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Abstract—The backpropagation algorithm in general employs 

quadratic error function. In fact, most of the problems that involve 
minimization employ the Quadratic error function. With alternative 
error functions the performance of the optimization scheme can be 
improved. The new error functions help in suppressing the ill-effects 
of the outliers and have shown good performance to noise. In this 
paper we have tried to evaluate and compare the relative performance 
of complex valued neural network using different error functions. 
During first simulation for complex XOR gate it is observed that 
some error functions like Absolute error, Cauchy error function can 
replace Quadratic error function. In the second simulation it is 
observed that for some error functions the performance of the 
complex valued neural network depends on the architecture of the 
network whereas with few other error functions convergence speed 
of the network is independent of architecture of the neural network. 
 

Keywords—Complex backpropagation algorithm, complex error 
functions, complex valued neural network, split activation function.  

I. INTRODUCTION 
N recent years, complex-valued neural networks have 
widened the scope of application in optoelectronics, 

imaging, remote sensing, quantum neural devices and 
systems, spatiotemporal analysis of physiological neural 
systems, and artificial neural information processing.  

The generalization of real valued algorithms cannot be   
simply done as complex valued algorithm. The complex 
backpropagation algorithm can be applied to multilayered 
neural networks whose weights, threshold values, inputs and 
outputs all are complex numbers.  Complex version of 
backpropagation (CVBP) algorithm made its first appearance 
when Widrow, Mc Cool and Ball [1] announced their complex 
least mean squares (LMS) algorithm. Kim and Guest [2] 
published a complex valued learning algorithm for signal 
processing application. Georgiou and Koutsougeras [3] 
published another version of CVBP incorporating a different 
activation function and have shown if real valued algorithms 
be simply done as complex valued algorithm then singularities 
and other such unpleasant phenomena may arise. Hirose [4] 
studied the dynamics of CVNN which was later applied to the 
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problem of reconstructing vectors lying on the unit circle. 
Benvenuoto and Piazza [5] published a different version of 
CVBP by using different activation function. Wang [6]   
proposed a complex valued recurrent neural network to solve 
the complex valued linear equations. A complex activation 
function for digital VLSI neural networks was implemented 
by Deville [7] that required lesser hardware than the 
conventional real valued neural network. A complex valued 
neural network was used by Smith and Hui[8]  to implement a 
data extrapolation algorithm.  Leung and Haykin[9] published 
the CVBP in which the activation function used was an 
extended version of sigmoid function and the error function 
was Quadratic error function. An extensive study of CVBP 
was reported by Nitta [10]. Decision boundary of a single 
complex valued neuron consists of two hypersurfaces that 
intersect orthogonally, and divide a decision region into four 
equal sections. If both the absolute values of real and 
imaginary parts of the net inputs to all hidden neurons are 
sufficiently large, then the decision boundaries for real and 
imaginary parts of an output neuron in three layered complex 
valued neural network intersect orthogonally. The average 
learning speed of complex BP algorithm is faster than that of 
real BP algorithm. The standard deviation of the learning 
speed of complex BP is smaller than that of the real BP. 
Hence the complex valued neural network and the related 
algorithm are natural for learning of complex valued patterns.  
Werbos and Titus [11] and then Gill and Wright [12] 
discussed the different consequences of changing error 
functions in an optimization scheme.  Rey [13] has shown that 
the results could be substantially improved by varying error 
function in an optimization scheme. He applied absolute error 
function based optimization to solve a curve fitting problem 
more efficiently than the standard quadratic error function 
based optimization. Fernandeze [14] implemented some new 
error functions for the training of real valued neural network 
as tools to counter the ill effects of local minima by weighting 
error functions according to their magnitudes. Matsuoka and 
Yi[15]  used logarithmic error function to eliminate the local 
minima. Ooyen and Nienhaus [16] have used entropy type 
error function and have concluded that it’s performance is 
better than the quadratic error function based backpropagation 
algorithm for function approximation problems.    

