
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3814

Sofien Chtourou, Mohamed Chtourou, and Omar Hammami

Abstract—Embedded systems need to respect stringent real

time constraints. Various hardware components included in such
systems such as cache memories exhibit variability and therefore
affect execution time. Indeed, a cache memory access from an
embedded microprocessor might result in a cache hit where the
data is available or a cache miss and the data need to be fetched
with an additional delay from an external memory. It is therefore
highly desirable to predict future memory accesses during
execution in order to appropriately prefetch data without incurring
delays. In this paper, we evaluate the potential of several artificial
neural networks for the prediction of instruction memory
addresses. Neural network have the potential to tackle the non-
linear behavior observed in memory accesses during program
execution and their demonstrated numerous hardware
implementation emphasize this choice over traditional forecasting
techniques for their inclusion in embedded systems. However,
embedded applications execute millions of instructions and
therefore millions of addresses to be predicted. This very
challenging problem of neural network based prediction of large
time series is approached in this paper by evaluating various neural
network architectures based on the recurrent neural network
paradigm with pre-processing based on the Self Organizing Map
(SOM) classification technique.

Keywords—Address, data set, memory, prediction, recurrent
neural network.

I. INTRODUCTION

MBEDDED systems are widespread in numerous
applications and support increasingly complex

applications. These embedded software applications are
diverse and exhibit varying behavior. This variability come
from the nature of the applications or the data they process
but also from the supporting hardware components
composing embedded systems. This variability runs against
stringent real time constraints and therefore it should be
smooth out or remove when possible.

Cache memories are small memories used by
microprocessors to store temporal data and code in order to
avoid accessing the central memory. Cache memory access

S. Chtourou. is with the National Engineering School of Sfax, Sfax,

3038 Tunisia. He is now with Ecole Nationale supérieure de techniques
avancées. (corresponding author to provide phone: 33-(0)1-45525425; fax:
33-(0)145528327; e-mail: chtourou@ ensta.fr).

M. Chtourou. is with the National Engineering School of Sfax, Sfax,
3038 Tunisia (corresponding author to provide phone: 216.74.274.088 ;
fax: 216.74.275.595; e-mail: mohamed.chtourou@enis.rnu.tn).

O. Hammami. is with the Ecole Nationale Supérieure de Techniques
Avancées, Paris, 75739 France (corresponding author to provide phone: 33-
(0)1-45525424; fax: 33-(0)145528327; e-mail: hammami@ ensta.fr).

from an embedded microprocessor might result in a cache
hit where the data is available or a cache miss and the data
need to be fetched with an additional delay from an external
memory. It is therefore highly desirable to predict future
memory accesses during execution in order to appropriately
prefetch data without incurring delays. In this paper, we
evaluate the potential of several artificial neural networks
for the prediction of instruction memory addresses.

 This paper is organized as follows. In the next section,
we present related work performed in prediction based on
artificial neural networks, recurrent neural networks and
work on optimizing prediction results. In section III, we
briefly introduce recurrent neural networks applied on
predicting time series. The section IV shows prediction
results while using a single recurrent neural network. In
section V, we propose a hybrid prediction scheme. Finally,
section VI we conclude.

II. RELATED WORK
Data prefetching is an important research topic in

traditional computer architecture studies [1-9][12] especially
for multimedia workload. However, most proposed
techniques follow very simple schemes with very limited
adaptivity. Data prefetching remains an open issue in the
general case. Our work raises several issues: (1) which
neural network based technique is the most appropriate for
large (millions of elements) time series? What is the
maximum number of elements, which can be predicted at
any time step? What should be the history used to predict
the future memory accesses?

To the best of our knowledge no paper has ever addresses
the issue of neural network based prediction on large time
series from memory addresses.

