI
environment.

The rest of the paper is organized as follows. Section III

discusses the related works. We have developed a UDDI
registry testbed to implement and evaluate both approaches, as
discussed in section IV. Section V describes details of
experimental setup and objectives. Section VI presents the
performance experiment results and gives detailed analysis.
We finally summarize the strength and weaknesses of each
approach and conclude this paper with notes on future work in
this research area.

III. RELATED WORKS
Most efforts to customise Web service discovery results

focused on creating semantic extensions to UDDI, pioneered
by K.Sivashanmugam, et al. [7] and Paolucci, et al. [6][7]. It
took advantage of DAML ontology to implement a matching
algorithm used to enhance UDDI registries with additional
semantic layer; this also allowed metadata pattern based
matching. The work carried out also described how service
capabilities within DAML-S can be mapped into UDDI

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2167

records, which lead to a new technique to record semantic
information within UDDI records. To achieve more accurate
matching results, an algorithm was proposed to rank the level
of matching for DAML-S description, where the result was an
aggregation of several pre-defined individual verification and
matching stages [8]. These approaches however are not
suitable for private registry environment as effort to customise
registry to support additional ontology languages like DAML-
S will require too much modification effort and amplified
system complexity.

Rama, et al. [3] questioned the effectiveness of these
semantic extensions and argued a better approach would be to
extend the UDDI API schema to enable a service requestor to
specify the semantic properties. This approach will require
new parameters to be added to UDDI API. For discovery,
selection and combination of services according to the special
preferences of an individual user, [9] introduced an algorithm
for selection of appropriate service using cooperative
databases and collaborative filtering techniques. However, we
foresee these approaches will not gain wide industry
acceptance as changes to existing UDDI API and data
structures will add to the complexity of existing system and
they do not conform to existing standards.

With regards to customisation by ranking of web services,
there were several proposals such as [10] which introduced the
use of agent to automatically establish ranking capabilities to
web services and [11] described a framework for ontology-
based discovery of semantic web services and allowed user to
specify personalised ranking criteria as part of query result
based on ontology. In [14], taxonomy for non-functional
attributes namely QoS was proposed. The UX architecture
[12] suggested an approach to use dedicated server to collect
feedback of users and predict the future performance of
published services.

IV. TESTBED ARCHITECTURE AND IMPLEMENTATION
A. Architecture
Both approaches described in Section II share some

common architecture components as shown in Figure 2. They
are: UDDI server, UDDI Proxy and User Interface. These
components will interact with other external components. In
this paper, we assume the customisation criteria required is the
ranking business list or service list to User Interface.

Fig. 2 Proposed model architecture

UDDI server is a server-side application that fully supports
the UDDI API specification. Examples are Microsoft
Enterprise UDDI Services, IBM Websphere UDDI Registry,
Oracle AS UDDI Registry, webMethods GLUE and jUDDI
[13]. User interface allows a requester (or consumer) to
manually locate and select a service description that meets his
desired functional and criteria. It could be a web browser or
standalone application accessed via mobile devices or desktop
computers. The UDDI Proxy acts as an intermediary between
the User Interface and the UDDI Server. Its main function is
to intercept the UDDI query result and rearrange the records
based on certain pre-defined criteria. The criteria can be
created either at design time or run time.

B. Static and Dynamic Parameters
This paper describes two alternative approaches to

personalise UDDI query result based on criteria managed by
the UDDI administrator. The business criteria will be mapped
to certain variable parameters to manipulate the final query
result. These parameters are generally grouped into two types:
static and dynamic [19]. The above parameters usage
according to business and service entities is summarised in
Table 1.

TABLE I
EXAMPLE OF PARAMETERS CATEGORIZED ACCORDING TO BUSINESS AND

SERVICE ENTITY

 Static Parameter Dynamic Parameter

Business Vendor ranking Vendor popularity

Service Service cost,
advertisement

Service popularity,
service load.

