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Periodic Storage Control Problem
Ru-Shuo Sheu, Han-Hsin Chou, Te-Shyang Tan

Abstract—Considering a reservoir with periodic states and
different cost functions with penalty, its release rules can be
modeled as a periodic Markov decision process (PMDP). First,
we prove that policy- iteration algorithm also works for the
PMDP. Then, with policy- iteration algorithm, we obtain the
optimal policies for a special aperiodic reservoir model with
two cost functions under large penalty and give a discussion
when the penalty is small.

keywords—periodic Markov decision process, periodic
state, policy-iteration algorithm.

I. INTRODUCTION

A state i in a Markov chain is said to have period d is
that the transition probability of returning from state i

to i equals to 0 whenever n is not divisible by d and d is
the greatest integer with this property. Particularly, we say the
state is aperiodic when d is equal to 1, otherwise it is periodic.

We consider a reservoir discretized into n blocks, i.e. n+1
levels of water, and check the water level at times with period
d in it. Hence, if the time intervals are long, the transition
probabilities of inflow can be treated as stationary or they
form a non-stationary, cyclic, unichain Markov chain. At each
decision point we can choose to sell up to any level of water
in the reservoir with one of several different cost functions.
Moreover, the selection of these cost functions is according
to a finite-state Markov chain. A penalty M will be incurred
if no water has been sold. Stochastic inflows are independent
and identically distributed. If the inflows exceed the capacity
of the reservoir, they will be spilt. Therefore, the release rules
of this model can be considered as a periodic Markov decision
process (PMDP).

In general, simulations, linear programming, non-linear pro-
gramming and dynamic programming are available methods
in dealing with release policies for reservoir systems. Though
choice of methods depends on the characteristics of the system
being considered, dynamic programming has the advantage of
effectively decomposing intensively complex problems with a
large number of variables into a series of subproblems which
are solved recursively [8], [12], [13]. Nagy, Asante-Duan and
Zsuffa [6] apply Moran’s probability model [4] in reservoir
storage designs. Heidari et al. [2] use incremental dynamic
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programming to reduce the requirements of computer capaci-
ties through water resources system. Nopmongcol and Askew
[7] conclude that discrete differential dynamic programming
is the generalization of incremental dynamic programming.
However, these methods seek answers to probabilistic rather
than optimization problems.

Considering optimal control problems, Turgeon [11] op-
timized a multireservoir hydroelectric power system with
two dynamic programming methods to break up the original
multivariables problem into a series of one-step variable sub-
problems. Goulter and Tai [1] found that a small number of
storage states produces high skewness in the storage probabil-
ity distribution functions and influences the optimal operation
policy. Moran [5] determined a close-optimal operating policy
for a multireservoir system.

For policy improvement techniques, Howard [3] introduced
the Markov chain method of successive approximation and
the policy iteration algorithm to solve reservoir operation
problems. Tijms [10] pointed out that, for a Markov decision
process (MDP) problem with a large number of states, policy
iteration algorithm and value- iteration are usually the most
efficient methods to solve it with quickly converging lower
and upper bounds on the minimal costs. Finally, by applying
policy iteration algorithm and value-iteration, Sheu et al. [9]
induce the release policies for a reservoir model with single
linear cost function.

In our approach, we first prove that the relative values and
the average cost of a given policy R satisfy a simultaneous
system of linear equations. Then, by constructing the average
cost of a new policy R through the relative values of a given
policy R, we imply that the average cost of a new policy is no
more than that of the current policy under unichain assump-
tion. That is, it proves that the policy-iteration algorithm also
works for the PMDP problems. In the following section, we
find the best policies for a modified reservoir model with large
penalty and two different cost functions by policy-iteration
algorithm. Finally, by the results of a simplified example, we
give a short discussion and make a conjecture at the end.

