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Abstract—Motion estimation is the most computationally 

intensive part in video processing. Many fast motion estimation 
algorithms have been proposed to decrease the computational 
complexity by reducing the number of candidate motion vectors.  
However, these studies are for fast search algorithms themselves while 
almost image and video compressions are operated with software 
based. Therefore, the timing constraints for running these motion 
estimation algorithms not only challenge for the video codec but also 
overwhelm for some of processors. In this paper, the performance of 
motion estimation is enhanced by using Intel's Streaming SIMD 
Extension 2 (SSE2) technology with Intel Pentium 4 processor. 
 

Keywords—Motion Estimation, Full Search, Three Step 
Search, MMX/SSE/SSE2 Technologies, SIMD.   

I. INTRODUCTION 
IDEO coding standards like MPEG-1/2/4/7 by the 
Moving Picture Experts Group (MPEG) and 

H.26x-1/2/3/4 by the Video Coding Experts Group (VCEG) 
have been used in many applications such as video 
conferencing, video on demand, video phones, and so on [1]. 

In image and video compression, motion estimation and 
motion compensation are key functions. A 1/4-pixel motion 
estimation is used to increase the accuracy in H.264 video 
standard, whereas a 1/2-pixel motion estimation is used in 
MPEG-4 video standard. Using 1/4-pixel motion estimation, 
the computational complexity increases four times but the high 
compression efficiency will be achieved. To solve this 
computational complexity problem, the fast search algorithms 
based on TSS (Three Step Search) have been proposed and 
widely used [2]. The timing constraints with such high data 
rates not only challenge enough even for the video codec but 
also overwhelm for some of superscalar processors [3]. 
Performing these operations with real time is not easy on most 
platforms if image resolutions at acceptable quality are desired. 

Motion estimation algorithm is the most important factor in 
image and video compression processing. And it consists of 
repetitive operations which could benefit greatly from some 
architecture to perform repetitive tasks efficiently. 
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In recent years, general purpose processors have been 
endowed with functional units of Single Instruction Stream 
Multiple Data Stream (SIMD) operation [5]. The present rapid 
growth of CPU power available in a personal computer will 
allow real-time execution of motion-related tasks in software 
on a general CPU. 

In this paper, we present the performance enhancement of 
motion estimation algorithms by using the Streaming SIMD 
Extensions 2 (SSE2) with Intel Pentium 4 processors. SSE2 
technology is designed to accelerate performance of 
applications involving floating-point based code and 
algorithms that operate on blocks of data. Our goal is to reduce 
the CPU executed time for running motion estimation 
algorithms. Using the new packed byte data type, eight pixel 
bytes can be simultaneously executed at once instead of 
executing each byte one at a time for eight cycles. Hence, the 
speed-up in performing algorithms is achieved. Two algorithms 
used in our experiment are Full Search Algorithm and Three 
Step Search Algorithm as motion estimation processing. 

II. REVIEW OF MOTION ESTIMATION ALGORITHMS 
The basic idea in video compression is to eliminate spatial, 

temporal and statistical redundancy. Motion estimation is the 
process of calculating motion vectors by finding matching 
blocks in the current frame corresponding to blocks in the 
reference frame to eliminate the spatial and temporal 
redundancy. And this plays an important role in inter-frame 
predictive coding system. The reducing computational 
complexity of motion estimation in video compression is 
strongly requested because the sub-pixel unit motion 
estimation operates to obtain high compression ratio in recent 
video compression algorithm such as MPEG-4 and H.264. 
Therefore, motion estimation is the main power consuming 
block in video compression technology. Various search 
algorithms have been announced for estimating motion.  

A. Full Search Algorithm 
Full search is an exhaustive search algorithm and it is the 

simplest method to find the motion vectors for each block. In it, 
the mean of absolute difference (MAD) is found at each point 
(i, j) in the search region [2].  

For each motion vector with the search region p, the mean of 
absolute difference function has to evaluate (2p+1)2 times for 
each macro-block. At each searching point (i, j), we compare M 
× N pixels and each pixel comparison requires three operations, 
namely: a subtraction, an absolute value calculation and an 
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addiction. Thus the total complexity per block is (2p+1)2 × MN 
× 3 operations. For an F frame rate with I × J image resolution, 
the overall computational complexity is (IJF) × (2p+1) 2 × 3 
operations per second. 

