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Abstract—Embedded systems need to respect stringent real 

time constraints. Various hardware components included in such 
systems such as cache memories exhibit variability and therefore 
affect execution time. Indeed, a cache memory access from an 
embedded microprocessor might result in a cache hit where the 
data is available or a cache miss and the data need to be fetched 
with an additional delay from an external memory. It is therefore 
highly desirable to predict future memory accesses during 
execution in order to appropriately prefetch data without incurring 
delays.  In this paper, we evaluate the potential of several artificial 
neural networks for the prediction of instruction memory 
addresses. Neural network have the potential to tackle the non-
linear behavior observed in memory accesses during program 
execution and their demonstrated numerous hardware 
implementation emphasize this choice over traditional forecasting 
techniques for their inclusion in embedded systems. However, 
embedded applications execute millions of instructions and 
therefore millions of addresses to be predicted. This very 
challenging problem of neural network based prediction of large 
time series is approached in this paper by evaluating various neural 
network architectures based on the recurrent neural network 
paradigm with pre-processing based on the Self Organizing Map 
(SOM) classification technique. 
 

Keywords—Address, data set, memory, prediction, recurrent 
neural network. 

I. INTRODUCTION 

MBEDDED systems are widespread in numerous 
applications and support increasingly complex 

applications. These embedded software applications are 
diverse and exhibit varying behavior. This variability come 
from the nature of the applications or the data they process 
but also from the supporting hardware components 
composing embedded systems. This variability runs against 
stringent real time constraints and therefore it should be 
smooth out or remove when possible.  

Cache memories are small memories used by 
microprocessors to store temporal data and code in order to 
avoid accessing the central memory. Cache memory access  
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from an embedded microprocessor might result in a cache 
hit where the data is available or a cache miss and the data 
need to be fetched with an additional delay from an external 
memory. It is therefore highly desirable to predict future 
memory accesses during execution in order to appropriately 
prefetch data without incurring delays.  In this paper, we 
evaluate the potential of several artificial neural networks 
for the prediction of instruction memory addresses. 

 This paper is organized as follows. In the next section, 
we present related work performed in prediction based on 
artificial neural networks, recurrent neural networks and 
work on optimizing prediction results. In section III, we 
briefly introduce recurrent neural networks applied on 
predicting time series. The section IV shows prediction 
results while using a single recurrent neural network. In 
section V, we propose a hybrid prediction scheme. Finally, 
section VI we conclude. 

II. RELATED WORK 
Data prefetching is an important research topic in 

traditional computer architecture studies [1-9][12] especially 
for multimedia workload. However, most proposed 
techniques follow very simple schemes with very limited 
adaptivity. Data prefetching remains an open issue in the 
general case. Our work raises several issues: (1) which 
neural network based technique is the most appropriate for 
large (millions of elements) time series?  What is the 
maximum number of elements, which can be predicted at 
any time step? What should be the history used to predict 
the future memory accesses? 

To the best of our knowledge no paper has ever addresses 
the issue of neural network based prediction on large time 
series from memory addresses. 

In our work, we focus on optimization of neural network 
performance to predict the next instruction addresses. In 
order to improve prediction results, many works propose 
novel architectures for neural network based prediction. 
Parlos and al [11] propose a novel recurrent architecture 
based on multilayer percepton model with a modified 
learning algorithm. Owens and al [28] present a comparative 
study between many neural architectures based prediction 
notably the feedforward NAR (Nonlinear AutoRegressive) 
model and the fully recurrent architecture. The optimization 
of the neural network architecture is a limited solution to 
learn large and multi-variant data sets. In [13], the authors 
introduce a novel algorithm that trains a neural network to 
identify chaotic dynamics from a single measured time 
series. In this work, tested time series present chaotic 
dynamics but the length of the different time series is 
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limited. The work presented in [14] defines a flexible neural 
network for forecasting time series application. The paper 
introduces a flexible feature to a single neural network to 
deal with the complexity of the tested time series. In [16], 
the paper deals with real world application. It presents a 
locally recurrent multiplayer network to cope the complexity 
of the time series and to improve performance of the neural 
model. 

