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Abstract—Eigenvector methods are gaining increasing 

acceptance in the area of spectrum estimation. This paper presents a 
successful attempt at testing and evaluating the performance of two 
of the most popular types of subspace techniques in determining the 
parameters of multiexponential signals with real decay constants 
buried in noise. In particular, MUSIC (Multiple Signal 
Classification) and minimum-norm techniques are examined. It is 
shown that these methods perform almost equally well on 
multiexponential signals with MUSIC displaying better defined 
peaks. 

 
Keywords—Eigenvector, minimum norm, multiexponential, 

subspace. 
 

I. INTRODUCTION 
HE task of analyzing multiexponential signals with real 
decay constants has been the subject of many research 

efforts for more than five decades. This is because, 
straightforward as their analysis may appear, such signals do 
not form an orthogonal base. The signals are usually of the 
form: 
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The unknown parameters are usually the number of 
components (M), the amplitudes (Ak) and the decay rates (λk). 
n(τ) represents the noise, considered to be white. The facts 
that these signals occur in many natural and artificial 
phenomena makes their analysis even important. Some of the 
areas they occur include: temperature modulation of Metal-
oxide semiconductor (MOS) sensors [6], fluorescence decay 
analysis [8], Electromagnetic field analysis [7], nuclear 
magnetic resonance [3], transient spectroscopy [5], 
compartment analysis in physiology [4], etc. 

Several methods have been documented for the analysis of 
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this class of signals. These methods range from theoretical 
exercises [9] to more practical efforts [1], [2], and [8]. In this 
paper, an attempt has been made to compare the performances 
of two eigenvector methods in the analysis of 
multiexponential signals buried in noise. Subspace methods 
were primarily developed for the analysis of complex 
exponentials buried in noise and do not therefore fit to our 
analysis in the first place. To make it suitable for analysis by 
eigenvector methods, multiexponential signal has been 
subjected to a preprocessing procedure that involves 
Gardeners' transformation followed by a deconvolution stage. 
The Gardeners' transformation transforms the signal into a 
convolution model which when deconvolved results in a sum 
of complex exponentials in noise assumed to be white.  The 
subspace methods are then applied to the deconvolved data in 
turn. 

The single most important property of eigenvector (also 
called subspace) methods is that they produce unbiased 
estimates with infinite resolution regardless of signal-to-noise 
ratios [14]. The methods considered in this paper are the 
Multiple Signal Classification (MUSIC) and the minimum-
norm methods. 

II. SIGNAL PREPROCESSING 
The main objective of the signal preprocessing is to obtain 

an orthogonal representation of exponential data by applying 
Gardners' transformation to (1) followed by Fourier 
processing.  

Initially, (1) is expressed as  
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where the basis function p(τ) = exp(-τ). This equation can be 
rewritten as 
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and it contains all the parameters to be determined. 
Multiplying both sides of (3) by τα and applying the 
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Gardner transformation, τ = et and    λ = e-r results in a 
convolution integral  
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Taking the Fourier transform of (5) and performing inverse 
filtering followed by inverse Fourier transformation yields  
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where αλ −= )( kkk AB . Some of the drawbacks of this 
method have been highlighted in [18].  

A discrete form of (5) is obtained by sampling y(t) at a rate 
of  1/Δt Hz, yielding the discrete convolution 
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where N = nmax-nmin+1, nmax and nmin represent respectively 
the upper and lower data cut-off points. The criteria for the 
selection of these sampling conditions have been thoroughly 
discussed in [2] and [4]. 

III. GENERATION OF THE DECONVOLVED DATA 
Taking the DFT of (7) yields 
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from which the deconvolved data can be generated according 
to 
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for 0 ≤ k ≤ N-1, where Y(k), X(k), H(k), and V(k) represent 
respectively the DFT of y(n), x(n), h(n), and v(n). This inverse 
filtering operation yields deconvolved data with decreasing 
SNR for increasing values of k. To alleviate this problem an 
optimal inverse filtering procedure is used for generating X(k). 
In this approach H (k) is modified so that the deconvolved 
data is generated according to [15] as 
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where the symbol * denotes complex conjugate. For high 
SNR, μ should be small and of the same order of magnitude as 
the attenuation of H (k) at the cut-off frequency. However, as 
the SNR of the data decreases the choice of the optimum value 
of μ in (10) is best determined by experimental testing [3]. 

Denoting the truncated data as f (k) and based on (6), (8) 
and (9), then we have 
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For k = 1, 2, ……., 2N0 +1; N0 ≤ (N/2)-1 is the truncation 
point and ε(k) is the deconvolved noise. 

IV. SUBSPACE SIGNAL PROCESSING 
Eigenvector (also called subspace) methods are based on a 

certain time-window of length P over which the signal model 
is characterized in form of a vector. 

Consider the signal f(k) from equation (10) at its current 
and future P- 1 values. The time-window can be written as 

 
f(k)= [f(k)  f(k+1)……f(k+ P-1)]                       (11)    

                                                                                                                  
We can then write f(k) in terms of length-P time-window as  
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where w(k)= [w(k) w(k+1) ….. w(k+P-1)]T is the time-
window vector of white noise and  r(lnλ)= [1 ejΔωlnλ ……. 
ejΔωlnλ(P-1)]T is the time-window signal vector at each particular 
value of lnλ. 

