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Persistence of Termination for Term Rewriting
Systems with Ordered Sorts

Munehiro Iwami

Abstract— A property
�

is persistent if for any many-sorted
term rewriting system � , � has the property

�
if and only if term

rewriting system � � � � , which results from � by omitting its sort
information, has the property

�
. Zantema showed that termina-

tion is persistent for term rewriting systems without collapsing
or duplicating rules. In this paper, we show that the Zantema’s
result can be extended to term rewriting systems on ordered
sorts, i.e., termination is persistent for term rewriting systems
on ordered sorts without collapsing, decreasing or duplicating
rules. Furthermore we give the example as application of this
result. Also we obtain that completeness is persistent for this
class of term rewriting systems.
Keywords: Theory of computing, Model-based reasoning, term
rewriting system, termination

I. INTRODUCTION

Term rewriting systems (TRSs) can offer both flexible
computing and effective reasoning with equations and have
been widely used as a model of functional and logic program-
ming languages and as a basis of theorem provers, symbolic
computation, algebraic specification and verification [4].

A rewrite system is called terminating (strongly normaliz-
ing) if there is no infinite rewrite sequence. The notion of
termination for rewrite systems corresponds to the existence
of answers of computations. So termination is the fundamental
notion of term rewriting systems as computation models [7]. It
is well-known that termination is undecidable for term rewrit-
ing systems in general. However, several sufficient approaches
for proving this property have been successfully developed in
particular cases.

Zantema [23] introduced the notion of persistence as fol-
lows. A property � is persistent if for any many-sorted TRS � ,
� has the property � if and only if TRS 	 � �  , which results
from � by omitting its sort information, has the property � .
Usual many-sorted TRS was extended with ordered sorts by
Aoto and Toyama [2]. And it was shown that the persistency of
confluence [1] is preserved for this extension in [2]. Zantema
[23] showed that termination is persistent for TRSs without
collapsing or duplicating rules. Ohsaki and Middeldorp [20]
studied the persistence of termination, acyclicity and non-
loopingness on equational many-sorted TRSs. Aoto proved
that the persistence of termination for TRSs in which all
variables are of the same sort [3]. We showed that the persis-
tence of termination for non-overlapping TRSs [11]. Also, we
showed that the persistence of termination for locally confluent
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overlay TRSs [12]. And we showed that the persistence of
termination for right-linear overlay TRSs [13]. Furthermore
we showed that the persistence of semi-completeness for TRSs
[14].

In this paper, we show that the above Zantema’s result is
preserved for Aoto and Toyama’s extension in the subclass of
order sorted term rewriting systems.

This research was first appeared in [9] and studied in
[10]. Furthermore, Ohsaki [21] studied the case of equational
order-sorted TRSs. Their equational order-sorted TRSs [21]
were based on ordered-sorted algebras in [8], [22]. However,
our TRSs on ordered sorts are based on Aoto and Toyama
[2]. For example, we consider the sorts � � � � and � � � . If

� � � � � � � � then  ! # % ' )  + , . where  ! # % ' and  + , .
are order-sorted algebras in equational order-sorted TRSs [21].
However, in our TRSs on ordered sorts we do not consider
order-sorted algebras. In our research, if � � � � � � � � then5 ! # % ' 8 5 + , . 9 ; holds where

5 ! # % ' and
5 + , . are set of

terms with sort � � � � and � � � , respectively. So our research
does not depend on order-sorted algebras.

In section 2, many-sorted TRS is formulated on ordered
sorts. Then, the persistence of termination on ordered sorts is
shown in section 3 and 4. The proof is a generalization of
a simplified proof of modularity of termination [18]. Further-
more we give the example as application of this result. Also
we obtain that completeness is persistent for term rewriting
systems on ordered sorts.

II. PRELIMINARIES

We mainly follow basic definitions and basic lemmas in the
literature [2].

A. Sorted Term Rewriting Systems

In this subsection, we introduce the basic notions of sorted
term rewriting systems. Usual term rewriting systems [4] are
considered as special cases of sorted term rewriting systems.

Let < be a set of sorts and = be a set of countably infinite
sorted variables. We assume that < is equipped with a well-
founded partial ordering > . We write ? A ? C if and only if ?