In our work, we focus on optimization of neural network
performance to predict the next instruction addresses. In
order to improve prediction results, many works propose
novel architectures for neural network based prediction.
Parlos and al [11] propose a novel recurrent architecture
based on multilayer percepton model with a modified
learning algorithm. Owens and al [28] present a comparative
study between many neural architectures based prediction
notably the feedforward NAR (Nonlinear AutoRegressive)
model and the fully recurrent architecture. The optimization
of the neural network architecture is a limited solution to
learn large and multi-variant data sets. In [13], the authors
introduce a novel algorithm that trains a neural network to
identify chaotic dynamics from a single measured time
series. In this work, tested time series present chaotic
dynamics but the length of the different time series is

Performance Evaluation of Neural Network
Prediction for Data Prefetching in Embedded

Applications

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3815

limited. The work presented in [14] defines a flexible neural
network for forecasting time series application. The paper
introduces a flexible feature to a single neural network to
deal with the complexity of the tested time series. In [16],
the paper deals with real world application. It presents a
locally recurrent multiplayer network to cope the complexity
of the time series and to improve performance of the neural
model.

III. MULTI-STEP AHEAD PREDICTION BASED ON RNN
Time series forecasting is one of the most important and

interesting problems in several computing applications. Its
importance comes from the fact that it has wide ranging
applications including intelligent control systems. The
prediction results are based on knowledge of some aspect of
previous system behavior. The complexity of time series
determines the prediction model to implement. The
traditional forecasting method is the statistical models. The
powerful method for time series prediction is the ANN. In
this paper we implement RNN to predict instruction
addresses of a running application. Recurrent networks
represent a dynamic system composed by many states that
evolve according to a number of nonlinear equations. In
recent years, a large variety of recurrent neural networks
applied to solve a single step-ahead prediction problem have
been explored. We notice the (SRN) Simple Recurrent
Network and (SRNSC) Simple Recurrent Network with
Shortcut Connections [15]. The recurrent inputs of the SRN
architecture are connected to the hidden neurons. The
SRNSH architecture is a SRN model with connections
between input and output neurons. Other recurrent neural
networks architectures are presented in [11] for the multi-
step ahead prediction, which are the Nonlinear
Autoregressive with exogenous input (NARX) model
[10,18] and a dynamic recurrent network. The connections
in dynamic recurrent networks are composed by feed
forward links, recurrent links (connection between neurons
of the hidden layer) and cross-talk links (connection
between neurons of the output and the hidden layer). The
Fig. 1 shows the architecture of the NARX model.

Fig. 1 Recurrent neural network model (NARX)

The formulation of the single step ahead prediction (SS

prediction) performed on the y time series is:

))(....,),1(),(()1(ˆ Nkykykypky −−=+ (1)

N is the length of the input vector of the predictor p, y(k) is
the kth symbol of the y time series.)1(ˆ +ky is the (K+1)th
time series estimated value.

The equation (1) becomes in the multi (n) step ahead
prediction (MS prediction),)(ˆ nky + is the (K+n)th time
series estimated value:

))(....,),2(ˆ),1(ˆ()(ˆ Nnkynkynkypnky −+−+−+=+ (2)
In this work, we focus on NARX model (Fig.1) to predict a
huge data set with high variance level.

Having selected the model structure to be used in MS
prediction, we can now proceed to formulate the learning
algorithm [10]. In this formulation, we allow N step ahead
prediction. For the RNN represented in Fig. 1, the following
objective function is optimized:

∑
+

+=
+−+=

Nk

ki
ikdyikeyJ

1
)]²()([

2
1 = ∑

+

=

Nk

ki
Ai

2
1 (3)

 With)(ikye + is the estimated output by the recurrent

neural network, ikyd +() is the desired one.

The network weights θ and biases are updated using the
following gradient descent rules:

θθ ∂

+∂
⋅∑

+∂
∂=

∂
∂)(

)(
ikey

i ikey
AiJ (4)

⎥
⎦

⎤
⎢
⎣

⎡
∂

+∂
+∑

= ∂

−+∂
⋅⋅

−+∂

+∂

⋅+−+=
∂
∂

θθ

θ
)(

1

)(
)(

)(

)]()([

ikeyn

j

jikey
jikey

ikey

ikdyikeyJ

 (5)

With n is the number of recurrent input in the first layer, θ
is the set of weights of the recurrent neural network. The
weights correction of the recurrent neural network is made
at the end of each prediction window with:

∑
= ∂
∂

⋅−=
N

i
iA

oldnew
1 θ

εθθ (6)

