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Performance of Neural Networks vs. Radial Basis
Functions When Forming a Metamodel for

Residential Buildings
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Abstract—Average temperatures worldwide are expected to
continue to rise. At the same time, major cities in developing
countries are becoming increasingly populated and polluted.
Governments are tasked with the problem of overheating and air
quality in residential buildings. This paper presents the development
of a model, which is able to estimate the occupant exposure
to extreme temperatures and high air pollution within domestic
buildings. Building physics simulations were performed using the
EnergyPlus building physics software. An accurate metamodel is
then formed by randomly sampling building input parameters and
training on the outputs of EnergyPlus simulations. Metamodels are
used to vastly reduce the amount of computation time required when
performing optimisation and sensitivity analyses. Neural Networks
(NNs) have been compared to a Radial Basis Function (RBF)
algorithm when forming a metamodel. These techniques were
implemented using the PyBrain and scikit-learn python libraries,
respectively. NNs are shown to perform around 15% better than RBFs
when estimating overheating and air pollution metrics modelled by
EnergyPlus.

Keywords—Neural Networks, Radial Basis Functions,
Metamodelling, Python machine learning libraries.

I. INTRODUCTION

IN the coming decades, global temperatures are on average
expected to rise by up to 1.4-3◦C [1]. This will result in

increased mortality rates due to extreme weather and heatwave
events [2]. The populations of major cities in developing
countries are rising rapidly and governments are faced with
housing shortages. Air pollution within the major cities of
developing countries is also a major problem. Particulate
matter (PM2.5) levels in Delhi, for example, are among the
highest in the world with an average concentration of 153
μg/m3 [3]. Housing can play an important role in modifying
population exposure to extreme temperatures and high air
pollution levels. There is a growing need for a model,
which can indicate the ideal building design specification, for
low income housing, under various climate and air quality
scenarios.

There are a large number of parameters, which may
influence indoor temperature and air pollution risks. Indoor
temperatures and pollution levels may be moderated by;
building geometry and orientation; fabric characteristics such
as the thermal mass and conductivity of walls, windows,
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floors, and roofs [4]; natural or purpose-provided ventilation
[5]; occupant behaviour [6]; adaptation measures [7], [8];
and climate, including region [9] or locations within an
Urban Heat Island (UHI) [10]. In order to capture this wide
range of variants, many simulations are required. The United
States Department of Energy building simulation software,
EnergyPlus [11], is used for this purpose. This enables the
thermal and contaminant transport physics to be modelled
accurately. EnergyPlus simulations are CPU time intensive
and it is advisable to replicate them with a metamodel. This
allows multi-criteria optimisation to be performed, which can
help to identify desirable building characteristics for a specific
location or climate.

Supercomputing facilities are used to run many thousands of
EnergyPlus simulations in parallel. There are various machine
learning techniques, which can be used when forming a
metamodel. In this paper, the performance of neural networks
(NNs) is compared to that of a Radial Basis Function (RBF)
algorithm.

II. METHODS

Fig. 1 Basic single room building: Image produced using the DesignBuilder
software

Low income housing is likely to be basic and so a simple,
single room building has been modelled, as shown in Fig. 1.
A metamodelling approach has been used as this is proven to
give a reliable approximation of complex models [12]–[14].
All steps of metamodel generation are performed using open
source software. This includes several python packages and
the EnergyPlus building simulation software. The workflow
of metamodel creation takes the following steps:
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TABLE I
BUILDING INPUT PARAMETERS

Parameter Distribution(Range) Units
Length U(3-10) m
Width U(3-10) m
Height U(1.6-3.1) m
Number of exposed facades U(1-4) NA
Orientation U(0-360) ◦
Permeability N(μ =20,σ =10) m3/h/m2 @ 50 Pa
Wall U-value U(0.2-1.8) W/m2/K
Window U-value U(1.8-3.8) W/m2/K
Roof U-value U(0.13-2.3) W/m2/K

Input variables and the corresponding value ranges in the model relating to
the built form. The continuous variables are sampled from; Truncated Normal
distributions (N) with mean (μ) and standard deviation (σ), and Uniform
(U) distributions. The calculation of U-values is performed using the thermal
resistance of construction materials as described in (1).

(A) Generation of EnergyPlus input building files
(B) Building simulation using EnergyPlus version 8.1
(C) Read metrics of interest from EnergyPlus output files
(D) Metamodel training
(E) Metamodel validation
All of the above steps need to be performed for each location
or climate. To begin with, we aim to select several locations
that cover a range of climatic regions including hot and humid,
hot and dry, and wet and cold. The focus will be on locations
in developing countries where the population is rising rapidly.