II. COMPLEX VALUED NEURAL NETWORK 
A three layered complex valued neural network is shown in 

(1). In this network all the inputs, outputs, weights, and biases 
are complex values.  According to the Liouville’s theorem, a 
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bounded holomorphic function in the complex plane C is a 
constant. So the attempt to extend the sigmoidal function to 
complex plane is met with the difficulty of singularities in the 
output. To deal with this difficulty Prashant[17] suggested that 
the input data should be scaled to some region in complex 
domain. Although the input data can be scaled but there is no 
limit over the values the complex weights can take hence it is 
difficult to implement it. To overcome this problem split 
sigmoidal activation function is used for training the network. 
 

             
Fig. 1 complex valued neural network 

 
In this complex valued neural network: 
L        number of input layer neurons 
M      number of hidden layer neurons 
N       number of output layer neurons 
xi      output value of input neuron i (input) 
zj        output of hidden layer neuron j 
ok     output of the output neuron k  
wji     weight between input layer neuron i and hidden layer   

neuron j 
vkj     weight between hidden layer neuron j and output 

layer          neuron k 
θj     threshold / bias of hidden layer neurons 

    γk    threshold / bias of output layer neurons 
 

Training is done with a given set of input and output data to 
learn a functional relationship between input and output. We 
have used complex BP learning rule which has been obtained 
by using a steepest descent method for multilayered complex 
valued neural network given by Nitta [10]. The weights are 
initiated to some random values. The outputs are obtained for 
these random input values. The error between actual output 
and the desired output is calculated. This error is back 
propagated and the weights are updated. Then for these new 
values of weights, outputs are once again calculated. These 
actual calculated outputs are once again compared with the 
target outputs and the error is calculate, which is again back 
propagated and the weights are once again updated. This 
iterative process is continued till the error becomes less then 
the minimum defined. 

Internal potential of hidden neuron j:   
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Internal potential of output neuron k: 
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Output of output neuron k: 
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With the help of this error ek  using different complex error 
functions the error E is obtained. Then we derive the gradient 
of E w.r.t. both the real and imaginary part of the complex 
weights.  

]Im[]Re[ jiji
w w

Ei
w

EE
ji ∂

∂
+

∂
∂

=∇
                  (6) 

During training the network cost function E is minimized by 
recursively altering the weight coefficient based on gradient 
descent algorithm, given by  
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 Where ‘p’ is the number of iterations and ‘η’ is the learning 
rate constant. 

III. VARIOUS ERROR FUNCTIONS    
It must be noted that in the description of Error functions, 

the function’s form has been retained to that of real error 
functions forms while extending to complex domain. This was 
done to make sure that the error computed kept the same 
formula even while operating in the complex domain. This 
also makes sure that the surface plot of the function is close to 
the plane plot of the same. We have studied the performance 
of the complex valued neural networks by using following 
error functions:  

A. The Absolute Error Function 
Absolute error is one of several robust functions that 

display less skewing of error due to the outliers. A small 
numbers of outliers are less likely to affect the total error and 
so they do not affect the learning algorithm as severely as 
mean squared error. 

Complex absolute error function is defined to be 
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B. Andrew Error Function    
Complex Andrew error function is defined as 

 
( )( )i

n

eabsE *cos*/1 2 ππ∑= ; if ( )1≤ieabs      (9) 

 0= ;      else 

x2 

x1 
 

xi 

w11 v11 

w21 v21 

vkj wji 

y1 
 

y2 
 

yk 

INPUT LAYER     HIDDEN LAYER   OUTPUT LAYER 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:5, 2007

766

 

 

The Andrew error function has a discontinuity at the origin. 
The point beyond which the function can be suppressed can 
be chosen as desired while the dynamics of update operate 
according to a sinusoid by definition to take complex values. 
The surface plot of the complex definition reveals that the 
function is rotationally symmetrical about the z-axis. 
 

