
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1241

Abstract—The development of many measurement and

inspection systems of products based on real-time image processing
can not be carried out totally in a laboratory due to the size or the
temperature of the manufactured products. Those systems must be
developed in successive phases. Firstly, the system is installed in the
production line with only an operational service to acquire images of
the products and other complementary signals. Next, a recording
service of the image and signals must be developed and integrated in
the system. Only after a large set of images of products is available,
the development of the real-time image processing algorithms for
measurement or inspection of the products can be accomplished
under realistic conditions. Finally, the recording service is turned off
or eliminated and the system operates only with the real-time
services for the acquisition and processing of the images. This article
presents a systematic performance evaluation of the image
compression algorithms currently available to implement a real-time
recording service. The results allow establishing a trade off between
the reduction or compression of the image size and the CPU time
required to get that compression level.

Keywords—Lossless image compression, codec performance
evaluation, grayscale codec comparison, real-time image recording.

I. INTRODUCTION
URRENTLY, the utilization of machine vision systems to
measure or control the quality of the manufactured

products is more and more essential. In many cases, the
operational conditions of the machine vision system in a real
manufacturing line can be emulated in a laboratory with high
accuracy. For example, this is the case of an inspection system
for electronic circuit boards. But in other cases, the big size

Manuscript received June 8, 2007. This work was partially supported by

the Spanish Ministry for Education and Science with a grant for collaboration
in research tasks.

Daniel F. Garcia is with the Department of Informatics, University of
Oviedo, Campus de Viesques, 33204 Gijon, Spain (phone: +34-985-18-2066;
fax: +34-985-18-1986; e-mail: dfgarcia@uniovi.es).

Julio Molleda is with the Department of Informatics, University of Oviedo,
Campus de Viesques, 33204 Gijon, Spain (e-mail: jmolleda@uniovi.es).

Francisco Gonzalez is studying Informatics at the University of Oviedo,
Campus de Viesques, 33204 Gijon, Spain (e-mail: UO80939@uniovi.es).

Rubén Usamentiaga is with the Department of Informatics, University of
Oviedo, Campus de Viesques, 33204 Gijon, Spain (e-mail:
rusamentiaga@uniovi.es).

and the high temperature of the products to be inspected, as
well as the manufacturing process of the products, do not
allow the development and the tuning of a machine vision
system in the laboratory. A typical example of this situation
appears in the rolling of steel strips or other metals.

The Fig. 1 shows a simplified scheme of a system to
measure the 3D shape of each steel strip processed in a rolling
mill. The flatness of the steel strip can be calculated from the
3D shape. The flatness is one of those essential properties that
define the final quality of the steel strip.

 Laser

tube

Camera

Steel strip

Roll p
ath

Strip
 profile

Mechanical
support

Laser

curtain

Strip advance

Fig. 1 Scheme of a 3D shape meter

The system uses a laser curtain projected perpendicularly to

the steel strip. The intersection of the laser curtain with the
strip draws the strip profile.

While the strip advances, a 2D camera is taking images of
the strip profiles. An algorithm extracts the profile from the
other elements of the image and calculates the height
corresponding to each pixel, converting the strip profile in a
height profile. The union of the successive height profiles
allows the composition of a 3D image of the shape of the
strip. In [1], additional details of this system can be found.

The entire development of a machine vision system like
this, totally in a laboratory, is practically impossible for
multiple reasons.

Firstly, the system can be used to inspect cold or hot rolled
strips. The hot strips have a color, which varies from a dark
gray, for not very hot strips (≈400ºC), to brilliant white, for

Performance Evaluation of Compression
Algorithms for Developing and Testing

Industrial Imaging Systems
Daniel F. Garcia, Julio Molleda, Francisco Gonzalez, and Ruben Usamentiaga

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1242

very hot strips (≈1300ºC). The speed of the strip varies from 0
to 25 meters/second. The realistic reproduction of these
conditions in the laboratory is totally impossible. The cold
strips have a color, which varies from very light gray to very
dark gray. In a same strip, the color of the center can be light
gray while the color of the borders is dark gray. From time to
time, big spots of oil and oxidized areas of very dark colors
appear randomly on the surface of the strips. Furthermore, in
rainy days, wet areas appear on the strips, which also change
drastically the reflection of the light. The proper reproduction
of these conditions in the laboratory is almost impossible.