> ? C or ? 9 ? C .
We assume there is a set = E of countably infinite variables

of sort ? for each sort ? F < . Let H be a set of sorted function
symbols. We assume that each sorted function symbol I F

H is given with the sorts of its arguments and the sort of
its value, all of which are included in < . We write I : ? K M

N N N M ? P R ? C if and only if I takes T arguments of sorts
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� � , � � � , � � respectively to a value of sort � � . Function symbols
of 0 argument are constants.

The set
� 	 �  � � � �

� � �
� 	 �  � � � of all sorted terms built

from � and � is defined as follows: 	 � � � � � � 	 �  � � � , 	 � �
� : � � � � � � � � � �� # � � , % ' ) � 	 �  � � � + and � ' - � �' 	 0 � � , � � � , 1 �
then � 	 % � , � � � , % � � ) � 	 �  � � � 3 . Here

� 	 �  � � � denotes the set
of all terms of sort � .

We define the set of all strict sorted terms if 	 � � is replaced
by 	 � � � if � : � � � � � � � � � �� # � � , % ' ) � 	 �  � � � + , � ' - � �' 	 0� � , � � � , 1 � and � 9 � � �9 whenever % 9 ) � then � 	 % � , � � � , % � � )� 	 �  � � � 3 . We write % > � if % is of sort � . � 	 % � denotes the
set of all variables that appear in % .

� 	 �  � � � and
� 	 �  � �

are abbreviated as
� � and

�
, respectively. Let @ � be a special

constant (hole) of sort � . Elements of
� 	 � � A @ � C � ) E F , � �

are called contexts over
� 	 �  � � . We write G : � � � � � � � � �

# � � if and only if the sort of context G is � � and it has 1 holes
@ � H , � � � , @ � I . If G : � � � � � � � � � �� # � � and % � : � � , � � � , % � : � �
with � ' - � �' 	 0 � � , � � � , 1 � then G L % � , � � � , % � N denotes the term
obtained from G by replacing holes with % � , � � � , % � from left to
right. A context that contains one hole is denoted by G L N . A
term % is said to be a subterm of P if and only if P � G L % N for
some context G . A substitution Q is a mapping from � to

�
such that R ) � � implies Q 	 R � ) � � . A substitution over terms
is defined as homomorphic extension. Q 	 % � is usually written
as % Q . A sorted rewrite rule on

�
is a pair U # X such that

U Z) � , � 	 X � � � 	 U � , sorted terms U and X are strict and if U > �
and X > � � then � \ � � . A sorted term rewriting system (STRS,
for short) is a pair 	 �  ^ � where � is a set of sorted function
symbols and ^ is a set of sorted rewrite rules on

� 	 �  ^ � .
	 �  ^ � is often abbreviated as ^ and in that case � is defined
to be the set of function symbols that appear in ^ .

Given a STRS ^ , a sorted term P is reduced to a sorted term
% ( P # a % , in symbol) if and only if P � G L U Q N and % � G L X Q N
for some rewrite rule U # X ) ^ , context G and substitution

Q . We call P # a % a rewrite step or reduction from P to % of
^ . U Q is called redex of this rewrite step.

The transitive reflexive closure of # a is denoted by # fa .
Terms % � and % g are joinable if there exists some term % � such
that % � # fa % � h fa % g . A term % is confluent if for any terms

% � and % g , % � and % g are joinable whenever % � h fa % # fa % g .
A STRS ^ is confluent if every term is confluent to # a . A
term % is a normal form if there is no term % � such that % # a % � .
A term % is terminating (strongly normalizing) if there is no
infinite reduction sequence starting from term % . A STRS ^
is terminating if every term is terminating to # a . A STRS ^
is complete if ^ is confluent and terminating.

If X ) � then the rewrite rule U # X is said to be collapsing.
If some variable has more occurrences in X than it has U then
the rewrite rule U # X is said to be duplicating. If U > � , X > � �
and � r � � then the rewrite rule U # X is said to be decreasing.

When E � A u F with an empty relation, an STRS is called
a term rewriting system (TRS, for short). Given an arbitrary
STRS ^ , by identifying each sort with u , we obviously obtain
a TRS v 	 ^ � - called the underlying TRS of ^ .

B. Sorting of Term Rewriting Systems

Aoto and Toyama [1], [2] defined the notion of sort at-
tachment and formulated the notion of persistence using sort
attachment. We mainly follow basic definitions in [2] in this
subsection.