II. PERIDOIC MODEL WITH DIFFERENT COST FUNCTIONS

For the reservoir control model we considered in the pre-
vious section, let R be the stationary policy which depends
on time within period, water levels and price function. If the
period of R is d, define t∗ = t mod d and let xn be the state
of the system at the n-th decision epoch, n ∈ N ∪ 0. Hence,

xn = {(i, t∗, k) | i : reservoir level, t∗ : time within period,
k : cost function}.
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The transition probability is

P [xn+1 = (j, (n+ 1)∗, cm)|xn = (i, n∗, cl)]
= p(i,n∗,cl)(j,(n+1)∗,cm)(R(i,n∗,cl)).

A. Relative values associated with a given policy

For proving the relative values and the average cost of
a given policy R satisfy a simultaneous system of linear
equations, some notations need to be defined beforehand.

Let Vn(R, i, k, cl) be the total expected cost over the first
n decision epochs when the initial state is i-level of water, at
time k with price function cl and policy R. That is,

Vn(R, i, k, cl)

=
n+k−1∑
t=k

∑
(j,q,cm)∈I

p
(t−k)
(i,k∗,cl)(j,q∗,cm)(R)[cm(R(j,t∗))]

and the recursion equation will be

Vn(R, i, k, cl) = cl(R(i,k∗))+∑
(j,k+1,cm)∈I

p(i,k∗,cl)(j,(k+1)∗,cm)(R)Vn−1(R, j, k + 1, cm)

where n, k ≥ 1.
Since the cost functions cm(R(j,q∗)) are periodic and the

state space is discrete, by Theorem 2.2.2 in Tijms’ book[10],
g(i,k,cl)(R) = limn→∞ 1

nVn(R, i, k, cl) exists. So we define
the average cost function as:

g(i,k,cl)(R) = lim
n→∞

1

n
Vn(R, i, k, cl)

Morever, because the long-run average expected cost per unit
of time is independent of the initial state (i, k, cl) when it is
assumed that xn corresponding to policy R is unichained, we
imply g(i,k,cl)(R) = g(R).

Let T(i,t∗,cl)(R) be the expected time until the first visit to
the state (r, n∗, cm) when starting in state (i, t∗, cl) with policy
R. That is, T(r,n∗,cm)(R) is the expected length of a cycle. Let
K(i,t∗,cl)(R) be the expected cost incurred until the first visit
to the state (r, n∗, cm) when starting in state (i, t∗, cl) with
policy R. Note that K(i,t∗,cl)(R) includes the cost incurred
when starting in state (i, t∗, cl) but excludes the cost incurred
when returning to state (r, n∗, cm).

Thus, we have

g(R) = K(r,n∗,cm)(R)/T(r,n∗,cm)(R)

and we define the relative value

w(i,k∗,cl)(R) = K(i,k∗,cl)(R)− g(R)T(i,k∗,cl)(R).

Theorem 1: Let R be given stationary policy such that the
associated Markov chain xn has no two disjoint closed set,
then

(a) the average cost function g(R) and the relative value
w(i,k∗,cl)(R) satisfy the following system of linear equa-
tions in the unknowns g and v(i,k,cl)

v(i,k,cl) = cl(R(i,k∗))− g+∑
(j,k+1,cm)∈I

p(i,k∗,cl)(j,(k+1)∗,cm)(R)v(j,k+1,cm).

(b) Let g and v(i,k,cl) be any solution to (a), then g = g(R)
and for some constant c, we have

v(i,k,cl) = w(i,k∗,cl)(R) + c, ∀(i, k, cl) ∈ I.

(c) Let s be an arbitrarily chosen state, then the linear equa-
tions in (a) together with the normalization equation
vs(R) = 0 have a unique solution.