The static parameter will hold certain values which has

been fixed and do not change during run-time. Examples of
static parameter are vendor ranking (for business), cost per
transaction and advertisement priority (for service). Vendor
ranking refers to priority values assigned for different vendors,
based on certain business requirements. For example the most
preferred vendor will be given value of 1, second be given
value of 2, and so on.

Unlike static, the dynamic parameter will be used to store
value which is real-time changing and gets updated during
run-time. One example usage of dynamic parameter is to keep
track of service or business popularity, where it stores the total
number of request to invoke or subscribe a specific service.
The function is similar to webpage ‘hits counter’. Usage
described here can also be extended to track business or
vendor popularity – to know how popular a vendor compared
to others. Another example of dynamic parameter usage
within a registry is to monitor service traffic load, where it can
store data containing total number of concurrent users
accessing a specific service at any point of time.

One of the usages of UDDI tModel is to define a namespace
used to identify entities or classify business services. The
namespaces (tModelKey) are used in the identifierBag and
categoryBag elements, which will be referenced by

UDDI
Proxy

External files

UDDI
Server

Logs

Registry

User Interface

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2168

keyedReference element for categorization and identification
purposes. We take advantage of this classification scheme
feature to define new schemes for static and dynamic
parameters. Figure 3 shows the tModel definition to represent
static and dynamic parameter.

Fig. 3 (a) tModel Definition for Static Parameter

Fig. 3 (b) tModel Definition for Dynamic Parameter

C. Implementation
Our implementations for both approaches are based on the

assumption that the private registry is owned by a business
entity that has control over the service discovery results. The
criteria used to customise the UDDI query results will be
represented by static and dynamic parameters. The key
differences between each approach are (1) the location on
where the parameter values are stored and retrieved; and (2)
ranking mechanism. Each approach’s requirements, ranking
algorithm and implementations are further elaborated in this
section.

i. Internal Parameters Approach
This approach involves two main components: UDDI Proxy

and UDDI Server, as shown in Figure 4, where the parameters
will be saved inside the UDDI server itself.

Fig. 4 Internal Parameters Approach proposes parameter values to
be saved and retrieved from UDDI server

After the static and dynamic parameters are published as

tModel, a keyedReference element which contains reference to
the parameter tModelKey will be added to the category bag of
businessEntity or businessService element. The term “bag”
indicates a generic container of multiple values, and enables a

company to register multiple business identifiers or categories.
To further illustrate the example above, Figure 5(a) shows a

BusinessEntity record includes a keyedReference element
called Vendor_Ranking which reference to a static parameter
tModel in its category bag. Figure 5(b) shows similar usage
scenario for dynamic parameter, which is referenced
Service_Popularity parameter.

Fig. 5 (a) Vendor_Popularity referencing static parameter

tModelKey

 Fig. 5 (b) Service_Popularity referencing dynamic parameter

tModelKey

During service discovery, whenever a request is made by

consumer to get a list of services, the UDDI Proxy will invoke
the UDDI Find functions of the inquiry API and retrieve the
associated parameter values. Certain Find Qualifiers can also
be used to enable more precise search criteria. If
personalization of query is required, the UDDI Proxy will
process the list accordingly, such as rank using the embedded
parameters values retrieved from UDDI server. Once
processing is done, the new ranked list will be sent to user
interface, and all the parameters values will be discarded. The
algorithm for this approach is presented in Figure 6.

1. After receiving UDDI query result, check if personalisation is

required. If not, proceed to step 13.
2. Store query results in a dynamic array.
3. For personalisation of business query results, proceed to step 4,

else for business service, proceed to step 8.
4. For each business record, invoke getBusinessKey() method to

retrieve the business key.
5. Using business key, retrieve personalisation parameter values

from identifier or category bag.
6. Store business name and personalisation parameter values in a

temporary array.
7. Repeat Step 3 to 6 for all business records in dynamic array
8. For each service record, invoke getServiceKey() method to

retrieve the service key.
9. Using service key, retrieve personalisation parameter values

from category bag.
10. Store service name, its associated business name and

personalisation parameter values in a temporary array.
11. Repeat Step 7 to 9 for all service records in dynamic array
12. Sort the temporary array records according to parameters value.
13. Send the list to User Interface.