IV. INSTRUCTION MEMORY ADRESSES PREDICTION BASED
ON SINGLE RNN

Experimental results presented in this part of the paper are
performed on instruction addresses data detected by the Pin
tool [20]. This tool is designed for the instrumentation of
programs running on the Linux environment. It provides a
rich API that abstracts away the underlying instruction set.
Pin tool is a (JIT) Just in Time compiler. The input to this
compiler is a regular executable application. While using the
Pin tool, we can perform Instruction instrumentation
(instruction count, instruction address trace, memory
reference trace). The Pin tool intercepts the execution of the
first instruction of the executable and generates new code.
The generated code execution is identical to the original
one, but it ensures the control over branch operation. When
a branch exits the sequence, Pin generates more code to
describe the branch effect and continues execution. The Fig.
2 presented bellow shows the trace of the 10000 first integer

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3816

values of the instruction addresses for three different Linux
applications (LS, CP, GZIP) running on Pentium IV
processor. The instruction addresses allocated by different
running application illustrate the allocation dynamics based
on different distant locality.

Fig. 2 Instruction memory addresses traces

The training data set has a large data span since memory

addresses after the conversion into decimal values, goes
from 2140644 to 134565638 for the LS application, from
8539104 to 134547942 for the CP application and from
8539104 to 134555070 for the GZIP application. The
different instruction addresses represents large data set. Its
components are dispersed in a large addressing sector.

The appropriate parameters for the RNN, which include
the number of hidden neurons, the number of entry neurons,
the training algorithm, the prediction window and the
transfer function:

• Number of entry neurons: 10
• Number of Hidden neurons: 10
• Transfer functions: the sigmoid function
• Prediction window: 1
• Training algorithm: error back propagation

learning rule

Fig. 3 Instruction addresses prediction on partial learning data

The Fig. 3 shows that when we focus on a small part (300

components) of the LS instructions addresses trace, the one
step-ahead prediction results are similar to the desired time
series components.

The partial learning data set components are located at the
same addressing sector between 8539294 and 8540178. This
zone is defined as the learning sector. If we present a time
series in the same learning sector to test the RNN
performance, the predicted time series behavior is similar to
the desired one. If the tested time series contains many
components that reside out of the learning sector, the RNN
shows wrong prediction results. The Fig. 4 shows the
prediction results given by the learned RNN while
presenting a new test time series components extracted from
a new instruction addresses locality.

Fig. 4 Prediction results of the testing data set

Embedded applications use many kind of instruction

addresses prediction system to detect branch operation in a
running application. If a branch operation is detected, the
processor loads the new addressing page into the cache
memory. So, to perform the embedded applications
performance, we look to predict the next instruction
addresses page. In the next paragraph we focus on
predicting the next instruction addresses page. We fix the
page width at 4KB. The partial learning data set contains
1000 different pages of memory. If we adopt the new
instruction addresses time series, we eliminate small
addresses variations in the same locality. The Fig. 5 shows
the prediction results of 400 components of the learning data
set.

Fig. 5 Learning results of the instruction addresses pages data set

The generalization experiment made on a new test time

series shows that the predicted instruction addresses pages

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3817

respect the global behavior of the addressing operation. The
Fig. 6 shows the prediction results on a new time series
composed by 600 instruction addresses pages. The artificial
neural networks based prediction on instruction addresses
pages perform better then the prediction of the instruction
addresses while using the same neural network.

Fig. 6 Prediction results of the instruction addresses pages

We observe that the performance of the prediction based

on RNN is affected by the variance of the learning
components. In the next paragraph we propose a hybrid
neural network to predict multiple locality time series.

V. HYBRID NEURAL NETWORK FOR THE INSTRUCTION
MEMORY ADRESSES PREDICTION

Locality of references [1] of memory accesses is the
foundation of cache memories and states that data is
accessed at any time in a limited address space range even if
during the whole program execution a very large memory
address space have been accessed. This important property
suggests the use of per-locality local predictor [19]. The
hybrid neural network proposed in this paper is composed of
two stages: (1) a classification stage and (2) a prediction
stage. The main idea of this scheme is to define multiple
local predictors to forecast a large and multi-variant data set.
The proposed prediction scheme contains a single 1D SOM
[17] network and several recurrent neural networks. Every
output in the SOM is connected with a single recurrent
neural network (Fig. 7).