A. Generation of EnergyPlus Input Definition Files

EnergyPlus input files are generated using an in house
python tool, EnergyPlus Generator 2 (EPG2). This software
is supplemented with the pyDOE python package, which has
the Latin Hypercube random sampling method [15]. This
experimental design is chosen such that similar runs are
never repeated, thus maximising the available parameter space.
The building input parameters are selected according to the
ranges and distributions shown in Table I. The only occupancy
variable that is randomly sampled is the temperature threshold
at which occupants open the windows. Values for this variable
are taken from a normal distribution with a mean of 22◦C
and with a standard deviation of 5◦C. Normal distributions
are truncated such that un-physical values are not produced.
Simulated buildings have no heating or air conditioning such
that only the construction properties are varied. In this way,
we can reduce temperature and air quality risks without the
requirement of energy consumption from heating or cooling
systems. U-values are a measure of the thermal transmittance
of building construction elements. They are calculated by
summing over the inverse of the thermal resistances, Rk, for
each construction layer, k:

U-value =
∑
k

1

Rk
(1)

B. Building Simulation

EnergyPlus is a commonly used open source building
simulation software developed by the United States
Department of Energy [11]. It is able to model the thermal

TABLE II
MODEL OUTPUTS

Parameter Symbol Unit
Mean Maximum Daytime Temperature Tmaxα

day
◦C

Mean Minimum Night Temperature Tminβ

night
◦C

Time Above Temperature Mortality Threshold t > Thot
κ hours

Time Below Temperature Mortality Threshold t < Tcold
κ hours

Relative Humidity RH %
PM2.5 indoor/outdoor ratio I/O∗ NA

Temperature and air pollution metrics used with corresponding symbols and
units.
αTmax

day is the mean of the maximum temperatures recorded in the building
during day time hours (08:00-22:00) over the course of the year.
βTmin

night is the mean of the minimum temperatures recorded in the building
during night time hours (22:00-08:00) over the course of the year.
κThot and Tcold vary depending on the region. In this study a critical
temperature of 29◦C is used for overheating risks and 19◦C for risk due
to cold. These values were taken from the ISOTHERM study [17], which
looked at how temperatures coincided with an increase in mortality rates.
∗The deposition of a generic contaminant within the building is modelled at
a fractional rate of 1.0×10−5 s−1 [11].

and air infiltration physics over the course of a specified time
period. In our case, simulations are run over the course of a
year to capture the risks of both hot and cold weather. Each
simulation requires a weather file containing hourly weather
data and a building input file. Weather files are available
from various sources. In this study, a Delhi weather file was
used provided by ISHRAE [16]. Individual simulations take
around half a minute for a simple box model. UCL’s high
performance computing facilities, Legion, have been used in
order to run simulations in parallel. Legion has 7,500 cores,
which makes running many thousands of simulations within
an hour possible. In this study, 1,000 simulations have been
run for training with an independent sample of 200 used for
validation (testing) of the machine learning algorithms.

C. Reading Metrics of Interest

Each EnergyPlus simulation produces an output
file containing hourly information, such as indoor
temperatures, relative humidity and air contamination
(PM2.5) concentrations. Output files are about 1 MB in
size and are post processed in order to calculate the output
variables shown in Table II.

D. Metamodelling Techniques

Many different machine learning algorithms can be used
when forming a metamodel. Implementations are available in
many different statistical packages such as MATLAB, Stata
and R. In this work, we have used algorithms from python
libraries. The two machine learning algorithms studied are
neural networks and a radial basis function. These methods
are examples of supervised machine learning and are able
to reproduce non-linear and non-monotonic relations between
input and output variables.

1) Neural Networks: comprise of a set of neurons that
connect input and output model variants [18]. The inputs,
outputs and hidden neurons are connected to one another by
synapses that carry weights and biases, which determine the
strength of the connections. Each neuron is associated with a



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:9, No:12, 2015

1596

transfer function. Linear transfer functions are often used at the
input and output layers, whilst connections to hidden neurons
are usually charactersed by a sigmoid transfer function. With
the inputs to a hidden neuron denoted as {x1, x2, . . . , xn},
and the regression weights, wi, the output of a neuron, y, is
given by:

y =
1

1 + e−η
(2)

where η =
∑

i=1...n wixi + β, with β the bias value. The
weights and the bias values are updated in the fitting of the
output metrics over a pre-defined number of training epochs.

