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 
Abstract—Peridynamics is a new modeling concept of non-local 

interactions for solid structures. The formulations of Peridynamic 
(PD) theory are based on integral equations rather than differential 
equations. Through, undefined equations of associated problems are 
avoided. PD theory might be defined as continuum version of 
molecular dynamics. The medium is usually modeled with mass 
particles bonded together. Particles interact with each other directly 
across finite distances through central forces named as bonds. The 
main assumption of this theory is that the body is composed of 
material points which interact with other material points within a 
finite distance. Although, PD theory developed for discontinuities, it 
gives good results for structures which have no discontinuities. In this 
paper, displacement control of the isotropic plate under the effect of 
tensile and bending loading has been investigated by means of PD 
theory. A MATLAB code is generated to create PD bonds and 
corresponding surface correction factors. Using generated MATLAB 
code the geometry of the specimen is generated, and the code is 
implemented in Finite Element Software. The results obtained from 
non-local continuum theory are compared with the Finite Element 
Analysis results and analytical solution. The results show good 
agreement. 
 

Keywords—Flexural loading, non-local continuum mechanics, 
Peridynamic theory, solid structures, tensile loading. 

I. INTRODUCTION 

N recent years, designing lightweight structural parts 
especially in the areas of aerospace, defense, and 

automotive industries has become important and high strength 
steels and aluminum alloys are strong candidates for 
lightweight structures. Therefore, numerical models enabling 
accurate results for deformations, damage initiation and 
propagation inside solid medium provide flexibility in design 
process. 

Classical Continuum Mechanics (CCM) formulations are 
derived from Partial Differential Equations (PDEs). However, 
PDEs become undefined when the equation of motion derived 
based on CCM are applied on a region including 
discontinuities. Instead of using PDEs, a non-local particle-
based approach named as PD approach has been introduced by 
Silling [1]. The main difference between CCM and PD theory 
is their formulations. PD theory solves discontinuities by 
replacing PDEs with integrals of interaction forces between 
grid points named as material points. The first formulation of 
PD is known as bond-based PD. This assumption leads to 
fixed Poisson ratio of 1/3 in 2D and 1/4 in 3D [2]. This 
limitation is removed with the state based formulation PD 
theory presented in [3] and [4]. In the original formulation, PD 
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has been applied to dynamic problems dealing with impact 
loadings. However, because of its flexibility in describing 
crack propagation, it might be applied to static problems as 
well [5].  

PD has been applied different types of static and quasi static 
problems. Huang et al. [6] developed a formulation to 
investigate the quasi-static response and crack propagation of 
cantilevered beam. Zaccariotto et al. [5] applied PD for the 
solution of static equilibrium problems using implicit Newton 
Rapson method. Additionally, one another study by means of 
non-ordinary state based approach in case of quasi-static 
loading condition has been proposed for linear elastic 
materials in [7]. 

PD theory assumes that particles in a continuum interact 
with each other across a finite distance. The interaction might 
be constructed with using truss or spring elements. Macek and 
Silling developed a PD approach using truss elements and PD 
is implemented in finite element code [8]. Kılıç et al. [9] 
presented PD model using explicit modeling. Explicit solution 
provides more detailed solution, but it has higher 
computational cost. In order to solve this issue Dipasquale and 
Zaccariotto [10] solved this problem using adaptive meshing 
approach. 

In this study, two-dimensional PD is implemented in FEA 
code and deformation of an isotropic plate under plane stress 
condition under the effect of tensile and flexural loading has 
been performed via analytical and finite element methods. 
Then, obtained results from PD have been compared with 
analytical and FEA results.  

II. PD THEORY 

Original formulation of PD theory is first introduced by 
Silling. PD theory is a nonlocal continuum theory with 
integro-differential equations. It may be considered as 
continuum version of molecular dynamics [1]. In this study 
bond-based PD theory, which considers the behavior of a bond 
completely independent of all the others, is implemented in 
Finite Element Analysis (FEA) software using MATLAB pre-
processing code. While implementing MATLAB code T3D2 
truss elements were used. Numerical implementation of PD 
theory is given in Appendix. Equation of motion in PD theory 
is given as in (1): 

 

' '( ) ( , ) ( , ) ( , )
xH

x u x t f u u x x dH b x t       (1) 

 
where  is mass density, u  is the displacement of material 
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point at x , b  is the body force, and ' '( , )f u u x x   is the 

force density vector function between the material points x'  
and x . The direct physical interaction between the particles at 

x  and 'x  will be called as bond. 
In PD theory, any material point x  interacts with other 

material points within a distance  , named as horizon and 

xH  denotes the material points within a distance of   as 

illustrated in Fig. 1 [11]. Boundary conditions and loads 
should be applied to internal nodes within a horizon thickness 
of the external surface [1]. Thereby, as expressed in PD 
equations, force per unit volume is conserved. 

 

 

Fig. 1 Relationship of the bonds in PD approach [11] 
 

PD force density is defined as [2], 
 

 ,f cs
  
 





  (2) 

 

where  is the relative displacement,   is the relative position 

between the material points, c  is the bond constant and s  is 
the stretch. For an isotropic material the bond constant is 
defined as [1].  
 