The autocorrelation matrix of f(k) may be expressed in 
terms of its eigendecomposition as 
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where Λ is a diagonal matrix of the eigenvalues in descending 
order on the diagonal (λ1≥λ2≥ ……….≥λM) while the columns 
of V are the corresponding eigenvectors. The M largest 
eigenvalues correspond to the signal and the remaining 
eigenvalues have equal values and correspond to the noise. Rff 
can thus be partitioned into two portions, one due to the signal 
and the other due to the noise eigenvectors 

 
H
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where  

Vs= [v1  v2 …….vM] and Vw= [vM+1 ……. vP]          (15) 
 

are matrices whose columns consist of signal and noise 
eigenvectors respectively. Λ is an MxM diagonal matrix 
containing the signal eigenvalues. Thus the P-dimensional 
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subspace has been broken into two subspaces, i.e. the so-
called signal and noise subspaces. 

The matrices that project an arbitrary vector on the signal 
and noise subspaces are [12]: 

H
sss VVP =   and  

H
www VVP =                       (16)                                                                                                                             

Since the signal and noise subspaces are orthogonal,  
0=swVP    and   0=wsVP                           (17)                                                                                                                             

all the lnλ vectors from equation (12) must lie completely in 
the signal subspace. This means 

)(ln)(ln iis rrP λλ = ; 0)(ln =iwrP λ                 (18)                                                                                                                
The above concepts are central to the two subspace 

methods presented below. 

A. MUSIC Algorithm 
The MUSIC algorithm was proposed [10] as an 

improvement on the Pisaranko harmonic decomposition (phd) 
which limited the length of P to P= M+1. In the MUSIC 
method, the time window is allowed to be P> M+1, thus 
giving a subspace of dimension greater than 1. 

For each eigenvector vp in the noise subspace (M<p≤P), 
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for all the M values of lnλ. 

Thus, if we compute the pseudospectrum of each noise 
eigenvector as 
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the polynomial 
)( ln λωΔj

p eV
has P-1 roots, M of which 

corresponds to the lnλ of the complex exponentials. These 
roots produce M peaks in the pseudospectrum. The 
pseudospectra of all P-M noise eigenvectors share these roots 
that are due to the signal subspace. The remaining roots of the 
noise eigenvectors occur at different frequencies and may 
produce extra peaks in the pseudospectrum if close to the unit 
circle. The solution to this is to average out the P-M 
pseudospectra of the individual noise eigenvectors: 
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This is known as the MUSIC pseudospectrum [12]. 
 
B.  Minimum Norm Algorithm 
Like the MUSIC method, the time-window P is allowed to 

be P> M+1. 
The minimum-norm method uses an arbitrary vector 
 

b= [b(1)  b(2) ……… b(P)]T                     (22) 
                                                                                                                   

constrained to lie on the noise subspace. 
For any arbitrary vector that lies in the noise subspace 
 

Pwb= b           and  Psb= 0                       (23)   
                                                                                                                  

where 0 is the length-M zero vector. 
The minimum norm seeks to minimize the norm of b in 

order to avoid spurious peaks in the pseudospectrum. From 
equation (16), the norm of a vector b contained in the noise 
subspace is  

bPbbbb w
HH ==2

                          (24)                  

Since an unconstrained minimization of this norm will 
produce the zero vector, the first element of b is constrained to 
be unity, i.e. 

11 =bHδ                                         (25)                   
The solution to this can be found by using Lagrange 

multipliers [12] as 
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The lnλ estimates are then obtained from the peaks in the 
pseudospectrum of the minimum norm vector. 

V. SIMULATION RESULTS 
A MATLAB programme was written and run for the above 

algorithms and the performance of the above subspace 
techniques in analyzing multiexponential signals examined 
using the signals S1(τ) and S2(τ), where 
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The pseudospectrum of S1(τ) and S2(τ) are shown in Fig. 1 

through Fig. 4 for the three techniques and Tables I and II 
give the estimate for lnλi for S1(τ) and S2(τ) respectively. The 
results show that the MUSIC algorithm produces more 
defined peaks. For the two algorithms, it is evident that the 
estimates do not vary significantly with SNR and they are 
accurate within the tolerance of about ±0.02. We may 
therefore conclude that for multiexponential signals in noise, 
MUSIC is the better algorithm even though the minimum 
norm performs almost equally well. 
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Fig. 1  MUSIC pseudospectrum of S1(τ) with SNR of 40dB 
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Fig. 2 MUSIC pseudospectrum for S2(τ) at SNR of 40dB 
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Fig. 3 Min-Norm pseudospectrum of S1(τ) with SNR of 40dB 
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Fig. 4 Min-norm pseudospectrum for S2(τ) at SNR of 40dB 

 
 
 

TABLE I 
   VALUES OF lnλi FOR DIFFERENT SNR FOR S1(τ) 

 
 

TABLE II 
   VALUES OF lnλi FOR DIFFERENT SNR FOR S2(τ) 

 

VI. CONCLUSION 
The performance of two eigenvector methods has been 

examined in the analysis of multiexponential signals in noise. 
It has been shown that both MUSIC and Minimum norm 
subspace techniques perform equally well with MUSIC 
resulting in better defined peaks at the lnλ values. It has also 
been shown that the performance of the two methods does not 
deteriorate with decreasing SNR. 
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