C. Bipolar Hyperbolic Squared Error Function 
Complex Bipolar Hyperbolic Squared error function is 

defined as 
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The surface is characterized by a unique maximum and 
rotational symmetry. The surface is differentiable with respect 
to real and imaginary parts of the complex variables that now 
appear as argument of the function. 

D. Cauchy Error Function 
Complex Cauchy error function is given as 
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The surface plot shows a unique point of global minimum. 
This surface is differentiable through the real plane and is 
rotationally symmetrical about the z-axis. The surface is 
characterized by changing convexity as the radius vector 
increase.  

E. Fair Error Function 
The complex Fair error function is rotationally symmetrical 

and has one global minimum. The convexity with respect to 
the xy- plane is maintained everywhere. Complex Fair error 
function is defined as 
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Where, c is the tuning constant. This function is defined 
continuous derivatives except at the origin. The tuning 
constant, c is usually set as 1.3998. 

F. Fourth Power Error Function 
This function is useful when dealing with the data known to 

be free from outliers, or in cases where it is important to 
minimize the worst-case error, rather than the average error. 
This error function increases more rapidly for errors more 
than unity as compared to Quadratic error function. The 
surface is smooth for the derivatives of all orders that exist 
and is rotationally symmetrical about the z- axis. The complex 
Fourth Power error function is defied as 
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G. German McClure Error Function 
The German-McClure error function is defined to suppress 

large errors near the origin. The asymptotes of the function 
suppress the outliers. This function approximates to Quadratic 

function for smaller values of error as the denominator can be 
approximated as unity. The complex German McClure error 
function is given by 
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H. Huber Error Function 
The complex Huber error function is given by 
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Where n is the number of outputs and c is the tuning constant. 
A typical value for c is 1.345. When dealing with noisy data, 
the training values may contain outliers with unusual 
deviation from the true underlying function. Huber function 
can be used to ignore these outliers, or at least reduce the ill 
effect they have on learning. The function has good effects of 
Quadratic and Absolute error function. 

I. Hyperbolic Squared Error Function  
Hyperbolic Squared error needs normalization while 

running training with one of the backpropagation algorithm or 
its variants.The complex Hyperbolic Squared error function is 
given by 
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Hyperbolic Squared error is similar in shape to the Bipolar 
Hyperbolic Squared error function. 

J. Log Cosh Error Function 
The complex Log-Cosh error function is defined as 

( )( )‡” *coshln
n

iieeE =                               (17) 

K. Mean Median Error Function 
This has the advantage of both the Mean error function and 

Median error function. Hence reduces the influence of large 
errors but at the same time retains its convexity. 
Complex Mean meridian function is defined as 
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L. Minkowski Error Function 
The complex Minkowski error function is given as  
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n

r
ieabsE =                         (19) 

Where n is the number of outputs and typical value of r is 
chosen as 0.4. 

M. Quadratic Error Function       
This is the standard error function. Complex Quadratic 

error function is defined as 
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N. Sinh Error Function 
This function is steeper than Quadratic error function and is 

symmetrical about the origin and hence the update involves 
two parts, the first is the gradient in the first quadrant and the 
second is the gradient in the third quadrant. In both cases, the 
gradient is directed towards the origin. 

The complex Sine-Hyperbolic function is given by: 
( )( )( )‡”

n
ieabsSinhE =                   (21) 

O. Turkey Biweight Error Function 
Turkey Biweight error function reduces the effect of large 

errors and suppresses the outliers. Hence the contribution of 
an outlier to this error function is smaller. The complex 
Turkey Biweight error function is defined as 
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Where c is the tuning constant and its typical value is 4.6851. 

P. Welsch Error Function 
The complex Welsch error function is defined as 
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This function reduces the effect of large errors. The typical 
value of the tuning constant c=2.9846. 