Therefore, the development and optimization of the image
processing algorithms can not be accomplished with videos
taken in a laboratory, but with videos and signals taken in the
place of installation of the system in the real manufacturing
line.

If the system can not store the video (sequence of captured
images), but it only stores the heights, the checking of the
effect of a change of the image processing algorithm or a
modification of its configuration parameters could only be
accomplished comparing the results of the strips rolled before
the change with the results of strips rolled after the change.
But obviously, the comparison must be based on different
strips.

If the system could be capable of storing video, the
processing of the video could be emulated later in the
laboratory many times, changing the image processing
algorithm or changing the configuration parameters of a same
algorithm.

Therefore, it is necessary to include a recording service of
video and signal in these measurement and inspection
systems, which allows to emulate all the operation of the
system in the laboratory.

The main problem that arises when trying to implement this
service is the storage size required for the videos. The real
problem is that the system should store not just a few videos,
but it must remain capturing videos for long periods of time.
Once, we have a large set of videos, it is easy to select videos
of strips with very different characteristics of color, width, etc.
Furthermore, a large set of videos allows the utilization of
techniques for tuning the parameters of the image processing
algorithms, which requires many examples, like neural
networks or genetic algorithms.

To obtain an optimal recording service, we have to evaluate
which are the best video container and the best video codec
for this type of services.

II. ANALYSIS OF VIDEO CONTAINERS AND CODECS TO
STORAGE INDUSTRIAL IMAGES

The first element to select in order to store a video jointly
with other signals is a multimedia container. The second step
is to select the most appropriate codec to compress the video
stream. The selection of the codec must be done as a function
of the container selected previously, because, although many
codecs can be used with any container, other codecs can only
be used with specific containers.

A multimedia container is a file which stores information of
several types (video, audio, text, etc). The most common use
of containers is to store movies or music, but they can also be
used for less conventional tasks, like storing a stream of
images jointly with a stream of a signal samples. To save
storage space, the streams are compressed before storing them
in a container and the streams must be decompressed before
reusing them again. These tasks are carried out by a
hardware/software component called coder-decoder. The
compressed format of a stream generated by a coder-decoder
is called simply a codec. The containers considered in this
work are:

• AVI (Audio Video Interleave), [2].
• ASF (Advanced Streaming Format), [3].
• QuickTime, [4].
• MPEG-4 Part 14, [5] [6].
• OGG/OGM, [7].
• Matroska, [8].

Any of these containers can be used to develop the

recording service. However, the AVI container can store most
of the common codecs, while the other containers are more
oriented to the storage of specific codecs which provide
special functionalities to reproduce or edit movies. Besides,
the AVI container is the most extended and easiest to
program, so it is the most appropriate to develop the recording
system proposed in this research work.

Next, we are to consider the selection of an appropriate
video codec. Most of video codecs have been designed to
compress movies. Their main objective consists in reducing
the storage size of the frames eliminating the unnecessary
information. For the movies, the unnecessary information
consists of the visual details that can not be appreciated by the
human eye, so that, its elimination can not be noted by the
viewer of the video.

This type of video codecs is not useful to fulfill the
objectives of a recording service, because the video will not
be processed by the human eye, but by a computer system, to
extract information from each image (frame) of the video.
Therefore, any degradation (elimination) of information from
the frames can lead to incorrect results when the frames are
processed.

We have to use lossless codecs. They apply compression
algorithms similar to the ones used in WinRAR or WinZIP
programs to compress files. These algorithms reduce the size
of the original file but also allow an exact reconstruction of
the original information.

As expected, the compression algorithms with information
loss have compression rates notably higher than the lossless
algorithms. In fact, the final size of a video compressed with a
codec that allows loss of information could be more and more
reduced at the expense of reducing more and more the quality
of the compressed video.

Another important aspect to consider in the selection of a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1243

codec is the type of images that it can process: color images
(RGB or YUV) or grayscale images. This work is basically
focused on codecs specifically designed to operate with
grayscale images, because they are the common images used
in the real-time measurement and inspection systems.