Fig. 6 Algorithm to rank UDDI query result using Internal
Parameters Approach

UDDI
Proxy

UDDI
Server

Registry

User Interface

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2169

The main advantage of the first approach is the criteria data
are stored and bind with its associated business or service
entity. This will be beneficial for private registry operator who
wishes to extend UDDI capabilities to support ranking with
minimal changes to his present system architecture. However,
there might be certain performance issue if the Proxy accesses
launch too many queries, too frequently to the UDDI server.

ii. External Parameters Approach
This second alternative approach is based on [19] where

parameter values are stored and accessed outside UDDI
registry, which could be external resources such as text file,
database, logs, etc. As shown in Figure 7, the parameters
should be accessible directly from the Proxy, outside the
UDDI server. For external file, it can either be in pipe-
delimited or even XML format. File A is used to store values
for static parameters File B is used to store values for dynamic
parameters. There is a need for a separate mechanism to
publish and update the parameter values to the external
resources; however this subject matter is beyond the scope of
this paper.

Fig. 7 Parameter values to be saved and retrieved from external
resources such as text files or server logs

A private registry system normally consists of several

application and server components. A typical UDDI server is
often hosted together with application server (JBOSS, Apache
Tomcat) and SOAP server (Apache Axis) or being part of a
integrated solution package (Microsoft Enterprise Server,
GLUE). As with the UDDI server, these servers do provide
cross-language logging services for the purposes of
application debugging and auditing. Web service log data
could provide information such as Web service usage,
supporting information concerning business transaction and
quality of service [14]. These logs data could provide useful
semantic information for ranking criteria. Certain dynamic
parameter values such as service or vendor popularity can be
calculated based on client accessing pattern [23][24] or by
extracting the data from log files of SOAP server, application
server and UDDI server [17]. However this will require a
function to search, match and count for each parameter type is
required within the UDDI Proxy. Examples of unique
identifications are businesskey and servicekey, both assigned
by UDDI.

The algorithm in Figure 8 shows the necessary steps to be
performed by the UDDI Proxy in order to retrieve both
parameters values from external resources.

1. After receiving UDDI query result, check if personalisation is

required. If not, proceed to step 9.
2. Store query results in a dynamic array.
3. For each record, retrieve the business/service key.
4. Group and store business/service names and keys into a

temporary array A. Create a parameter value column for each
business/service key record.

5. Open the external file which stores the personalisation
parameters data.

6. Read all business/service keys and their values from the file and
store into array B.

7. For each record in Array B, check if the business/service key
matches the business/service key in array A.

8. If found match, retrieve the corresponding parameter value from
array B and store into parameter column in array A.

9. Repeat Step 7 and 8 for all records in array A.
10. Sort array A according to required parameter values and make

necessary formatting.
11. Send the list to User Interface.

Fig. 8 Algorithm to rank list using parameters stored in external

file

This approach introduces distributed storage of the
parameters data, it has the advantages of lowering the UDDI
Server load, and provides a better control over the external
files. However, with more control, the tradeoff is UDDI Proxy
will have to provide more complex functions to support these
requirements and file handling processing. This model will
best suite registry operator who has long list of criteria
parameters, require full control of the parameters data, and has
to generate complex criteria on the registry query results.
Another advantage of this approach is that the criteria data can
be automatically generated from the server logs. This will
simplify implementation procedures and ensure data received
are the most recent. Registry administrator who does not
require static parameters for their criteria will find this model
suitable for their need. Besides, this model can be further
extended to monitor the health of registry servers as described
in [17].

V. EXPERIMENT ON PERFORMANCE AND SCALABILITY
In this section we describe our assumptions, experimental

setup, testing procedures and test cases used to implement the
two approaches.