Let � and � be sets of function symbols and variables,
respectively, on a trivial set A u F of sorts with empty relation
on it. Terms built form this language are called unsorted terms.
Let E be another set of sorts with well-founded partial ordering

r on it. � is a set of arity fixed function symbols.
A sort attachment x of � on E is a family of mapping� � 	 � � # E � z � � � 	 � # E � . We can assume that there are

countably infinite variables R with x 	 R � � � for each � ) E .
� ) � with x 	 � � � 	 � � , � � � , � � , � � � is written as � : � � � � � � �
� � # � � . The set of x -sorted function symbols from � and
that of x -sorted variables from � are denoted by � | and � | ,
respectively. A term % is said to be well-sorted under x with
sort � (written as x 	 % � � � ) if and only if % ) � 	 � |  � | � � .
The set of well-sorted terms under x is denoted by

� | , i.e.� | � A % ) � C % > � for some � ) E F . Clearly,
� | � �

.
A term % is said to be strict well-sorted under x with sort �
if and only if % ) � 	 � |  � | � � is strict. Well-sorted contexts
are defined by special constants @ � H , � � � . Well-sorted terms
and contexts are often treated as sorted terms and contexts,
respectively.

Let 	 �  ^ � be a TRS. A sort attachment x of � on E is
said to be consistent with ^ if and only if for any rewrite
rule U # X ) ^ , U and X are strictly well-sorted under x and

x 	 U � \ x 	 X � . The set of x -sorted rewrite rules of ^ is denoted
by ^ | . Note that ^ | acts on

� | , i.e. well-sorted terms P  % )� | whenever P # a � % ; and that for any P  % ) � | , P # a % if
and only if P # a � % .

Using the sort attachment, persistence can be alternatively
formulated as follows. It is clear that definition of Zantema
[23] and the following definition are equivalent when set of
sorts with empty relation on it.

Definition 2.1: A property P is persistent if and only if for
any TRS 	 �  ^ � and any sort attachment x that is consistent
with ^ ,

^ | has the property P � ^ has the property P.
We consider the persistence of termination for TRSs on

ordered sorts using definition 2.1 in this paper instead of
Zantema’s definition. From now on, we assume that a set E
of sorts with well-founded strict partial ordering r on it and a
TRS ^ are given. Then an attachment x on E that is consistent
with ^ is fixed.

III. CHARACTERIZATION OF UNSORTED TERMS

In this section we give a characterization of unsorted terms
by ordered sorts. The proofs of the following basic lemmas
were given by Aoto and Toyama [2].

Definition 3.1: The top sort (under x ) of an unsorted term
% is defined as follows:

� % � � 	 % � � x 	 % � if % ) � .
� % � � 	 % � � � � if % � � 	 % �  � � �  % � � with � > � � � � � � � � � # � � .
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Definition 3.2: Let � � � � � � � � � � � � �  � � � � � be an
unsorted terms with � � � � � � �  �� � . We write � � � � � � � � � � � � � �  
if and only if

1. � : � � � � � � � � � ! � # is a context that is well-sorted under
$ .

2. � % ' � � * � �+ � * for all - � . � � � � � � .

The � � , � � � , � � are said to be the principal subterms of � .
We denote � � � 1 1 � � � � � � � � � 3 3 if either � � � � � � � � � � � � � �  

or � � � and � * 5 6 � � � � � � � � � 7 . Multiset 8 � � � consists of all
principal subterms of � � � � � � � � � � � � � �   .

Definition 3.3: Let � be an unsorted term. Rank of � is
defined as follows:

9 : < � ? � � � � . if � is well-sorted term.
9 : < � ? � � � � . B D < F 6 : < � ? � � � � � � � � � : < � ? � � � � 7 if � �

� � � � � � � � � � � �   .
Definition 3.4: Let � be an unsorted term. Cap of � is

defined as follows:
9 J < ' � � � � � if � is well-sorted term.
9 J < ' � � � � � � � � � � �  if � � � � � � � � � � � � � �   .
Definition 3.5: A rewrite step K ! M � is said to be inner

(written as K ! *M � ) if and only if K � � � � K � , � � � , � # � P Q  , � � � , K �  
! M � � � K � , � � � , � # � : Q  , � � � , K �   � � for some K � , � � � , K � , P ! : 5

W , Q and � # , otherwise outer (written as K ! YM � ).
Definition 3.6: A rewrite step K ! YM � is said to be vanish-

ing if and only if K � � � � K � , � � � , Q � F � , � � � , K �   ! YM Q � F � � � for
some K � , � � � , K � , � and Q such that � # Q � � � K � , � � � , � , � � � , K � 
and � # � F  ! F 5 W .