This makes it as a very computationally intensive method. 
CPU executed time for Full Search is the highest of all the 
motion estimation algorithms. At the same time, the accuracy 
of Full Search algorithm is also highest and the best match for 
every block in the current frame is always found. Full Search 
algorithm, therefore is a benchmark for comparison of the 
quality of a search algorithm. There is a trade-off relationship 
between the efficiency of the algorithms and the quality of the 
prediction image. Keeping this trade-off in mind, a lot of 
algorithms have been developed.  

B. Three Step Search Algorithm 
Three-step Search algorithm is one of the fast search 

algorithms to reduce high computation complexity. Three-step 
Search algorithm has been widely used in block matching 
motion estimation due to its simplicity and effectiveness [2]. It 
is very suitable for searching large motion and finding 
minimum globe especially for those sequences with large 
motion base on the sparsely distributed checking points in the 
first step. For the search region p = 7, the total number of 
computations for searching are fixed as 25 points in 
comparison with 289 points of Full Search algorithm. Hence, 
the CPU executed time for Three-step Search algorithm is less 
than Full Search algorithm at acceptable quality of image 
resolutions. 

III. SINGLE INSTRUCTION MULTIPLE DATA (SIMD) 
ARCHITECTURE 

Usually, a processor processes one data element in one 
instruction and that processing style is called Single Instruction 
Single Data, or SISD. In contrast, a processor with the Single 
Instruction Stream Multiple Data Stream or SIMD capability 
processes multiple data elements in one instruction [5]. The 
Single Instruction Stream Multiple Data Stream (SIMD) 
Architecture performs the operations on many elements in a 
lockstep fashion. The same instruction is performed on 
different data elements which are computed by differently 
functional units. The Intel’s MMX/SSE/SSE2, AMD’s 
3DNow, and Power PC’s Altivec ISA extensions are 
testimonial to the benefits of SIMD support to traditional 
superscalar processors.  

A. Intel’s Streaming SIMD Extension 
SIMD Extensions for the IA-32 ISA began with the 

Multimedia Extensions (MMX) in 1997 for the Pentium 
processor. MMX data type contains of 64 bits sub-word 
parallel ALU’s for byte, word, double word and quad word that 
enhances its performance on multimedia benchmarks. 

However, these instructions had a strongly limited function, 
in that only integer data types could be handled. Also, since the 
MMX instructions utilized the floating point registers, it was 

very hard to inter-mingle floating point and MMX instructions 
[5]. 

Streaming SIMD Extensions (SSE) from the Intel Pentium 
III marked the advent of 70 new instructions to the IA-32 ISA.  
The biggest winners from the new instructions were 
applications that handled 3D or streaming media. Applying 
identical instructions to multiple pieces of code for these 
applications was now handled in parallel.  

The SSE2 technology from the Intel Pentium-4, introduced 
new SIMD double-precision floating-point instructions and 
new SIMD integer instructions into the IA-32 Intel architecture 
[6]. The 128-bit SIMD integer extensions are a full super-set of 
the 64-bit integer SIMD instructions, with additional 
instructions to support more integer data types, convert 
between integer and floating-point data types, and make 
efficient operations between the caches and system memory 
[4]. These instructions provide a mean to accelerate operations 
for typical of 3D graphics, real-time physics, spatial (3D) 
audio, video encoding/decoding, encryption, and scientific 
application. 

B. SSE versus MMX 
MMX and SSE, both of which are extensions to existing 

architectures, share the concept of SIMD, but they differ in the 
data types that they handle, and in the way they are supported in 
the processor. 

MMX instructions are SIMD for integers, while SSE 
instructions are SIMD for single-precision floating-point 
numbers. MMX instructions operate on two 32-bit integers 
simultaneously, while SSE instructions operate on four 32-bit 
floats simultaneously.  

The main difference between MMX and SSE is that no new 
registers have been defined for MMX, while eight new 
registers have been defined for SSE. Each of the registers for 
SSE is 128 bits long and can hold four single-precision 
floating-point numbers (each being 32 bits long) [6].  

The MMX registers have been allocated out of the 
floating-point registers of the floating-point unit. A 
floating-point register is 80 bits long, of which 64 bits are used 
for an MMX register [5]. A limitation of this architecture is that 
an application cannot execute MMX instructions and perform 
floating-point operations simultaneously. Additionally, a large 
number of processor clock cycles are needed to change the state 
of executing MMX instructions to the state of executing 
floating-point operations and vice versa. SSE does not have 
such a restriction. Separated registers have been defined for 
SSE. Hence, applications can execute SIMD integer (MMX) 
and SIMD floating-point (SSE) instructions simultaneously. 
Applications can also execute non-SIMD floating-point and 
SIMD floating-point instructions simultaneously.  