From [9], a complete list of codecs capable of working with
the AVI container can be retrieved, but only 8 codecs can
compress the images without loss of information. Therefore,
the codecs considered in this work are:

• ASLC – AlparySoft Lossless Codec, [10].
• FFV1 – FFMPEG Codec, [11].
• HFYU – Huffman Lossless Codec, [12].
• LZO1 – Lempel-Ziv-Oberhumer Codec, [13].
• LEAD – Lead MCMP-MJPEG Codec, [14].
• PIMJ – Pegasus Lossless JPEG, [15].
• ZLIB – Lossless Codec Libraries [16].
• MSZH – Lossless Codec Libraries [16].

The first four codecs, ASLC, FFV1, HFYU, and LZO1 can

only work with color images, and therefore, their utilization
with grayscale images, although possible, would be very
inefficient.

The LEAD codec is an adaptation for video of the JPEG
standard for static images. This codec compresses each frame
individually without using inter-frame compression in order to
avoid the loss of information. It has been designed to work
with color images (RGB of 24 bits) and grayscale images (8,
12 and 16 bits).

The PIMJ codec allows the lossless compression of color
(RGB of 24 bits) and grayscale (8 bits) images, using a
predictor 1 Lossless JPEG technique.

The ZLIB codec is included in the Lossless Codec Library
(LCL) which allows the compression and decompression of
images and 3D animations. It can work with color images
(RGB and YUV) and grayscale images. The compression
level can be configured by the user, allowing the operation in
two modes: HiSpeed (High speed and low compression) and
HiCompress (High compression and low speed). This codec
uses the Deflate technique, which combines Huffmann trees
with LZ77 compression. The objective of those trees is to
codify each item of the information to be compressed using a
code of less than 15 bits. The LZ77 compression avoids
writing several identical items consecutively, by writing only
the first item and indicating the number of identical items that
follow the first one.

The MSZH codec is also included in the Lossless Codec
Library. It can work with color and grayscale images.

Before starting the performance evaluation work, we
searched for the available documentation on video codec
comparison. An extensive comparison of the performance of
lossless codes can be found in [17], but all the evaluation has
been carried out using RGB and YUV color spaces. There is
no information about the performance compression of
grayscale videos. General information can be retrieved from

[18], but there is also a lack of comparison for grayscale
videos. Finally, only a very brief comparison of codecs using
grayscale videos can be found at the end of the presentation of
Takamura [19]. The lack of information about the
performance of lossless compression codecs when they
operate with grayscale and binary images has motivated the
evaluation work presented in the next sections of this paper.

III. PERFORMANCE EVALUATION METHODOLOGY
In order to develop the performance evaluation experiments

we follow the well-known systematic procedure proposed by
Raj Jain [20]. The first step consists in the selection of
appropriate performance metrics. In the second step, the
factors that could affect those performance metrics must be
defined. Next a performance evaluation experiment must be
carried out for each relevant combination of the values of the
factors. All these considerations are summarized in the Fig. 2
in a graphical form.

Performance
Evaluation
Experiment

Workload Factors

System Factors

Compression
Level

Compression
Time

Compression Algorithm
PRIMARY FACTOR

SECONDARY FACTORS

Software
CPU + Disk

Image size
Pixel information
Image content

Resource
Utilization

PRIMARY METRICS

SECONDARY METRIC

Fig. 2 Factors that affect the output performance metrics of

performance evaluation experiments

The most important performance metric for the evaluation

of the compression algorithms is the compression level
obtained for a sequence of images. The compression level can
be expressed by the relation between the size of the
compressed images and the size of the correspondent original
images. Therefore, the lower this relation is the higher
compression is obtained from the algorithm. This metric is
always between 0 and 1.

On the other hand, the achieved compression level is
obtained consuming CPU time. In general, a high compression
level also requires a high CPU time. The execution time of the
compression algorithm, equivalent to the consumed CPU time,
can be used as a metric indicative of the computational cost of
the compression. Generally, it is considered as a secondary
metric in non real-time systems, but it is also an essential
metric when the compression algorithms must operate in
real-time.

Under real-time operational conditions, an appropriate trade
off between the two metrics is of primary importance.
Therefore a system designer must consider the desired
compression level and the CPU time required to compress the
images at the same time.

These two metrics are the main outputs of any performance
evaluation experiment. However, it is also interesting to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1244

analyze secondary metrics, like the resource consumption
(%CPU and %Disk) obtained with each compression
algorithm, in order to know their compression efficiency.