Definition 3.7: A rewrite rule P ! : in W is said to be
decreasing if and only if � % ' � P � _ � % ' � : � . A rewrite step

K ! YM � is said to be decreasing if and only if � % ' � K � _ � % ' � � � .
Definition 3.8: A rewrite step K ! YM � is said to be destruc-

tive at level 1 if and only if K ! Y � is either vanishing or
decreasing. The rewrite step K ! M � is said to be destructive
at level k + 1 if and only if K � � � � K � � � � � � K c � � � � � K �   ! *M

� � K � � � � � � � c � � � � � K �  � � with K c ! M � c destructive at level
k .

Lemma 3.9: If a rewrite step K ! YM � is not vanishing then
� % ' � K � e � % ' � � � . If a rewrite step K ! YM � is not destructive at
level 1 then � % ' � K � � � % ' � � � .

Lemma 3.10: If K ! M � then : < � ? � K � � : < � ? � � � . If a
rewrite step K ! M � is vanishing then : < � ? � K � j : < � ? � � � .

Definition 3.11: The grade � l : < m n � � � 5 p � r � of a term
� is defined by l : < m n � � � � 1 : < � ? � � � , � % ' � � � 3 where p is the
set of all natural numbers.

Let j be the lexicographic ordering on p � r induced
from j on p and _ on r . The lexicographic ordering j on

p � r is well-founded since orderings j on p and _ on r
are well-founded.

Lemma 3.12: If K ! M � then l : < m n � K � � l : < m n � � � . If a
rewrite step K ! M � is destructive at level 1 then l : < m n � K � j
l : < m n � � � .

IV. PERSISTENCE OF TERMINATION

In this section we discuss the persistence of termination for
TRSs on ordered sorts and give the example as application

of this result. Furthermore we obtain that completeness is
persistent for TRS on ordered sorts. We mainly follow the
Ohlebusch’s argument in [18].

Lemma 4.1: Let � be a strictly well-sorted term. Suppose
� � � � F � � � � � � F �  with all variables displayed and � : � � �

� � � � � � ! � # . Then for any substitution Q , if F * � F c and
Q � F * � is a principal subterm of � Q then Q � F c � is also a principal
subterm of � Q .

Let K � � � � � � K � and � � � � � � � � � be terms. We write
1 K � � � � � � K � 3 } 1 � � � � � � � � � 3 if and only if for any . ~ - � � ~

� , K * � K c implies � * � � c .
Lemma 4.2: If � � � K � , � � � , K �   ! YM � # 1 1 K * � , � � � , K * � 3 3

and 1 K � , � � � , K � 3 } 1 � � , � � � , � � 3 then � � � � , � � � , � �  ! YM � #
� � * � , � � � , � * �  .

Lemma 4.3: If K ! YM � is a non-destructive rewrite step and
applied rewrite rule is not duplicating, the multiset inclusion

8 � � � � 8 � K � holds.
Lemma 4.4: If K � �

� � K � , � � � , K c , � � � , K �   ! *M � � K � , � � � , � c , � � � , K �  � � is destructive
at level 2 and J < ' � K � �� J < ' � � � then 8 � � � � 8 � K � � 6 K c 7 �

8 � � c � . If K � � � � K � , � � � , K c , � � � , K �   ! *M � � K � , � � � , � c , � � � , K �  �
� is destructive at level 2 and J < ' � K � � J < ' � � � then 8 � � � �
8 � K � � 6 K c 7 � 6 � c 7 .