Fig. 7 Hybrid neural network for large time series prediction

The number of hidden neurons in each recurrent neural
network is fixed at 10. The number of input neurons of each

RNN is equal to the number of input neurons of the 1D
SOM. The number of local predictors is defined by the
width of the SOM output layer. In our scheme, we use an
incremental approach to fix the number of sub-classes in the
learning data set.

The Table I describes comparison results of various
learning and generalization approaches while using the
proposed scheme to predict 100000 instruction addresses.
The Mean Square Error (MSE) of the normalized data sets
measures the performance of the prediction of this hybrid
neural network.

TABLE I
LEARNING AND GENERALIZATION PERFORMANCE

Sub-classes Learning MSE
(LS)

Generalization
MSE (CP)

Generalization
MSE (GZIP)

1 2.8662 10.7405 24.1532
3 2.8690 10.7196 21.4572
6 2.8691 9.2355 24.7295

10 3.1025 50.6963 15.9570

The learning performance decreases while we add local
predictors. The Fig. 8 shows partial learning results (2000
components) of 100000 vectors. The learning results show
that the predictors perform better on components at the same
addresses page. As one can easily expect, the predictors are
inefficient during transitions.

Fig. 8 Hybrid neural network prediction results

VI. CONCLUSION AND FUTURE WORK
Complex system on chip executes large embedded

applications with real time requirements. Increasingly
applications exhibit variability in their behavior as
demonstrated by their memory accesses. Therefore,
correctly predicting memory accesses could help improve
real time constraints. A hybrid artificial neural network for
training large and chaotic time series and predicting
instruction addresses of a running C application is suggested
in this paper. Experimentations reveal that the presented
neural model improves address prediction performance on
the same address page but the performance decreases in high
dynamics zone. Many parameters will be discussed in future
works such as the prediction windows in multi-step ahead
prediction, the optimal number of local predictors sub-
classes to improve prediction performance. To the best of
our knowledge few papers have addressed the challenging

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3818

issue of large time series (several millions) forecasting and
much work remain to be done.

We also plan to extend the current work to program
phases [21-27] in which elements to be predicted are
computation phases representing a larger granularity of
computation.

REFERENCES
[1] J.Hennesy and D.Patterson, “Computer Architecture A Quantitative

Approach”, Third Edition, Morgan Kauffman Pub. 2002.
[2] Vander Wiel, S.P. Lilja, D.J. “When caches aren't enough: data

prefetching techniques”, Computer Volume 30, Issue 7, July 1997
Page(s): 23-30.

[3] R. Piccardi, M. Prati, A. “Neighbor cache prefetching for multimedia
image and video processing”, Cucchiara, Multimedia, IEEE
Transactions on Volume 6, Issue 4, Aug. 2004 Page(s): 539 – 552.

[4] Jung-Hoon Lee; Seh-woong Jeong; Shin-Dug Kim; Weems, “An
intelligent cache system with hardware prefetching for high
performance”, Computers, IEEE Transactions on Volume 52, Issue
5, May 2003 Page(s): 607 – 616.

[5] Jiwei Lu; Chen, H.; Rao Fu; Wei-Chung Hsu; Othmer, B.; Pen-Chung
Yew; Dong-Yuan Chen; “The performance of runtime data cache
prefetching in a dynamic optimization system”, Microarchitecture,
2003. MICRO-36. Proceedings 36th Annual IEEE/ACM International
Symposium on 2003 Page(s): 180 – 190.

[6] Bin Wu; Kshemkalyani, A.D.; “Objective-Optimal Algorithms for
Long-Term Web Prefetching”, Computers, IEEE Transactions on
Volume 55, Issue 1, Jan. 2006 Page(s): 2 – 17.

[7] Junghee Lee; Chanik Park; Soonhoi Ha; “Memory access pattern
analysis and stream cache design for multimedia applications”,
Design Automation Conference, 2003. Proceedings of the ASP-DAC
2003. Asia and South Pacific 21-24 Jan. 2003 Page(s): 22 – 27.

[8] Oliver, R.L; Teller, P.J.; “Dynamic and adaptive cache prefetch
policies”, Performance, Computing, and Communications
Conference, 2000. IPCCC '00. Conference Proceeding of the IEEE
International 20-22 Feb. 2000 Page(s): 509 – 515.