IV. SIMULATION  

A. Simulation 1 
For the first experiment we have taken three layers complex 

valued neural network with architecture 2-5-1. Nitta [9] has 
defined the complex XOR gate in complex domain as: 

1. The real part of the output is unity if the first input is 
equal to the second input else it is zero 

2. The imaginary part of the output is unity if the 
second input is equal to unity else it is zero 

We trained the complex valued neural network with the 
first eight patterns of Table I. Then for the testing we have 
done simulation on all the sixteen patterns. The experiments 
were run twice and average values of the epochs with various 
error functions are shown in Table II. The learning rate 
parameter is chosen 1.3 for all the simulations and the target 
error is set to 0.001. 

In case of absolute error function the absence of index (the 
power, unlike the quadratic error function) is a distinguishing 
feature of this error function as this enables smoothing out the 
ill-effects of the outlier points that would otherwise have 

offset the best-fit of the optimization scheme. It can also be 
noted that the function form in fact is the quadric cone. The 
update rule for the complex valued neural network steers the 
real part and the imaginary part of the weights to the minima 
separately. The problem of local minima exists in general with 
this error function based algorithm. The initial weights and the 
learning parameter decide how the training should progress. 
The dynamics of real part depends not only on the real part of 
the weights but also on the imaginary parts as the updates 
(6),(7) of the real and imaginary parts are dependent on each 
other. This complex error function is not differentiable at the 
origin. 

 
TABLE I 

COMPLEX XOR GATE FOR SIMULATION 
Inpu
t 1 

Input 2 Output 

0 0 1 
0 i i 
i 0 0 
i i 1+i 
i 1 i 
1 1 1+i 

1+i i i 
1+i 1+i 1 
0 1 i 
0 1+i 0 
i 1+i 0 
1 0 0 
1 0+i i 
1 1+i 0 

1+i 0 0 
1+i 1 i 

 
The complex Bipolar hyperbolic has unique maxima, and 

hence the training process should steer the network so as to 
attain the maxima of the function. While implementing the 
sign of the function is reversed so the update runs in 
accordance with accepted conventions. While implementing 
the Complex Andrew error function, the training was directed 
towards the minima. In case of Cauchy error function, the 
training steers the weights so as to reach the minimum of the 
function. 

For fourth power error function, the weight update is more 
rapid for error values greater than unity, and the rate of 
training is diminished for fractional errors, lying in the 
interval [0,1]. The cube term that results from the form of the 
error function enhances the update if the error is greater than 
unity and suppresses it if error is fractional. Complex German-
McClure error function is just the Quadratic function for 
smaller values of the errors, while for the large values the 
denominator comes into play, and the function deviates from 
being quadratic. The Huber error function is defined piece-
wise. The characteristic feature of the function is that it 
involves both the Quadratic error function and the Absolute 
error function. The parameter c is the point of demarcation to 
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assign a domain of operation for each error function. The 
function enables one to optimally choose error functions. If 
the data is prone to outliers and if their scatter is biased to one 
side, then an obvious choice would be to suppress the 
influence of these spurious points by assigning an Absolute 
error function to this side, and set Quadratic function to 
operate on the other side. It was found that in statistical 
analysis such choice improved the results as a judicial 
assignment was proven to be effective. The function is a 
paraboloid of revolution for the part of definition that is 
quadratic and for the part that is Absolute function it is a cone. 

 
TABLE II 

AVERAGE EPOCHS FOR COMPLEX XOR PROBLEM SOLVED USING COMPLEX 
VALUED NEURAL NETWORK                        

Error function  Average Epochs 
Absolute error 12100 
Andrew error 28000 
Cauchy error 17600 
Fourth order error 26300 
Fair error 21000 
German McClure error 27700 
Huber error 24900 
Hyperbolic Squared 27600 
Bipolar Hyperbolic 27000 
Log Cosh error 14500 
Mean Median error 15000 
Minkowski error 17600 
Quadratic error  31300 
Sinh error 16900 
Tukey error 22100 
Welsch error 24300 