Lemma 4.5: If K ! YM � is not destructive at level 1 then
J < ' � K � ! M � J < ' � � � . If K ! *M � is not destructive at level 2 then
J < ' � K � � J < ' � � � .
Proof. Let K � � � � K � , � � � , K �   ! YM � # 1 1 K * � , � � � , K * � 3 3� � . Since 1 K � , � � � , K � 3 } 1 � , � � � , � 3 and lemma 4.2,

J < ' � K � � � � � � � � �  ! M � � # � � � � � �  � J < ' � � � . Let K � �
� � K � , � � � , K c , � � � , K �   ! *M � � � K � , � � � , � c , � � � , K �   � � and K c ! M � c .
Since J < ' � K � � � � � � � � �  and J < ' � � � � � � � � � � �  , it is trivial.

�
Definition 4.6: For any infinite rewrite sequence � �

K � ! M K � ! M K � ! M � � � , we define the grade of � to be
l : < m n � � � � l : < m n � K � � .

Definition 4.7: Let j is the lexicographic ordering on p �
r and j � � � � is the multiset extension of it. We define � K� 6 l : < m n � � � � � 5 8 � K � 7 , i.e., � K denote the multiset of the
grades of the principal subterms of K .

Multiset ordering j � � � � is well-founded since lexicographic
ordering j on p � r is well-founded [5].

Lemma 4.8: If K ! *M � is destructive at level 2 then � K
j � � � � � � .
Proof. Let K and � be � � � K � , � � � , K c , � � � , K �   and �

� K � , � � � , � c , � � � , K �  , respectively.
1. J < ' � K � �� J < ' � � � . By lemma 4.4, 8 � � � � 8 � K � � 6 K c 7 �

8 � � c � .
¡ K c ! M � c is vanishing. Since : < � ? � K c � j : < � ? � � c � and

: < � ? � � c � j : < � ? � £ � for any £ 5 8 � � c � , : < � ? � K c � j
: < � ? � £ � holds. So l : < m n � K c � j l : < m n � £ � for any £ 5

8 � � c � holds. Hence, � K j � � � � � � holds.¡ K c ! M � c is decreasing. Since : < � ? � K c � � : < � ? � � c � and
: < � ? � � c � j : < � ? � £ � for any £ 5 8 � � c � , : < � ? � K c � j
: < � ? � £ � holds. So l : < m n � K c � j l : < m n � £ � for any £ 5

8 � � c � holds. Hence, � K j � � � � � � holds.
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2. � � � � � � 	 � � � � � � . By lemma 4.4, � � � � 	 � � � � � � � � � �� � � � .� � � � � � is vanishing. Since � � � � � � � � ! � � � � � � � � ,$ � � ' ( � � � � ! $ � � ' ( � � � � holds.� � � � � � is decreasing. Since � � � � � � � � , � � � � � � � � and� / � � � � � 1 � / � � � � � , $ � � ' ( � � � � ! $ � � ' ( � � � � holds.
Therefore, 6 � ! 9 : < = 6 � holds. ?

Lemma 4.9: Let @ A be a terminating STRS. Let B C� D � E � F � E � G � E H H H be an infinite rewrite sequence of
minimal grade with respect to @ . Then the following state-
ments hold.

1. There are infinitely many outer rewrite steps in B .
2. There are infinitely many inner rewrite steps in B which

are destructive at level 2.
3. There are infinitely many duplicating outer rewrite steps

in B .
Proof. Since $ � � ' ( � � � � 	 $ � � ' ( � B � for any J L N , there is
no rewrite step which is destructive at level 1.

1. Suppose that there are only finitely many outer rewrite
steps in B . Then we can assume that there is no outer
rewrite step in B . If � D 	 O Q Q � F , H H H , � S T T then there must be
an infinite rewrite sequence starting from some � U L � � � D � .
Since � � � � � � U � W � � � � � � D � this contradicts the minimality of$ � � ' ( � B � .

2. Suppose that there are only finitely many inner rewrite
steps in B which are destructive at level 2. Then we can
assume that there is no inner rewrite step in B which is
destructive at level 2. By lemma 4.5, if � � XE � in B then� � � � � � � E Y � � � � � � and if � � UE � in B then � � � � � � 	 � � � � � � .
By the case [ , \ A is not terminating. This is contradiction by
the assumption.

3. Suppose that there are only finitely many outer rewrite
steps in which are applied duplicating rules in B . We consider
the following cases.

If � � � XE � � ] F then � � � � ] F � ^ � � � � � since the rewrite step
is non-destructive and non-duplicating and lemma 4.3. Then6 � � , 9 : < = 6 � � ] F holds.