A. Experimental Assumptions
In evaluating the performance of customising query results,

jUDDI registry was chosen from several other UDDI
implementations surveyed. Since all registry originated from
the same specification, we assume the underlying data
modeling and its data accessing/retrieving API are similar.
jUDDI is a Java-based implementation of UDDI that was
developed to integrate effectively with Apache Tomcat

UDDI
Proxy

B

External files

UDDI
Server

Registry

User Interface

A

Administrator

Logs

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2170

application server.
In this work, we only evaluate one standalone UDDI server

which does not reflect on the benefit of multiple distributed
registries which UDDI supports. We assume the test scenario
is for a private registry which store and advertise mobile
services to a specific group of customers, which would only
connect to a limited set of registries that address a very
specific group of services. Another assumption made is there
will be only one query session carried out at any one time. In
another word, no concurrent queries submitted to the same
registry simultaneously.

B. Testbed Setup
Our testbed consists of one UDDI registry server which is

accessed by a Web service client across a local area network.
The Web service client is implemented with UDDI4J [20], an
open-source Java class library that provides an API to interact
with a UDDI registry. Table 2 shows a list of hardware and
software of the server and client machines. Figure 9 details the
testbed components setup. We also run UDDI Browser [18]
that provides a friendly user interface to browse and
manipulate content in UDDI registries for verification
purposes.

TABLE II
HARDWARE AND SOFTWARE ENVIRONMENT

Fig. 9 Testbed Component Setup

C. Testing Procedures
The implemented UDDI registry emulates a

Telecommunication Service Operator private registry, used to
store and publish mobile services to its customers. A mobile
consumer will request query and receive results via UDDI
Proxy. The query results will be ranked depending on static or

dynamic parameters as discussed in section IV.B. We have
developed a Web service client using Java and UDDI4J,
which is used to perform the testing procedures as follow:

1. Capture start time, Start_time.
2. Submit a UDDI query request and retrieve results.
3. Retrieve parameter values from query results, or from external

file.
4. Customise the query results. Sort the results order according to

certain parameter values.
5. Display the customised results. Capture end time, End_time.
6. Calculate Response time = End_time – Start_time

D. Test Cases
We have identified three test cases to evaluate the impact of

personalization of service query results to performance
(response time). Each test case will be executed for each of the
followings: Normal condition (when no approach is applied),
Internal Parameters Approach, External Parameters
Approach and. The client application is programmed to
capture response time (in second) for these test cases:

Test A - Query for all business records and rank according
to vendor_ranking (static parameter). This is the simplest form
of find query used to measure the performance impact for
small/medium query data size. The query results obtained will
be sorted according to vendor_ranking in ascending order.
Example of the CLI output for Test A is shown in Figure 10.

Find Business By Static Parameter

********** (Internal Parameters Approach) **********

Static Parameter: Vendor Ranking

Ranking Business
1 ServiceProvider6
2 ServiceProvider24
3 ServiceProvider43
4 ServiceProvider34
...
98 ServiceProvider10
99 ServiceProvider32

Query Response Time (ms) = 11704

Fig. 10 Example of CLI Output for Test A

Test B - Query for all service records and rank according to

service_popularity (dynamic parameter). Each business has
five associated services, hence total number of
businessService records are five times more than of
businessEntity. This test case will query for all
businessService records, and display the query results sort
according to service_popularity in descending order. This test
case measures the performance impact for large query data
size. Figure 11 shows example of Test B CLI output.