Proof. We omit the proof of the theorem, which follows
in a very similar to that given by Tijms(1994) with minor
modifications due to differences in the structure of the model.
�

B. Policy-iteration algorithm in a periodic model

The intuitive idea behind the policy-iteration algorithm for
improving a given policy is to make the difference in costs as
negative as possible. To do this, we let �(i, k, cl, a, R) be the
difference in total expected cost over an infinitely long period
of time by taking first action a, under time epoch k and price
function cl, and next using policy R rather than using policy R
from the beginning onward when the initial state is (i, k∗, cl).
Provided results from previous section, we have

�(i, k, cl, a, R) = cl(a(i,k∗))− g(R)− v(i,k,cl)(R)+∑
(j,k+1,cm)∈I

p(i,k∗,cl)(j,(k+1)∗,cm)(a(i,k∗))v(j,k+1,cm)(R)

So in each state (i, k∗, cl), we look for an action a which
makes

cl(a(i,k∗))− g(R)+∑
(j,k+1,cm)∈I

p(i,k∗,cl)(j,(k+1)∗,cm)(a(i,k∗))v(j,k+1,cm)(R)

as small as possible.

Theorem 2: Let g and v(i,k,cl), (j, k, cl) ∈ I , be given.
Suppose the policy R̄, for each (i, k, cl) ∈ I , follows :

cl(R̄(i,k∗))− g+∑
(j,k+1,cm)∈I

p(i,k∗,cl)(j,(k+1)∗,cm)(R̄)v(j,k+1,cm) ≤ v(i,k,cl).

Then the long-run average cost of policy R̄ satisfies

g(i,k,cl)(R̄) ≤ g, (i, k, cl) ∈ I.

It is also true when the inequality signs are reversed.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

894

Proof. With a little algebra, we can induce the follolwing result
bt induction;

v(i,k,cl) ≥
m+k−1∑

t=k

∑
(j,q,cb)∈I

p
(t−k)
(i,k∗,cl)(j,q∗,cb)

(R̄)[cb(R̄(j,t∗))]

−mg +
∑

(j,q,cb)∈I

p
(m)
(i,k∗,cl)(j,q∗,cb)

(R̄)v(j,k+m,cb);

where m = 1, 2, 3, . . . Because if

Vn(R, i, k, cl) =
n+k−1∑
t=k

∑
(j,q,cm)∈I

p
(t−k)
(i,k∗,cl)(j,q∗,cm)(R)[cm(R(j,q∗))]

then

Vn(R̄, i, k, cl) =
n+k−1∑
t=k

∑
(j,q,cm)∈I

p
(t−k)
(i,k∗,cl)(j,q∗,cm)(R̄)[cm(R̄(j,q∗))].

It implies

v(i,k,cl) ≥ Vm(R̄, i, k, cl)−mg+∑
(j,q,cb)∈I

p
(m)
(i,k∗,cl)(j,q∗,cb)

(R̄)v(j,k+m,cb).

Then dividing both sides by m and let m → ∞, we have

lim
m→∞[v(i,k,cl)/m]

≥ lim
m→∞[

Vm(R̄, i, k, cl)

m
− g+

1
m

∑
(j,q,cb)∈I

p
(m)
(i,k∗,cl)(j,q∗,cb)

(R̄)v(j,k+m,cb).]

Because

lim
m→∞ v(i,k,cl)/m = 0, lim

m→∞Vm(R, i, k, cl)/m = g(R̄)

and

lim
m→∞

1

m

∑
(j,q,cb)∈I

[p
(m)
(i,k∗,cl)(j,q∗,cb)

(R̄)v(j,k+m,cb)] = 0,

so 0 ≥ g(R̄)− g. That is

g(R̄) ≤ g, ∀(i, k, cl) ∈ I.

Similarly, the theorem remains true when the inequality
signs are reversed. �

Hence, we prove that the policy-iteration algorithm works
for the periodic MDP problems.

III. CONTROL POLICY OF A MODIFIED RESERVOIR MODEL

We consider an aperiodic reservoir model with two different
cost functions and penality of not releasing any water from the
dam. The selection of these two cost functions is according
to a finite-state Markov chain By applying the policy-iteration
algorithm, we find out the best release policy in the modified
aperiodic MDP problem with large penalty.