There are several factors that affect these metrics.
Evidently, the primary factor that affects the metrics is the
compression algorithm used. There are also other secondary
factors that can also affect the output performance metrics.
These factors can be classified in system factors and workload
factors. The main system factors are the implementation of the
algorithm (software factor) and the CPU used to execute the
algorithm (hardware factor). The main workload factors are
related to characteristics of the processed images, such as their
resolution (width x height in pixels), the information
contained in each pixel (1 bit for black and white images or 1
byte for 256 grayscale images), and the content of the images.

The experimental design must be focused on evaluating the
impact of the primary factor on the two performance metrics
selected. Therefore, the values of the secondary factors must
be fixed to one or two usual values and these values must not
be modified at any time during the evaluation experiments.

In relation with the secondary workload factors, the
dimension of the images is 640x260 pixels. For the pixel
information two values were used: images of 256 gray levels
and binary images, in which the levels can only take the
values 0 and 255. The content of the images depends on the
gray levels considered: Fig. 3 shows the typical content of the
grayscale images used in the performance evaluation
experiments and Fig. 6 shows the correspondent binarization
of that content.

The secondary system factors include the software
implementation of the compression algorithms and the
hardware used to execute them. The implementations of the
algorithms were obtained from the web references indicated
previously and they were integrated in a service that acquires,
compresses and writes the images to an AVI container. The
service operates on the Windows XP operating system and
was executed on a Pentium D, 3.0 GHz. The hard disk used to
store the signals is a Serial ATA II, 7200 rpm.

The recording frame rate used in the experiments depends
on the pixel information: 10 frames/second for grayscale
images and 100 frames/second for binary images.

The high-resolution performance counter provided by the
computer hardware was always used to measure the times
taken by the recording service to record an image. Its
resolution is under 1 microsecond, which allows measuring
the execution times with enough accuracy.

IV. EXPERIMENTAL RESULTS
All the experimental results obtained have been classified

as a function of the pixel content, that is, there is a set of
results for grayscale images and other set for binary images.
They are explained in the next two independent subsections.

A. Experimental Results with Grayscale Images
Fig. 3 shows an example of a typical grayscale image

containing a laser line, which draws the profile of a steel strip.

Under the line, the reflection of light on a roll, over which the
strip moves, can be appreciated.

This type of scene is very common in the measurement and
inspection systems of continuous or very long products, which
are manufactured in many industries (steel, textile, paper, etc.)
Therefore, the videos used in the evaluation experiments are
representative of the videos that must be processed by this
type of industrial imaging systems.

Fig. 3 Example of grayscale image used in the performance

evaluation experiments

Fig. 4 shows the results obtained from compression

algorithms operating with grayscale images. It is important to
analyze the results in relation to the absence of compression,
defined by a black circle in Fig. 4. This circle indicates that
the recording of the frames without compression takes an
average time of 1.23 milliseconds and the reduction of the
image size is 1, indicating this, the absence of reduction.

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70
Average recording time of an image (millisec)

R
ed

uc
tio

n
of

 th
e

im
ag

e
si

ze NO Compression
LEAD
PIMJ
Zlib - HiCompress
Zlib - HiSpeed
MSZH

Fig. 4 Performance of compression algorithms with grayscale images

The LEAD and PIMJ algorithms behave in a similar

manner. They can almost reduce the size of the images to half
of their original size, but the recording time is multiplied
by three. A better compression can be obtained with the ZLIB
algorithm configured to operate in the HiSpeed mode. It can
reduce the sizes of the images to a third of the original size at
the expense of multiplying the recording time by six.

Finally the MSZH and Zlib-HiCompress algorithms can not
operate at recording frame rates over 100 fps. The MSZH
algorithm provides less compression and requires a notably
longer time than the Zlib-HiSpeed algorithm, as can be
appreciated in Fig. 4. The Zlib algorithm, configured in
HiSpeed mode, reaches a reduction factor of 0.30, only a little
bit higher than the factor obtained when it is configured in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1245

HiCompress mode, of 0.27. However, Zlib-HiSpeed is about 8
times faster than Zlib-HiCompress and reaches nearly the
same compression. Therefore, considering the relation
between the compression and the execution time, the MSZH
and Zlib-HiCompress algorithms can not be considered
appropriate to implement an efficient real-time recording
service.