 
For complex Hyperbolic Squared error function the surface 

is characterized by a unique maximum at the origin to which 
the training process should steer the network error. During 
implementation of the function a negative sign was prefixed to 
the error function, and the usual gradient was developed for 
the function. The complex Mean-Median error function   
behaves like the quadratic error function for smaller complex 
errors, and as absolute error function for large errors. This 
function finds best application for data that are prone to an 
outlier scatter that should be treated by assigning a function to 
nullify the ill effects due to them. The Minkowski error 
function is characterized by the parameter that appears as the 
index in the definition. The other standard error functions 
discussed so far e.g. Absolute error function; Fourth Power 
error function etc. can be obtained as particular cases of this 
function by setting the index according to the requirement. For 
even indices the Minkowski function behaves like the 
Quadratic function typically. Odd indices generate functions 
that need a piecewise defined update rule for the function 
would be symmetric about the origin in this case. The 
complex Sinh error function is the extended version of 
Hyperbolic Sine function in complex domain. A complex 
conjugate is employed in the argument of the function to make 

it an even function. This complex function is rotationally 
symmetric about z-axis and the surface maintains convexity 
with respect to xy-plane. The steepness of the slope increase 
as the index increases. For complex Turkey error function, the 
surface is convex with respect to the xy-plane for small errors 
but changes convexity once before restoring back to convex. 
Hence the weight update depends on the part of the surface at 
which the error vector lies. Rest of the surface is plane. The 
Welsch error function suppresses the large errors and gives 
Quadratic error function like performance for small errors. 

B. Simulation 2 
In this experiment we have shown that how the 

architectural size of the complex valued neural network 
affects the training process. We have trained and tested the 
CVNN to map CXOR with varying number of hidden layer 
neurons. The learning rate is taken as 1.3. Three different 
architectures: 2-2-1; 2-5-1; 2-7-1; respectively are taken and 
trained. The number of iterations required with all the 
complex error functions for all the three network architectures 
are given in Table III. 

 
TABLE  III 

AVERAGE RESULTS FOR DIFFERENT  ARCHITECTURES OF COMPLEX VALUED 
NEURAL NETWORKS FOR VARIOUS COMPLEX ERROR FUNCTIONS 

Error function 2-2-1 2-5-1 2-7-1 
Absolute error 17800 13400 11000 

Andrew error 23000 20300 16000 

Cauchy error 13700 13400 13000 

Fourth order error 21300 17400 19000 

Fair error 15000 14300 14100 

German McClure error 18700 17900 17000 

Huber error 11000 10000 10000 

Hyperbolic Squared 21000 20000 19500 

Bipolar Hyperbolic 22400 21000 21100 

Log Cosh error 12100 12000 11700 

Mean Median error 15000 13000 14000 

Minkowski error 16200 15700 16000 

Quadratic error  11000 12000 12000 

Sinh error 16700 15000 12300 

Tukey error 12200 13000 16400 

Welsch error 15100 13000 18000 
     

As clear from the results shown in Table III complex valued 
neural networks with Absolute error function, Andrew error 
function, Fourth power error function, Logarithmic error 
function, Turkey error function, and Welsch error function are 
sensitive to the architecture. The number of iterations for 
convergence during training varies widely with the 
architecture. On the other hand, the Cauchy error function, 
Huber error function, Log-Cosh error function, Mean-Median 
error function, Quadratic error function, and Sinh error 
function have been robust and have shown little dependence 
on the architecture. Hence, the extra neurons and extra 
weights are not necessary as smaller architecture shows the 
similar performance and could solve the problem. 
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V. CONCLUSION 
The above simulations reveal that the error functions can 

indeed be treated as a parameter for training complex valued 
neural network. Absolute error, Cauchy error, Fair error, 
Mean-Median error, Fourth error functions can replace 
Quadratic error function depending on the applications and 
requirements. With a proper choice of the parameter c the 
Huber function has the features of both Quadratic error 
function and absolute error function. The Huber error function 
consistently works well.  Hence, Quadratic error function can 
be completely replaced by Huber error function. 
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