 Hardware Software

UDDI Server Dell Intel Pentium (M)
1.73GHz, 1GB Memory

jUDDI ver. 0.9rc4
Apache Tomcat ver. 5.0.28
Apache Axis ver. 1.2
JDBC ver. 2.0
MySQL ver. 5.0

Client Dell Intel Pentium (M)
2GHz, 2GB Memory

UDDI4J ver. 2.0.3
Java SDK
UDDI Browser

Web
Service
Client

UDDI4J

Tomcat
Application Server

jUDDI

Registry Server

External
files

mySQL
database JDBC

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2171

 Find Business By Dynamic Parameter
********** (Internal Parameters Approach) **********

Dynamic Parameter: Service Popularity

Popularity Service Business
9989 Mobile GPS ServiceProvider4
9853 Online Games ServiceProvider19
9853 Online Games ServiceProvider3
9853 Online Games ServiceProvider34
...
263 Mobile GPS ServiceProvider8
126 Mobile GPS ServiceProvider48

Query Response Time (ms) = 106844

Fig. 11 Example of CLI Output for Test B

Test C - Query for service records limited to those

categorized under UNSPSC taxonomy and ranked according
to service_commission (static parameter). This is similar to
Test B, but the service records are filtered to one specific
category. The filtered records are then sort according to
service_commission in descending order. This test case
measures the performance impact for complex query scenario,
and the sample CLI output is shown in Figure 12.

Find Service By Taxonomy And Sort

According to Static Parameter
********** (Internal Parameters Approach) *********

Taxonomy: UNSPSC (43233508, Mobile operator specific
application software)
Static Parameter: Service Commission

Commission Service Business
70 SMS News ServiceProvider19
70 SMS News ServiceProvider3
70 SMS News ServiceProvider34
70 SMS News ServiceProvider40
...
20 SMS Stock Quotes ServiceProvider6
20 SMS Stock Quotes ServiceProvider9

Query Response Time (ms) = 71313

Fig. 12 Example of CLI Output for Test C

VI. EXPERIMENTAL RESULTS
In order to evaluate our proposed approaches, we carried

out two experiments on the testbed environment as discussed
in previous section. In this section, we present the results of
the experiments.

The first experiment analyses and compares the
performance of our proposed approaches in Web services
discovery. The UDDI inquiry function was executed 5 times
sequentially and the average response time was recorded. The
reason of taking average response times is to reduce the
impact of response time inconsistency. We also compare the
overheads of running the proposed approaches compare to the
inquiry without retrieving additional parameters (the proposed
personalized parameters i.e. vendor ranking, service popularity
and service commission). The T-Test significant values are

calculated based on the response times and overheads taken.
In the second experiment we evaluated the scalability of the

two approaches by increasing UDDI query data size linearly.

i. Experiment I: Performance Analysis
In this experiment, we published 50 business entities

(known as Service Provider in our registry), each with 5
different services into our registry. Total time taken for the
Web Service Client to submit a query, plus the UDDI proxy to
retrieve the query results from UDDI database server and to
sort the results according to a given parameter values is
recorded. For Internal Parameters Approach, static
parameters, vendor_ranking and service_commission are
assigned to each business and service respectively. Besides
the static parameters, a dynamic parameter service_popularity
is also assigned to each service.

Figure 13 shows snapshot of a business entity with its
associated services. For External Parameters Approach, all
the personalised parameters are stored in an external file.

Fig. 13 Snapshot of a business entity Service Provider 1 with its
associated services

Figure 14 shows the first experimental results for different

test cases:
• Test case A: Search for all 50 busines records, sorted

by vendor_ranking.
• Test case B: Search all 250 service records, sorted by

service_popularity.
• Test case C: Search for specific 100 service records,

sorted service_commision and filtered by taxonomy.

Based on the average response times taken, both test cases

A and B showed that External Approach performs faster
retrieval compares to Internal Approach with T-Test
significant less than 0.01%. For test case C, the results

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2172

demonstrated that both approaches have insignificant
difference (T-Test significant at the level of 44%) in response
time performance.

Service Discovery Response Time & Overhead

11.78

102.54

71.37

0.93

71.25

51.25

2242.35

100.89 0.55

0.40

85.09

0.38
0

20

40

60

80

100

120

Test Case A Test Case B Test Case C

Re
sp

on
se

 T
im

e
(s

)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

O
ve

rh
ea

d%

Internal Approach Time Taken
External Approach Time Taken
Internal Approach Overhead%
External Approach Overhead%

Fig. 14 Experiment Results for Performance Testing

Similar pattern showed in overhead consumption as to
average time taken. In both Test Cases A and B, External
Approach consumed less overhead compares to Internal
Approach with significant at less than 5% level in all results of
both cases. The overhead percentage differences between the
two approaches for test cases A and B were 2235% and 100%
respectively. This shows that the performance overhead
caused by the customising query results is severe in small to
medium data query size. For test case C, Internal Approach
demonstrated that it consumes more overhead by 48% than
External Approach with significant at the levels of 4% and 1%
respectively.