[9] D.Joseph and D.Grunwald, “Prefetching Using Markov Predictors”,
IEEE transactions on computers, vol.48, no.2, February 1999.

[10] M. Basso, L. Giarré, S. Groppi, and G. Zappa,“ NARX Models of an
Industrial Power Plant Gas Turbine”, IEEE transactions on control
systems technology, vol. 13, no. 4, july 2005.

[11] A. G. Parlos, O.T. Rais, A.F. Atiya, “Multi-step-ahead prediction
using dynamic recurrent neural networks”, Neural Networks 13
(2000) 765,786.

[12] D. A. Jiménez, “Fast Path-Based Neural Branch Prediction”,
Proceedings of the 36th internantional symposium on
microarchitecture, 2003.

[13] R. Bakker, J. C. Schouten, C.Van den Bleek, C. L. Giles, “Neural
Learning of Chaotic Dynamics: The errror Propagation Algorithm”,
IEEE world conference on computational intelligence, p.2483, 1998.

[14] Y. Chen, B. Yang, J. Dong, A. Abraham, „Time series forecasting
using flexible neural tree model “, Information sciences 174, 219-235,
2005.

[15] Stephan K. Chalup, Alan D. Blair, “Incremental training of first order
recurrent neural networks to predict a context-sensitive language”,
Neural Networks 16 (2003) 955–972.

[16] T.G. Barbounis, J.B. Teocharis, “Locally recurrent neural networks
for long-term speed and power prediction”, Neurocomputing 69 2006,
466-496.

[17] Teuvo Kohonen: Self-Organizing Maps and Learning Vector
Quantization for Feature Sequences. Neural Processing Letters: 151-
159 (1999).

[18] T. Lin, C. L. Giles, B. Horne, S.Y. Kung, “A Delay Damage Model
Selection Algorithm for NARX Neural Networks“, IEEE transaction
on signal processing, vol. 45, No. 11, November 1997, P 2719-2730.

[19] Jorg D. Wichard and Maciej Ogorzalek, “Time Series Prediction with
Ensemble Models”, IJCNN’04, Busdapest 2004.

[20] http://rogue.colorado.edu/Pin/index.html.
[21] Lau, J.; Schoenmackers S.; Calder, B.; “Transition phase

classification and prediction”, High-Performance Computer
Architecture, 2005. HPCA-11. 11th International Symposium on 12-
16 Feb. 2005 Page(s): 278 – 289.

[22] Sherwood, T.; Perelman, E.; Hamerly, G.; Sair, S.; Calder, B.;
“Discovering and exploiting program phases”, Micro, IEEE Volume
23, Issue 6, Nov.-Dec. 2003 Page(s): 84 – 93.

[23] Lau, J.; Sampson, J.; Perelman, E.; Hamerly, G.; Calder, B.; “The
Strong correlation Between Code Signatures and Performance”,
Performance Analysis of Systems and Software, 2005. ISPASS 2005.
IEEE International Symposium on March 20-22, 2005 Page(s): 236 –
247.

[24] Lau, J.; Perelman, E.; Hamerly, G.; Sherwood, T.; Calder, B.;
“Motivation for Variable Length Intervals and Hierarchical Phase
Behavior”, Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE International Symposium on March 20-22, 2005
Page(s): 135 – 146.

[25] Lau, J.; Schoemackers, S.; Calder, B.; “Structures for phase
classification”, Performance Analysis of Systems and Software, 2004
IEEE International Symposium on – ISPASS 2004 Page(s): 57 – 67.

[26] Sherwood, T.; Sair, S.; Calder, B.; “Phase tracking and prediction”,
Computer Architecture, 2003. Proceedings. 30th Annual International
Symposium on 9-11 June 2003 Page(s): 336 – 347.

[27] Calder, B.; Grunwald, D.; “Next cache line and set prediction”,
Computer Architecture, 1995. Proceedings. 22nd Annual International
Symposium on 22-24 Jun 1995 Page(s): 287 – 296.

[28] Owens, A.J.; “Empirical Modeling of Very Large Data Sets Using
Neural Network”, Neural Networks, 2000. IJCNN 2000, Proceedings
of the IEEE-INNS-ENNS International Joint Conference on Volume
6, 24-27 July 2000 Page(s): 302 - 307.