III. MULTI-STEP AHEAD PREDICTION BASED ON RNN 
Time series forecasting is one of the most important and 

interesting problems in several computing applications. Its 
importance comes from the fact that it has wide ranging 
applications including intelligent control systems. The 
prediction results are based on knowledge of some aspect of 
previous system behavior. The complexity of time series 
determines the prediction model to implement. The 
traditional forecasting method is the statistical models. The 
powerful method for time series prediction is the ANN. In 
this paper we implement RNN to predict instruction 
addresses of a running application. Recurrent networks 
represent a dynamic system composed by many states that 
evolve according to a number of nonlinear equations. In 
recent years, a large variety of recurrent neural networks 
applied to solve a single step-ahead prediction problem have 
been explored. We notice the (SRN) Simple Recurrent 
Network and (SRNSC) Simple Recurrent Network with 
Shortcut Connections [15]. The recurrent inputs of the SRN 
architecture are connected to the hidden neurons. The 
SRNSH architecture is a SRN model with connections 
between input and output neurons. Other recurrent neural 
networks architectures are presented in [11] for the multi-
step ahead prediction, which are the Nonlinear 
Autoregressive with exogenous input (NARX) model 
[10,18] and a dynamic recurrent network. The connections 
in dynamic recurrent networks are composed by feed 
forward links, recurrent links (connection between neurons 
of the hidden layer) and cross-talk links (connection 
between neurons of the output and the hidden layer).  The 
Fig. 1 shows the architecture of the NARX model.  

 
Fig. 1 Recurrent neural network model (NARX) 

 
The formulation of the single step ahead prediction (SS 

prediction) performed on the y time series is: 
 

))(....,),1(),(()1(ˆ Nkykykypky −−=+   (1) 

N is the length of the input vector of the predictor p, y(k) is 
the kth symbol of the y time series. )1(ˆ +ky is the (K+1)th  
time series estimated value. 

The equation (1) becomes in the multi (n) step ahead 
prediction (MS prediction), )(ˆ nky + is the (K+n)th  time 
series estimated value: 
 

))(....,),2(ˆ),1(ˆ()(ˆ Nnkynkynkypnky −+−+−+=+   (2) 
In this work, we focus on NARX model (Fig.1) to predict a 
huge data set with high variance level. 

Having selected the model structure to be used in MS 
prediction, we can now proceed to formulate the learning 
algorithm [10]. In this formulation, we allow N step ahead 
prediction. For the RNN represented in Fig. 1, the following 
objective function is optimized: 
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 With )( ikye +  is the estimated output by the recurrent 

neural network, ikyd +( ) is the desired one. 

The network weights θ  and biases are updated using the 
following gradient descent rules: 
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With n is the number of recurrent input in the first layer, θ  
is the set of weights of the recurrent neural network. The 
weights correction of the recurrent neural network is made 
at the end of each prediction window with: 
 

∑
= ∂
∂

⋅−=
N

i
iA

oldnew
1 θ

εθθ     (6) 

IV. INSTRUCTION MEMORY ADRESSES PREDICTION BASED 
ON SINGLE RNN 

Experimental results presented in this part of the paper are 
performed on instruction addresses data detected by the Pin 
tool [20]. This tool is designed for the instrumentation of 
programs running on the Linux environment. It provides a 
rich API that abstracts away the underlying instruction set. 
Pin tool is a (JIT) Just in Time compiler. The input to this 
compiler is a regular executable application. While using the 
Pin tool, we can perform Instruction instrumentation 
(instruction count, instruction address trace, memory 
reference trace). The Pin tool intercepts the execution of the 
first instruction of the executable and generates new code. 
The generated code execution is identical to the original 
one, but it ensures the control over branch operation. When 
a branch exits the sequence, Pin generates more code to 
describe the branch effect and continues execution. The Fig. 
2 presented bellow shows the trace of the 10000 first integer 
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values of the instruction addresses for three different Linux 
applications (LS, CP, GZIP) running on Pentium IV 
processor. The instruction addresses allocated by different 
running application illustrate the allocation dynamics based 
on different distant locality.  

 
Fig. 2 Instruction memory addresses traces 

 
The training data set has a large data span since memory 

addresses after the conversion into decimal values, goes 
from 2140644 to 134565638 for the LS application, from 
8539104 to 134547942 for the CP application and from 
8539104 to 134555070 for the GZIP application. The 
different instruction addresses represents large data set. Its 
components are dispersed in a large addressing sector. 

The appropriate parameters for the RNN, which include 
the number of hidden neurons, the number of entry neurons, 
the training algorithm, the prediction window and the 
transfer function: 

• Number of entry neurons: 10 
• Number of Hidden neurons: 10 
• Transfer functions: the sigmoid function 
• Prediction window: 1 
•  Training algorithm: error back propagation 

learning rule 

 
Fig. 3 Instruction addresses prediction on partial learning data 

 
The Fig. 3 shows that when we focus on a small part (300 

components) of the LS instructions addresses trace, the one 
step-ahead prediction results are similar to the desired time 
series components. 