If � � � UE � � ] F is not destructive at level 2 then we have � �	 O Q Q � F , H H H , � a , H H H , � S T T � UE O Q Q � F , H H H , � b a , H H H , � S T T 	 � � ] F where� a � E � b a . Then 6 � � , 9 : < = 6 � � ] F holds since $ � � ' ( � � a � ,$ � � ' ( � � b a � .
If � � � UE � � ] F is destructive at level 2 then we have � � 	 OQ Q � F , H H H , � a , H H H , � S T T � UE O Q � F , H H H , � b a , H H H , � S T 	 � � ] F where � a � E� b a is destructive at level 1. By lemma 4.8, 6 � � ! 9 : < = 6 � � ] F . By

the well-foundedness of ! 9 : < = , there are only finitely many
inner rewrite steps which are destructive at level 2 in B . This
contradicts the case f . ?

Lemma 4.10: Let @ A be a terminating STRS. Assume that@ is not terminating. Then @ has duplicating rules and @ has
collapsing or decreasing rules.
Proof. By lemma 4.9, it is trivial. ?

Theorem 4.11: The following statements hold.[ H Termination is a persistent property of TRSs on ordered
sorts without collapsing and decreasing rules.f H Termination is a persistent property of TRSs on ordered
sorts without duplicating rules.

Proof. By lemma 4.10, it is trivial. ?
Example 4.12: We show that the following TRS @ is

terminating using theorem 4.11. To show the termination
of the following TRS directly seems difficult form known
results (E.g. recursive path ordering [7]). Also, we can not
use the modularity results for composable TRSs [17], [19]
and hierarchical combinations and hierarchical combinations
with common subsystem of TRSs [16], [19]. Furthermore, we
can not use the Zantema’s result [23] for proving termination
of the following TRS. However, we can show the termination
of next TRS using our results in this paper.

@ 	
ghhhhhhi hhhhhhj

$ � k l m � � $ � k l o � � � [ �$ � k l m � � ' � k l o � � � f �$ � k l ' � s l m � � � k � � w �x � o l $ � k l ' � z l O � � � � x � m l $ � k l ' � z l O � � � � � | �x � k l $ � k l ' � s l s � � � � ' � s l s � � � � �' � s l o � � ( � s l O � � � � �
Let � 	 � � l [ l f � , [ 1 � and f 1 � .

� 	
ghhhhi hhhhj

$ C � � � � [x C � � [ � f' C � � � � �( C � � � � �o C � l m C � l O C �
Any well-sorted term in

� D ,
� F and

� G is terminating, i.e.
any well-sorted term in

� A is terminating. We consider the
following cases:� � L � D . Then � � � � is the only applicable rule. A

TRS � � � � � � is terminating using recursive path ordering.
Hence, � is terminating.� � L � F . Then � � [ � , � � f � , � � w � and � � � � are the only
applicable rules. A TRS � � � [ � , � � f � , � � w � , � � � � � is
terminating using recursive path ordering. Hence, � is
terminating.� � L � G . Then � � [ � , � � f � , � � w � , � � | � , � � � � and � � � � are the
applicable rules. For any proper subterm � of � , � / � � � �	 � or � / � � � � 	 [ . Since the above two cases, � is
terminating. Since � / � � � � 	 f , � � | � and � � � � are the only
applicable rules to root position of term � . Hence, � is
terminating.

Then STRS @ A is terminating. Since @ A has no duplicating
rules and theorem 4.11, @ is terminating.

Furthermore we obtain the persistence of completeness for
TRSs on ordered sorts. The following theorem was given by
Aoto and Toyama [2].

Theorem 4.13: ([2]) Confluence is a persistent property of
TRSs on ordered sorts.

Since a complete TRS is confluent and terminating, we
obtain the following corollary form theorem 4.11 and theo-
rem 4.13.

Corollary 4.14: The following statements hold.[ H Completeness is a persistent property of TRSs on ordered
sorts without collapsing and decreasing rules.f H Completeness is a persistent property of TRSs on ordered
sorts without duplicating rules.
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V. CONCLUSION AND FUTURE WORK

In this paper, we have shown that the Zantema’s result
[23] is preserved for Aoto and Toyama’s extension [2] in
the subclass of order sorted term rewriting systems. That is,
we have shown that termination is persistent for TRSs on
ordered sorts without collapsing, decreasing or duplicating
rules. Furthermore, we have given the example as application
of our results. Also we obtain the persistence of completeness
for TRSs on ordered sorts.