Let M be The penalty we receive if we do not release any
water from the reservoir, pi be the probability of i-unit of water
comes into the reservoir with 0 ≤ i ≤ n and

∑n
k=0 p(k) = 1.

Two cost functions, c1 and c2, are defined as :

cj(r) =

{
M r = 0
−rπj r = 1, 2, · · · , n ; π1 ≤ π2

with constrants π1 ≤ π2 and the transition matrix of them, Pc

is

Pc =

(
p11 p12
p21 p22

)

where pij ≥ 0, pi1 + pi2 = 1 and i, j = 1, 2.
The states of the model is S = {(i, j) | i : level of water,

j : cost function; i = 0, 1, · · · , n, j = 1, 2.}. For sufficiently
large penalty M , M 
 0, the following theorem provides the
optimal state-dependent policy under the unichain assumption.

Theorem 3: For sufficiently large M , the best state-
dependent policy is to release 1 unit of water from the reservoir
when it is possible.
Proof. Let vij(R) be the related value with the (i, j)- starting
state when policy R is used and for l = 0, 1, 2, · · · , n,

Ail =

n−l−1∑
j=0

pj(pi1v(j+l)1 + pi2v(j+l)2)+

(pn−l + pn−l+1 + ...+ pn)(pi1vn1 + pi2vn2).

We prove the theorem by induction.

I. In state (1, 1) and (1, 2):
For M 
 0, v11 = −c1(1) − g(R) + A10 and v12 =
−c2(1)− g(R)+A20. That is, the best policy would be
to release 1 unit of water from the reservoir.
Assume both in state (k, 1) and state (k, 2), the best
policies be to release 1 unit of water from the reservoir.
That is,

v(ij = −cj(1)− g(R) +Aj(i−1)

for i = 1, 2, · · · , k and j = 1, 2.
II. In state (k + 1, 1), k + 1 ≤ n :

By aplying contraction mapping theorem and with sim-
ilar method to theorem2.1 in Sheu et al.’s[9], for 2 ≤
s ≤ k + 1, we have

v(j+k−s+1)i − v(j+k)i ≥ 0

and

v(j+k−s+1)i − vni ≥ 0

for i = 1, 2. Then
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[−c1(1)−g(R)+A1k]−[−c1(s)−g(R)+A1(k−s+1)]

= (s− 1)π1 − {
n−k−1∑
j=0

pj [p11(v(j+k−s+1)1−v(j+k)1)

+ p12(v(j+k−s+1)2 − v(j+k)2)]

+

n−k+s∑
j=n−k

pj [p11(v(j+k−s+1)1 − vn1)

+ p12(v(j+k−s+1)2 − vn2)]}
≤ (s− 1)π1 − p0p11(v(k−s+1)1 − vk1)

= (s− 1)π1 − p0p11

s−1∑
i=1

[v(k−i)1 − v(k−i+1)1]

≤ (s− 1)π1 − p0p11(v(k−s+1)1 − v(k−s+2)1)

= (s− 1)π1 − p0p11[A1(k−s) −A1(k−s+1)]

≤ (s− 1)π1 − p0p11[p0p11(v(k−s)1 − v(k−s+1)1)]

= (s− 1)π1 − [p0p11]
2(v(k−s)1 − v(k−s+1)1)

(repeat k − s times)

≤ (s− 1)π1 − [p0p11]
k−s+1(v01 − v11)

= (s−1)π1−[p0p11]
k−s+1[M−(−c1(1)−g(R)+A10)].

Because k ≤ n− 1, s ≤ k + 1, M 
 0 and π1 ≤ π2 <
∞, then

(s−1)π1−[p0p11]
k−s+1[M−(−c1(1)−g(R)+A10)] ≤ 0.