Next, we compare the efficiency of the compression
algorithms using the available computational resources. The
Table I shows the percentage of CPU and Disk utilization as a
function of the compression algorithm used in the recording
service when a period of 100 milliseconds is used to store the
grayscale images.

TABLE I

UTILIZATION OF DEVICES WITH GRAYSCALE IMAGES
Compression
Algorithm

% CPU
Utilization

% Disk
Utilization

NONE 2.94 3.54
LEAD 2.99 1.88
PIMJ 3.09 2.19
Zlib-HiCompress 63.05 0.74
Zlib-HiSpeed 3.56 1.17
MSZH 32.78 2.12

For a better comparison of the resources required by the

algorithms to compress and store the images, the CPU
utilization measured for each compression algorithm is
divided by the CPU utilization measured when no
compression is used. The same procedure is used with Disk
utilization. The relative utilizations of CPU and Disk are
represented in Fig. 5, where the point (1,1) represents the lack
of compression, and it is the reference point for comparing all
the compression algorithms.

0,0

0,2

0,4

0,6

0,8

1,0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Relative CPU utilization

R
el

at
iv

e
D

IS
K

ut
ili

za
tio

n

NO Compression
LEAD
PIMJ
Zlib - HiCompress
Zlib - HiSpeed
MSZH

Fig. 5 Relative CPU and Disk utilizations for grayscale images

Fig. 5 shows that the relative disk utilization decreases

proportionally to the reduction of the image size (shown in
Fig. 4). However, the relative CPU utilization does not
increase with the algorithms LEAD, PIMJ and Zlib-HiSpeed.

The only explanation for this behavior is that the increment of
CPU utilization due to the execution of the compression
algorithm is compensated with the decrement of CPU
utilization required to store the compressed images in the disk.
The Zlib-HiSpeed algorithm shows the best performance. It
gets the maximum possible compression without increasing
the CPU utilization noticeably.

B. Experimental Results with Binary Images
Fig. 6 shows the typical binary images provided by the

frame grabber card, when hardware binarization is activated.

Fig. 6 Example of binary image used in the performance

evaluation experiments

Fig. 7 shows the results obtained from compression

algorithms operating with binary images. With these images,
the recording of each frame without compression takes an
average time of one millisecond. All algorithms reduce the
size of the images very much, with small increments of the
recording time.

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5 6
Average recording time of an image (millisec)

R
ed

uc
tio

n
of

 th
e

im
ag

e
si

ze NO Compression
LEAD
PIMJ
Zlib - HiCompress
Zlib - HiSpeed
MSZH

Fig. 7 Performance of compression algorithms with binary images

A surprisingly good performance is obtained for the Zlib

algorithm. The reduction of the image size is very high, 0.002
when it operates in HiCompress mode and 0.005 when it
operates in HiSpeed mode. However, when it operates in
HiSpeed mode the increment of recording time is negligible.

The other three compression algorithms can be easily
ordered by performance, because MSZH reduces the image
size very much using a short recording time and LEAD
reduces the image size very little taking a longer recording
time. PIMJ shows an intermediate behavior between the other
two algorithms.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1246

Now, we also compare the efficiency of the compression
algorithms using the computational resources consumed by
them. Table II shows the percentage of CPU and Disk
utilization as a function of the compression algorithm used in
the recording service when a period of 10 milliseconds is used
to acquire and store the binary images.

TABLE II

UTILIZATION OF DEVICES WITH BINARY IMAGES
Compression
Algorithm

% CPU
Utilization

% Disk
Utilization

NONE 3.62 17.95
LEAD 4.21 5.95
PIMJ 3.80 3.68
Zlib-HiCompress 13.71 0.76
Zlib-HiSpeed 3.45 0.32
MSZH 3.21 1.32

The relative utilization of CPU and Disk are shown in

Fig. 8, in which the point (1,1) represents the absence of
compression, and it is the reference point for comparing all
the compression algorithms.