4
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
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where K  is the Bulk Modulus of the material,   is the 
horizon. According to (3), in bond-based PD formulation only 
one PD parameter is used as opposed to two independent 
Lame parameters of CCM for isotropic material behavior. For 
the isotropic materials Elastic modulus of the truss elements (

tE  ) and cross sectional area of the truss elements ( tA  ) might 

be calculated as [8]. 
 

4xtE c    (4) 

 
2xtA     (5) 

 

where x  indicates the grid size.  

III. ANALYTICAL AND NUMERICAL SOLUTION OF A PLATE 

UNDER TENSILE LOADING 

Tensile loading of the plate is analyzed using PD, FEA and 
numerical methods.  

The length ( L ), and the width ( w ) of the specimen are 150 
and 20 mm, respectively and thickness ( t ) is 1.55 mm. The 
representation of the applied problem is shown in Fig. 2. 

 

 

Fig. 2 Representation of tensile loading 
 

In Fig. 2 F  represents the applied load to the plate. Steel is 
used for this work and material properties of the specimen are 
shown in Table I.  

 
TABLE I  

MECHANICAL PROPERTIES OF THE SPECIMEN 

Elastic Modulus ( E  ) Poisson’s ratio (  ) Density (   ) 

200 GPa  0.33  37850 kg/m  

 
FEA of the tensile loading is generated using C3D8R 

elements having a mesh size of 0.32 mm.  
PD model is generated using T3D2 truss elements and 

stiffness of the truss elements is calculated using (4). In FEA 
and PD theory one end of the plate is fixed, and 550 N force is 
applied in x  direction. 

In the analytical solution of the problem described above, 
since applied force does not affect the object along its axis, 
plane stress assumption is made. Thereby, strain values in all 
directions might be obtained by using generalized Hook’s law 
formulas. Considering the forces acting on the plate, stress 

values are obtained as x F   , 0y   and 0z   . With 

the help of these equations strain values might be obtained as 
given in (6)-(8): 

 

1
( )x x y

F

E E
       (6) 

 

1
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F

E E
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F
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By using the generalized Hook’s law equations, strain 

displacement equations may be calculated by using partial 
derivatives and the displacement values in all directions using 
(9)-(11): 

 

x x x

u F
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In order to compare the obtained displacement results from 

different methods, two different material paths have been 

defined. For the displacement values in x  direction ( xU ) a 

path is defined for 0.775 mmy   and 10 mmz  . In Fig. 3, 

displacement values of a plate under tensile load obtained by 
PD theory on the determined material point have been 
compared with analytical solution and FEA results. 

 

 

Fig. 3 Comparison of displacement results in x direction by different 
methods 

 

For the displacement values in y  direction ( yU ) a path is 

defined for 150 mmx  and 10 mmz  . Comparison of 
displacement results obtained from path is shown in in Fig. 4.  

 

 

Fig. 4 Comparison of displacement results in y direction by different 
methods 

IV. ANALYTICAL AND NUMERICAL SOLUTION OF A PLATE 

UNDER THREE POINT BENDING LOADING 

Three point loading of a plate is solved using PD, FEA and 
numerical methods and the obtained results compared with 
each other. Representation of applied problem is shown in Fig. 
5.  

The same specimen geometry and material properties 
applied for flexural loading case and PD model are generated 
using the same strategy as in the previous case. 

 

Fig. 5 Representation of the problem 
 
In FEA and PD theory, the translation movement of one end 

of the specimen and the rotation and translation movement of 
the other end are restricted in all directions as the boundary 
condition. Load was applied from middle section of the 
specimen. 

While applying PD theory, the solution is applied with four 
different x  values. These values are 0.22 mm ,
0.119 mm, 0.103 mm,  and 0.062 mm . Generated PD mesh 

is displayed in Fig. 6.  
 

 

Fig. 6 PD mesh obtained with different x  values 
 
The investigation with varied grid size has been examined 

but constant m  ratio is considered between the distance   

and the grid size x as shown in Fig. 5. For this analysis m
ratio is applied as 3.015.  

 

 

Fig. 7 Convergence of horizon for different grid sizes 
 
Analytical solution of three point bending problem is 

calculated using the formulation in [12]. 
 

2 2(3 4 )         (0 / 2)
48

Fx
u L x x L

EI
       (12) 

 

where F , E  and I  denote applied force, elastic modulus 
and inertia respectively. 

Comparison of PD, FEA and analytical solutions in terms of 
displacement fields in y  direction along the horizontal mid 

line is given in Fig. 8.  
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Fig. 8 Comparison of results with different mesh sizes for different 
PD, FEA and analytical solution 

V. CONCLUSION 

Even though PD theory fundamentally has been developed 
for modeling of discontinuities its formulations might be 
implemented to simulate deformation fields without any 
discontinuity field.  

In this study, displacement field of isotropic medium is 
modeled using PD theory. Obtained results have consistency 
compared to outputs of FEA and numerical results. Although, 
the mesh size does not affect the results of tensile loading, PD 
theory gives better results with smaller mesh sizes under 
flexural loading. 

APPENDIX 

A general solution procedure for PD theory is described by 
Madenci and Oterkus [11]. This theory is solved through 
meshfree approach. For this work the applied solution 
procedure is shown in Fig. 9. 

 

 

Fig. 9 PD implementation flowchart 
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