To compare results across the three test cases, External
Approach significantly demonstrated better performance in
small to medium data size retrieving with results sorting.
However, both approaches did not show obvious difference in
performing retrieval with filtering condition.

ii. Experiment II: Scalability Evaluation & Comparisons
In the second experiment, we analysed the performance of

both approaches when size of UDDI query results linearly
increases. We published 20 business records, each with 5
associated services and measure the response time taken for
UDDI proxy to submit a query to UDDI, retrieve the query
results and systematically sort the results by
service_popularity parameter.

Experiment result in Figure 15 shows the response time
increases linearly with the number of records for the Internal

Parameters Approach, but External Parameters Approach
showed the tendency of reaching its threshold in retrieving
huge record size (as shown in our experiment after 4000
records in Figure. 15). Internal Parameters Approach showed
more stable and consistence in retrieval time growing pattern,
which is mainly due to the use of more reliable and efficient
database storage (mySQL) as compared to ASCII text file for
External Parameters Approach.

Scalability Evaluation

0

2000000

4000000

6000000

8000000

10000000

12000000

0 1000 2000 3000 4000 5000

No. of Service Records

Ti
m

e
(s

)

Internal Parameters Approach

External Parameters Approach

Fig. 15 Experiment Results for Scalability Testing

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented two alternative approaches

to customise private UDDI registry query results, using
personalisation parameters which could be stored within or
outside the service registry. Conceptually, the practical
approaches can be applied to other SOA registry candidate
such as ebXML. We have also measured the performance and
scalability of each approach. Based on the experiment results,
we conclude that storing the parameters in external resources
is a more efficient approach as compared to keeping the
parameters as keyedReference value within UDDI. A closer
investigation shows the main cause of performance
degradation is due to time taken by UDDI proxy to obtain
various UUID keys before it could retrieve the parameter
values from the category bags.

Table 3 summarises the main characteristics for each
approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2173

TABLE III

 COMPARISONS OF TWO APPROACHES

The two proposed approaches are designed to suite different
needs of private registry systems. These approaches
implementation will serve as valuable reference for registry
administrators to further enhance the service discovery process
within their private UDDI registry environments.

Aiming to achieve complete service delivery assurance for a
private SOA system, our future work will be focussing on the
refinement and implementation of the two approaches. We are
investigating the possibility of combining the Internal
Parameters Approach with semantically enabled service
discovery mechanism, as it will offer dynamic service
discovery and invocation capabilities. We are also studying
the usage scenarios that will potentially benefit from the
combined approach. Another interesting area is to further
investigate the possibility of retrieving and dynamically create
the personalisation parameters from external
resources/services, such as server logs, customer relationship
management services, network monitoring services or Service
Level Agreement contracts.

REFERENCES
[1] Eric Newcomer, Greg Lomow, Understanding SOA with Web Services

(Upper Saddle River, NJ: Addison Wesley Professional, 2004).
[2] Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and

Design (Upper Saddle River, NJ: Prentice Hall, 2005)
[3] Rama Akkiraju, Richard Goodwin, Prashant Doshi, Sascha Roeder, A

method for semantically enhancing the service discovery capabilities of
UDDI. Proc. Workshop on Information Integration on the Web,
Acapulco, Mexico, 2003. 87–92

[4] Anupriya Ankolekar, Mark Burstein, Jerry Hobbs J, DAML-S: Web
service description for the semantic web. Proc. First Int'l Semantic Web
Conf. (ISWC02), Sardinia, Italy, 2002.