The Python-Based Reinforcement Learning, Artificial
Intelligence and Neural Network (PyBrain) Library [19] is
used to implement the NN algorithm. This software is flexible
and allows the user to construct the network architecture in
terms of the number of layers and neurons, the connections
and the transfer functions. The PyBrain implementation of
NNs is able to fit all output metrics simultaneously. The
number of training epochs can be specified or there is also
the option to allow the training to continue until convergence.
Training until convergence can be fairly time consuming and
can result in over training, therefore, 100 training epochs are
used. Networks were set up with various architectures having
either one or two hidden layers with each layer containing 4-22
neurons. When two hidden layers are used, the same number
of neurons are present in both layers.

Two training algorithms are implemented, the backwards
propagation (Backprop) and the reverse propagation minus
(RProp-) trainers. These algorithms work by propagating the
errors backwards through the network with respect to the
training weights and biases [20]. The main difference between
the two algorithms is that the RProp- trainer doesn’t have
weight backtracking [21], meaning all training samples have
the same weight.

2) Radial Basis Function: is a another method used for
parameter estimation and is a type of support vector machine
(SVM) [22]. RBFs are real valued functions, which depend on
the radial distance, r =

√∑
(x0 − xi)2, to a point of origin,

x0. An output metric is then given by:

y =
∑

i=1...n

viφ(r) (3)

A Gaussian function is commonly used to represent φ(r), e.g.
φ(r) = e−εr2 . Training is performed in order to determine the
parameters vi, ε and x0. A least squares method is used to do
this such that metamodel output values are close to those of
the true original model.

The SVM python module from the scikit-learn package [23]
was used to implement the RBF method. This implementation
only allows one output to be trained at a time, which can make
training multiple outputs more time consuming than using a
NN. A comparison of time effectiveness of the NN and RBF
methods is made in sections III and IV. The SVM training
procedure requires two input parameters to be provided; ε
and x0 (denoted γ and C in scikit-learn, respectively). The
γ parameter defines the influence of a single training sample
and can be seen as the inverse of the radius of influence
of the samples selected by the model as support vectors.

TABLE III
OPTIMAL γ AND C VALUES FOR RBF TRAINING

Symbol γ C R2

Tmax
day 0.01 100.0 0.78

Tmin
night 0.001 100000.0 0.93

t > Thot 0.001 100000.0 0.64
t < Tcold 0.01 1000.0 0.79
RH 0.01 100.0 0.72
I/O 0.001 100000.0 0.94

Optimal γ and C values determined using the scikit-learn GridSearch feature.
R2 is a score of the goodness of fit, described in (5).

The C parameter trades off the mis-calculation of training
samples against the simplicity of the decision surface. A
low C makes the decision surface smooth, whilst a high C
gives the model freedom to select more samples as support
vectors. In order to determine optimal values for γ and C,
scikit-learn has a GridSearch feature. A logarithmic range of
γ {1 × 10−1, 1 × 10−2, 1 × 10−3} and C {1, . . . , 1 × 10−5}
values are provided and the values which yield the lowest
training error are selected. Table III presents the optimal γ
and C values for each output variable.

E. Metamodel Validation

Validation of the metamodelling techniques involves passing
an independent set of inputs through each trained metamodel.
The outputs produced by each metamodel are then compared
to the outputs produced by the true EnergyPlus model.

Several goodness of fit metrics, as used in previous studies
[12], allow the accuracy of the algorithms to be compared.
These metrics include the Root Mean Square Error (RMSE),
the coefficient of determination (R2), and the Maximal
Absolute Error (MAE) and are defined as follows:

RMSE =

√
1

m

∑
j=1...m

(ŷj − yj)2 (4)

R2 = 1−
∑

j=1...m(ŷj − yj)
2∑

j=1...m(ȳj − yj)2
(5)

MAE = max(|ŷ1 − y1|, . . . , |ŷm − ym|) (6)

where yj represents the original model outputs (EnergyPlus),
ȳ the mean original model output value, ŷj the metamodel
output, and m the number of testing samples. These
performance metrics are calculated for each output variable.
Since the metamodels are fit to several inputs and outputs,
all variables are normalised such that they have a mean of
zero, and a standard deviation of one prior to training. This
ensures that the algorithms are not biased towards a particular
variable and allows the performance of individual outputs
to be compared. The sum of the normalized error of each
output metric gives the overall performance for a candidate
metamodel.

III. RESULTS

Table IV compares the performance of the best performing
NN to the RBF. Results are shown for individual output
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Fig. 2 Original EnergyPlus simulation I/O values plotted against the outputs
of the best performing metamodel, this being the RBF

Fig. 3 Original EnergyPlus simulation t > 29◦C values plotted against the
outputs of the best performing metamodel. In this case it was the NN with 2

layers with 11 neurons in each layer

variables for the building as well as the sum over all output
variables. Figs. 2-4 show the I/O, t > 29◦C, and t < 19◦C
values simulated using EnergyPlus plotted against the outputs
using the best performing metamodel. Comparisons of the
performance of various NN architectures trained with the
BackProp and the RProp- algorithms are made in Appendix
A.