The partial learning data set components are located at the 
same addressing sector between 8539294 and 8540178. This 
zone is defined as the learning sector. If we present a time 
series in the same learning sector to test the RNN 
performance, the predicted time series behavior is similar to 
the desired one. If the tested time series contains many 
components that reside out of the learning sector, the RNN 
shows wrong prediction results.  The Fig. 4 shows the 
prediction results given by the learned RNN while 
presenting a new test time series components extracted from 
a new instruction addresses locality. 

 
Fig. 4 Prediction results of the testing data set 

 
Embedded applications use many kind of instruction 

addresses prediction system to detect branch operation in a 
running application. If a branch operation is detected, the 
processor loads the new addressing page into the cache 
memory. So, to perform the embedded applications 
performance, we look to predict the next instruction 
addresses page. In the next paragraph we focus on 
predicting the next instruction addresses page. We fix the 
page width at 4KB. The partial learning data set contains 
1000 different pages of memory. If we adopt the new 
instruction addresses time series, we eliminate small 
addresses variations in the same locality. The Fig. 5 shows 
the prediction results of 400 components of the learning data 
set. 

 
Fig. 5 Learning results of the instruction addresses pages data set 

 
The generalization experiment made on a new test time 

series shows that the predicted instruction addresses pages 
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respect the global behavior of the addressing operation. The 
Fig. 6 shows the prediction results on a new time series 
composed by 600 instruction addresses pages. The artificial 
neural networks based prediction on instruction addresses 
pages perform better then the prediction of the instruction 
addresses while using the same neural network. 

 
Fig. 6 Prediction results of the instruction addresses pages 

 
We observe that the performance of the prediction based 

on RNN is affected by the variance of the learning 
components. In the next paragraph we propose a hybrid 
neural network to predict multiple locality time series.  

V. HYBRID NEURAL NETWORK FOR THE INSTRUCTION 
MEMORY ADRESSES PREDICTION  

Locality of references [1] of memory accesses is the 
foundation of cache memories and states that data is 
accessed at any time in a limited address space range even if 
during the whole program execution a very large memory 
address space have been accessed. This important property 
suggests the use of per-locality local predictor [19]. The 
hybrid neural network proposed in this paper is composed of 
two stages: (1) a classification stage and (2) a prediction 
stage. The main idea of this scheme is to define multiple 
local predictors to forecast a large and multi-variant data set. 
The proposed prediction scheme contains a single 1D SOM 
[17] network and several recurrent neural networks. Every 
output in the SOM is connected with a single recurrent 
neural network (Fig. 7). 

 
 

Fig. 7 Hybrid neural network for large time series prediction 
 

The number of hidden neurons in each recurrent neural 
network is fixed at 10. The number of input neurons of each 

RNN is equal to the number of input neurons of the 1D 
SOM. The number of local predictors is defined by the 
width of the SOM output layer. In our scheme, we use an 
incremental approach to fix the number of sub-classes in the 
learning data set.  

The Table I describes comparison results of various 
learning and generalization approaches while using the 
proposed scheme to predict 100000 instruction addresses. 
The Mean Square Error (MSE) of the normalized data sets 
measures the performance of the prediction of this hybrid 
neural network. 
 

TABLE I  
LEARNING AND GENERALIZATION PERFORMANCE 

Sub-classes Learning MSE 
(LS) 

Generalization 
MSE (CP) 

Generalization 
MSE (GZIP) 

1 2.8662 10.7405 24.1532 
3 2.8690 10.7196 21.4572 
6 2.8691 9.2355 24.7295 

10 3.1025 50.6963 15.9570 
 

The learning performance decreases while we add local 
predictors. The Fig. 8 shows partial learning results (2000 
components) of 100000 vectors. The learning results show 
that the predictors perform better on components at the same 
addresses page. As one can easily expect, the predictors are 
inefficient during transitions. 

 

 
Fig. 8 Hybrid neural network prediction results 

VI. CONCLUSION AND FUTURE WORK 
Complex system on chip executes large embedded 

applications with real time requirements. Increasingly 
applications exhibit variability in their behavior as 
demonstrated by their memory accesses. Therefore, 
correctly predicting memory accesses could help improve 
real time constraints. A hybrid artificial neural network for 
training large and chaotic time series and predicting 
instruction addresses of a running C application is suggested 
in this paper. Experimentations reveal that the presented 
neural model improves address prediction performance on 
the same address page but the performance decreases in high 
dynamics zone. Many parameters will be discussed in future 
works such as the prediction windows in multi-step ahead 
prediction, the optimal number of local predictors sub-
classes to improve prediction performance.  To the best of 
our knowledge few papers have addressed the challenging 
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issue of large time series (several millions) forecasting and 
much work remain to be done. 

We also plan to extend the current work to program 
phases [21-27] in which elements to be predicted are 
computation phases representing a larger granularity of 
computation. 
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