[5] Oracle Unveils Oracle(R) Application Server 10g Release 3. 19
September 2005.
http://biz.yahoo.com/prnews/050919/sfm087.html?.v=24

[6] OASIS. Introduction to UDDI: Important Features and Functional
Concepts. October 2004. http://lists.oasis-open.org/archives/uddi-
spec/200410/pdf00001.pdf

[7] K. Sivashanmugam, K. Verma, A. Sheth, J. Miller, Adding Semantics to
Web Services Standards, Proceedings of the 1st International
Conference on Web Services (ICWS'03), Las Vegas, Nevada, June
2003, 395 - 401.

[8] OASIS. UDDI Version 3 Features List
http://uddi.org/pubs/uddi_v3_features.htm

[9] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia
Sycara, Semantic Matching of Web Services Capabilities. The First
International Semantic Web Conference (ISWC), Sardinia (Italy), June,
2002.

[10] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia
Sycara, Importing the Semantic Web in UDDI. In Web Services, E-
Business and Semantic Web Workshop, 2002.

[11] Luc Moreau, Simon Miles, Juri Papay, Keith Decker, Terry Payne,
Publishing Semantic Descriptions of Services, Semantic Grid Workshop,
Chicago, 2003, 48-54.

[12] Wolf-Tilo Balke, Matthias Wagner, Towards Personalized Selection of
Web Services, 12th International World Wide Web Conference,
Budapest, Hungary, 2003.

[13] Abdelmounaam Rezgui, Athman Bouguettaya, Privacy Ranking of Web
Service, ACM International Conference On Service Oriented
Computing, New York, NY, 2004.

[14] Jyotishman Pathak, Neeraj Koul, Doina Caragea, Vasant G Honavar, A
Framework for Semantic Web Service Discovery, ACM International
Workshop on Web Information and Data Management, Bremen,
Germany, 2005.

[15] Z.Chen, C.Liang-Tien, B.Silverajan, L.Bu-Sung, UX – An Architecture
Providing QoS-Aware and Federated Support for UDDI, Proc of
International Conference on Web Services, Las Vegas, Nevada, USA,
2003. CSREA Press 2003, ISBN 1-892512-49-1.

[16] OASIS. UDDI solutions: UDDI Products and Components.
http://www.uddi.org/solutions.html

[17] Serra da Cruz Serra da Cruz, Maria Luiza M. Campos, Paulo F. Pires,
Linair Maria Campos, Monitoring E-Business Web Services Usage
through a Log Based Architecture. IEEE International Conference on
Web Services, San Diego, CA, 2004, 61-69.

[18] The UDDI Browser Project
http://uddibrowser.org/

[19] Kee-Leong Tan, Cheng-Suan Lee, and Hui-Na Chua, Models to
Customise Web Service Discovery Result Using Static and Dynamic
Parameters. 2nd International Conference on Computer Science, Vienna,
Austria, 2006. 198-204.

[20] UDDI4J - a Java Class Library to Interact with UDDI
http://uddi4j.sourceforge.net/

[21] North American Industry Classification System (NAICS)
http://www.census.gov/epcd/naics02/naicod02.htm#N51

[22] United Nations Standard Products and Services Code (UNSPSC)
http://www.unspsc.org

[23] Dwi H. Widyantoro, Thomas R. Ioerger, John Yen, “An Adaptive
Algorithm for Learning Changes in User Interests”, Eighth International
Conference on Information and Knowledge Management, 1999.

[24] C.R. Anderson, P. Domingos and D.S. Weld, “Personalizing Web Sites
for Mobile Users”, Proceedings of the 10th International WWW
Conference, Hong Kong. May 1-5, 2001.

 Internal
Parameters
Approach

External Parameters
Approach

Parameters
location

Within
Registry

Outside
Registry

Implementation
Complexity Easier More Complex

Effect on registry
performance Lower Higher

Scalability Stable and
consistent

Tendency to reach threshold
in retrieving huge record

size