In general, the overall performance of the best NN is around
15% better than an RBF in terms of RMSE, R2 and MAE
values. An individual NN can be trained 90% faster than
an RBF. NNs trained using the BackProp algorithm were
observed to perform better than networks trained using the
RProp- algorithm.

IV. DISCUSSION AND FUTURE WORK

This work compares the performance of two machine
learning methods using two different python packages.
PyBrain was used to implement neural networks whilst
scikit-learn provided the radial basis function algorithm. The
results indicate that an NNs perform around 15% better than
an RBF in terms of RMSE and training is quicker, as all
output metrics are trained in one go.

There are some advantages and disadvantages to both
methods which should be considered when when deciding

Fig. 4 Original EnergyPlus simulation t < 19◦C values plotted against the
outputs of the best performing metamodel. In this case it was the NN with 2

layers with 15 neurons in each layer

which one to use. The PyBrain implementation allows a lot of
flexibility when it comes to designing the NNs architecture.
This flexibility comes with complexity, and finding the best
architecture and training algorithm can be a time consuming
procedure. Different networks also give better performance for
different output variables, so if the absolute best performance
is desired, multiple networks must be used. Scikit-learn’s SVM
package offers less in terms of flexibility and hence is slightly
easier to use. The grid search method allows the best training
parameters for the RBF to be determined. This procedure is
CPU time intensive as training has to be performed for a
range of the parameters, γ and C. Another issue is that only
pre-defined values can be chosen for these training parameters.
This means that the absolute best values are unlikely to be
selected or will take a long time to find.

The next step for this work will be to validate the metamodel
against monitoring data from at least one location. Occupancy
parameters such as window opening temperature thresholds
are likely to be an important factor. These occupancy
parameters will be estimated during the validation procedure
and an uncertainty assigned using a sensitivity analysis. Once
metamodel validation has been performed, the model will be
extended to cover various locations and climates. Ideally, we
will cover all of the world’s climates as classified by Koppen
[24]. Initially, models for several cities in the developing world
will be built. Optimisation of building construction parameters
will then be performed. This will help to minimise the risks
posed by indoor air quality and extreme temperatures for each
climate.

APPENDIX A
NEURAL NETWORK PERFORMANCE

Table V compares the overall performance of the various
NN architectures using the BackProp and RProp- training
algorithms.
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TABLE IV
PERFORMANCE OF NNS VS. RBF

Model I/O Tmax
day Tmin

night RH t > 29◦C t < 19◦C Total
RMSE values

NN (2, 13) 0.29 0.40 0.23 0.37 0.40 0.31 2.00
RBF 0.24 0.43 0.23 0.46 0.53 0.41 2.29

R2 values
NN (2, 13) 0.92 0.84 0.95 0.87 0.84 0.90 5.31
RBF 0.94 0.77 0.95 0.76 0.61 0.81 4.84

MAE values
NN (2, 16) 0.81 1.54 0.81 1.49 1.60 0.94 7.19
RBF 0.90 1.59 0.98 1.81 2.63 1.45 9.37

Training CPU time (minutes:seconds)
NN (2, 13) NA NA NA NA NA NA 01:58.2
RBF 03:02.5 02:00.8 02:30.8 01:57.7 02:12.3 02:09.7 12:53.8

Comparison of the best NN (layers, neurons) to that of a RBF in terms of the performance metrics given in (4)-(6) and in terms of training time in minutes
and seconds.

TABLE V
TOTAL PERFORMANCE OF VARIOUS NN ARCHITECTURES USING

BACKWARD AND REVERSE PROPAGATION TRAINING

Training Algo. BackProp Reverse
Hidden Layers 1 2 1 2
NN(8) 2.45 2.13 3.01 3.19
NN(9) 2.31 2.13 3.89 2.57
NN(10) 2.30 2.09 2.87 2.88
NN(11) 2.26 2.11 2.87 3.65
NN(12) 2.22 2.06 3.62 2.86
NN(13) 2.20 1.99 2.88 2.51
NN(14) 2.26 2.21 2.98 2.57
NN(15) 2.19 2.04 3.17 2.51
NN(16) 2.17 2.02 3.03 2.52

Total RMSE value for several NN(neurons) architectures using the
backwards propagation (BackProp) and the reverse propagation minus

(RProp-) training algorithm. Results for networks with one or two hidden
layers are shown.
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