Which implies

[−c1(1)−g(R)+A1k]−[−c1(s)−g(R)+A1(k−s+1)] ≤ 0.

Similarly, for 2 ≤ s′ ≤ k + 1,

[−c2(1)−g(R)+A2k]−[−c2(s
′)−g(R)+A2(k−s′+1)] ≤ 0.

That is, for both state (k+1, 1) and state (k+1, 2), the
best policies will be to release 1 unit of water from the
reservoir.

By I and II, with M 
 0, the best policy is to release 1
unit of water from the reservoir in all states. �

IV. DISCUSSION

From previous section, the optimal state-dependent policies
are obtained when the penalties are sufficiently large. For
penalty M < ∞, we consider a reservoir whose capacity is
discretized into 4 blocks, i.e. 0, 1, 2, and 3 levels of water in it.
There are two different cost functions and the selection of them
according to a finite-state Markov chain. By adding constraints
p11 = p21 and p12 = p22 this simplified model, we are able to
prove that the best policy for the higher cost function is always
not less than the best policy for the lower cost function. The
results also imply a random assignment every period, with
no dependence on previous state, and hence, no periodicity.

Hence, we make a conjecture and all of the optimal policies
found here will be satisfied.

Conjecture. The best policy for the higher cost function is
always not less than the best policy for the lower cost function
when the selection from these two different cost functions
is according to a finite-state dependent Markov chain with
constraints p11 = p21 and p12 = p22.

Further work includes generalizing the model with more
than two cost functions in it. Moreover, it is also interesting
to discuss the necessities of adding constraints to the model.

REFERENCES

[1] Goulter, I.C. and Tai, F-K.(1985) Practical Implications in the Use
of Stochastic Dynamic Programing for Optimal Reservoir Operation.
Water Resources Bulletin 21, No.1 65-74.

[2] Heidari, M., Chow, V.T., Kokotovic, P.V.and Meredith, D.D.(1971)
Discrete Differential Dynamic Programing Approach to Water Resources
System Optimization. Water Resources Research 7, No.2 273-282.

[3] Howard, R.A. Dynamic Programming and Markov Processes MIT Press,
Cambridge, Mass.(1960).

[4] Moran, P.A.P.(1954) Probability Theory of Dams and Storage Systems.
Aust. J. Appl. Sci. 5 116-124.

[5] Moran, P.A.P.(1955) A Probability Theory of Dams and Storage Sys-
tems: Modifications of the Release Rules. Aust. J. Appl. Sci. 6 117-130.

[6] Nagy, I.V. ,Asante-Duah, K. and Zsuffa, I., Hydrological Dimensioning
and Operation of Reservoirs Kluwer Academic Publishers(2002).

[7] Nopmongcol, P. and Askew, A.J.(1976) Multilevel Incremental Dynamic
Programing. Water Resources Research 12, No.6 1291-1297.

[8] Reznicek, K. and Cheng, T.C.E.(1991) Stochastic Modelling of Reser-
voir Operations. European Journal of Operation Research 50 235-248.

[9] Ru-Shuo Sheu, Pang-Ju Lou, and Han-Hsin Chou(2011) Reservoir
Storage Release Rules Control Problem. 2011 International Symposium
on Water Resource and Environmental Protection (ISWREP 2011)(IEEE)

[10] Tijms, H.C. Stochastic Models : An Algorithmic Approach John Wiley
& Sons, Inc. New York, (1994).

[11] Turgeon, A. (1980) Optimal Operation of Multireservoir Power System
with Stochastic Inflows. Water Resources Research 16, No.2 275-283.

[12] Wurbs, R.A. (1993) Reservoir-System Simulation and Optimization
Models. Journal of Water Resources Planning and Management 119,
No.4 455-472.

[13] Yeh, W.W-G.(1985) Reservoir Management and Operations Models : A
State-of-Art Review. Water Resources Research 21, No.12 1797-1818.