However, the difference between our work and Ohsaki’s
work [21] is still unclear. So we consider this point for the
future.

REFERENCES

[1] T. Aoto and Y. Toyama, “Persistency of confluence,” J. Universal
Computer Science, 3, pp.1134–1147, 1997.

[2] T. Aoto and Y. Toyama, “Extending persistency of confluence with
ordered sorts,” Research report, IS-RR-96-0025F, School of Information
Science, JAIST, 1996.

[3] T. Aoto, “Solution to the problem of Zantema on a persistent property of
term rewriting systems,” Proc. 7th International Conf. on Algebraic and
Logic Programming, LNCS, 1490, Springer-Verlag, pp.250–265, 1998.

[4] F. Baader and T. Nipkow, “Term rewriting and all that,” Cambridge
University Press, 1998.

[5] N. Dershowitz and Z. Manna, “Proving termination with multiset
orderings,” Commun. ACM, 22 (8), pp.465–476, 1979.

[6] N. Dershowitz and J. P. Jouannaud, “Rewrite systems,” In Handbook of
Theoretical Computer Science, vol.B, ed. J. van Leeuwen, pp.243–320,
The MIT Press/Elsevier, 1990.

[7] N. Dershowitz, “Termination of rewriting,” J. Symbolic Computation,
3, pp.69–116, 1987.

[8] J. A. Goguen and J. Meseguer, “Order-sorted algebra 1: equational
deduction for multiple inheritance, overloading, exceptions and partial
operations” Theoretical Computer Science, 105, (2), pp.217–273, 1992.

[9] M. Iwami and Y. Toyama, “On the persistency of termination of term
rewriting systems with ordered sorts,” Proc. 14th Conf. on Japan Society
for Software Science and Technology, pp.357–360, 1997 (in Japanese).

[10] M. Iwami, “Termination of higher-order rewrite systems,” Ph.D. thesis,
JAIST, 1999.

[11] M. Iwami, “Persistence of termination for non-overlapping term rewrit-
ing systems,” Proc. International Conf. on Information Technology, to
appear.

[12] M. Iwami, “Persistence of termination for locally confluent overlay
term rewriting systems,” Proc. International Conf. on Information
Technology, to appear.

[13] M. Iwami, “Persistence of termination for right-linear overlay term
rewriting systems,” Proc. International Conf. on Information Technol-
ogy, to appear.

[14] M. Iwami, “Persistence of semi-completeness for term rewriting sys-
tems,” Proc. International Conf. on Information Technology, to appear.

[15] J. W. Klop, “Term rewriting systems,” In Handbook of Logic in
Computer Science, vol.2, pp.1–112, ed. S. Abramsky, D. Gabbay and
T. Mabiaum, Oxford University Press, 1992.

[16] M.R.K. Krishna Rao, “Modular proofs for completeness of hierarchical
term rewriting systems,” Theoretical Computer Science, 151, pp.487–
512, 1995.

[17] E. Ohlebusch, “Modular properties of composable term rewriting
systems,” J. Symbolic Computation, 20, (1), pp.1–41, 1995.

[18] E. Ohlebusch, “A simple proof of sufficient conditions for the termi-
nation of the disjoint union of term rewriting systems,” Bullen of the
EATCS, 49, pp.178–183, 1993.

[19] E. Ohlebusch, “Advanced topics in term rewriting,” Springer-Verlag,
2002.

[20] H. Ohsaki and A. Middeldorp, “Type introduction for equational
rewriting,” Proc. 4th International Symp. on Logical Foundations of
Computer Science, LNCS, 1234, Springer-Verlag, pp.283–293, 1997.

[21] H. Ohsaki, “Termination of term rewriting systems: transformation and
persistence,” Ph.D. thesis, Tsukuba University, 1998.

[22] G. Smolka, W. Nutt, J. A. Goguen and J. Meseguer, “Order-sorted
equational computation, resolution of equations in algebraic structures,”
vol.2, pp.297–367, Academic Press, 1989.

[23] H. Zantema, “Termination of term rewriting: interpretation and type
elimination,” J. Symbolic Computation, 17, pp.23–50, 1994.