0,0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4
Relative CPU utilization

Re
la

tiv
e

DI
S

K
ut

ili
za

tio
n

NO Compression
LEAD
PIMJ
Zlib - HiCompress
Zlib - HiSpeed
MSZH

Fig. 8 Relative CPU and Disk utilizations for binary images

Fig. 8 shows that the relative disk utilization decreases

proportionally to the reduction of the image size (shown in
Fig. 7). However, the relative CPU utilization does not
increase with the algorithms LEAD, PIMJ, Zlib-HiSpeed and
MSZH. The justification for this behavior is that the increment
of CPU utilization, due to the execution of the compression
algorithm, is compensated with the decrement of CPU
utilization required to store the compressed images in the disk.
The Zlib-HiSpeed algorithm shows the best performance. It
gets the maximum compression possible without increasing
the CPU utilization.

V. CONCLUSION
In this work, we have presented the impossibility of

developing complex image processing systems totally in the
laboratory. We have proposed to develop firstly the image
acquisition service, and then include an efficient image

recording service that allows the development of the image
processing services of the global system in a laboratory.

The key aspect of the design of the recording service is the
proper selection of the codec to compress the images. The
performance evaluation experiments show that the
Zlib-HiSpeed algorithm is the best suited to develop the
recording service for the two types of images considered:
grayscale and binary.

The advantages of using an efficient image recording
service to develop and tuning the image processing algorithms
systems are clear: the great number and the high
representativeness of the images that compose the training set
of the image processing algorithms.

Finally, just to remark that the performance comparison of
video codecs based on grayscale and binary images presented
in this work is the only comparative information currently
available for the designers of industrial imaging systems.

REFERENCES
[1] C. Lopez, D.F. Garcia, R. Usamentiaga and J.A. Gonzalez, “Real-time

system for flatness inspection of steel strips,” in Proc. 17th Int. Symp.
on Electronic Imaging: Machine Vision Applications in Industrial
Inspection XIII, San Jose, CA, 2005. SPIE Vol.5679, pp.228-238.

[2] Microsoft, “Specification of the AVI container,” Available:
http://windowssdk.msdn.microsoft.com/en-us/library/ms779636.aspx

[3] Microsoft, “Specification of the ASF container,” Available:
http://go.microsoft.com/fwlink/?LinkId=31334

[4] Apple, “Documentation of the QuickTime container,” Available:
http://developer.apple.com/documentation/QuickTime/QTFF/index.html

[5] Chiariglione, “MPG-4 file formats white paper,” Available:
http://www.chiariglione.org/mpeg/technologies/mp04-ff/

[6] ISO, “Standard ISO/IEC 14496-14 MP4 file format,” Available:
http://www.iso.ch/iso/en/prods-services/

[7] Xiph, “Documentation of the OGG container,” Available:
http://www.xiph.org/ogg/

[8] Matroska, “Specification of the Matroska container,” Available:
http://dl.matroska.org/downloads/libmatroska/

[9] Fourcc, “Video codec and pixel format definitions,” Available:
http://www.fourcc.org

[10] AlparySOFT, “AlparySoft lossless video codec,” Available:
http://www.alparysoft.com/products.php?id=8&item=35

[11] SourceForge, “DirectShow and VFW FFMPEG codec,” Available:
http://sourceforge.net/projects/ffdshow

[12] Berkeley, “Description of the Huffman codec,” Available:
http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html

[13] Oberhumer, “Libraries of the LZO codec,” Available:
http://www.oberhumer.com/opensource/lzo/

[14] LeadCodes, “Description of the MCMP-MJPEG codec,” Available:
http://www.leadcodecs.com/codecs/

[15] PegasusImaging, “The Pegasus lossless JPEG codec,” Available:
http://www.pegasusimaging.com/pvlosslessfeatures.htm

[16] Geocities, “Libraries of ZLIB and MSZH lossless codecs,” Available:
http://www.geocities.co.jp/Playtown-Denei/2837/prg/LCL223.ZIP

[17] D. Vatolin, I. Seleznev, M. Smirnov, “Lossless Video Codecs
Comparison’2007,” Technical Report of the Graphics & Media Lab
(Video Group) of Moscow State University (MSU). Available:
http://www.compression.ru/video/codec_comparison/index_en.html

[18] CompressionLinks, “Lossless Video Codecs Area,” Available:
http://www.compression-links.info/Lossless_Video_Codecs

[19] S. Takamura, “Lossless Video Coding,” Lecture of the Course EE398B
on Image Communication at Stanford University. Available:
http://www.stanford.edu/class/ee398b/handouts/lectures/LosslessVideoC
oding.pdf

[20] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. New
York: John-Wiley & Sons, 1991.