The arrangement of the registers in MMX and SSE is 
illustrated in Figure 1. 
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Fig. 1: MMX and SSE registers 
 

IV. EXPERIMENT AND RESULT 
We performed motion estimation using Full Search and 

Three-step Search algorithm for both 16 × 16 and 8 × 8 block 
size of images. All experiments were run on a Pentium 4 
processor and the results were compared between ordinary C 
code and code using SSE2 technology. The performance 
between two algorithms without using SSE2 technology was 
also compared. 

There was limited support compiler available for the SIMD 
ISA extension. As a result to make use of the rich features 
provided by this extension, we needed to go through different 
programming techniques. One of the following techniques 
could be used to code programs with SSE2: 

• Assembly level programming 
• Intrinsics 
• Vector Class Library 

A. SSE2 Coding Technique 
We used Intrinsics and Vector Class Library for our 

programs. The advantage of using Intrinsics and Vector Class 
Library is that the Intrinsics and Vector Classes free the 
programmer from managing registers while ensuring easier 
maintenance and modularization of code. The compiler 
optimizes instruction scheduling and register allocation to 
make the executable programs run faster. 

Each computation and data manipulation assembly 
instruction has a corresponding intrinsic that implements it 
directly. The intrinsics in SSE2 contain suffixes to indicate 
which data type is operated on by instructions. 

• p, pd, ps suffix indicates a packed, packed double, packed 
single precision floating-point operation. 

• s, sd, ss suffix indicates a scalar, scalar double or scalar 
single precision floating-point operation. 

• i, si, su suffix indicates an integer, 64-bit signed or 
unsigned integer. 

• pi, pu, epi, epu suffix indicates 128-bit signed or unsigned 
integer extended precision operation for 8, 16, 32 or 64 bits.  

To use the intrinsics library, the file xmmintrin.h must be 
included into the programs. Thus we chose to utilize the 
Intrinsics style of coding for our motion estimation programs. 
The Intel’s C++ compiler was chosen to compile our programs. 
For most of the parts in our programs, normal C code constructs 
were used.  

B. Code Snippet 
Blockdiff is the main computationally intensive function 

called in the program. It can also make use of the SSE2 
technology to improve its performance. We made the code 
using intrinsics to employ the SSE2 data path.  

Snippet below provides the blockdiff function call for 
processing 16 x 16 block size: 

 
int blockdiff(int x1, int x2, int  y1, int  y2) 

{ 
unsigned char block1[16], block2[16]; 

int i1, j1, k1, ch, offset1, offset2; 
int diff1[16][16],  totaldiff = 0; 
FILE *fp1, *fp2; 
__m128i *b1,*b2, m1; 
                
union sse2 
{ 
  __m128i m; 
}m; 
... 
... 
// type casting pointers. 
b1 = (__m128i*) block1; 
b2 = (__m128i*) block2; 
// SAD for 16 bytes. 
m1 =_mm_sad_epu8(*b1,*b2); 
m.m = m1; 
... 
... 
}  
 

The snippet shows the SSE2 code for the blockdiff function 
which finds the differences between two blocks located at (x1, 
y1) and (x2, y2). 

The top part shows the declarations inside the function and 
the bottom part shows the calculation of the differences using 
the SSE2 intrinsic. We defined a union called sse2, which could 
be used to address the m register of the sse2 data type 
“__m128i” and as an array of 8 integers as well. This __m128i 
register consists of 16 8-bit integer values. 

The block1 and block2 arrays will contain the 16 8-bit pixel 
values from the image. These are typecast into the __m128i 
format and put into the locations pointed by b1 and b2. Next the 
_mm_sad_epu8() instruction will find the sum of differences of 
these 16 values directly and will place it in the m1 register. 
 

The following snippet provides the blockdiff function call 
for processing 8 x 8 block size: 

 
int blockdiff(int x1, int x2, int  y1, int  y2) 

{ 
unsigned char block1[8], block2[8]; 
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int i1, j1, k1, ch, offset1, offset2; 
int diff1[8][8],  totaldiff = 0; 
FILE *fp1, *fp2; 
__m64 *b1,*b2, m1; 
                
union sse2 
{ 
  __m64 m; 
}m; 
... 
... 
// type casting pointers. 
b1 = (__m64*) block1; 
b2 = (__m64*) block2; 
// SAD for 16 bytes. 
m1 =_m_psadbw(*b1,*b2); 
m.m = m1; 
... 
... 
}  

 
This blockdiff function code for taking differences between 

8 x 8 blocks is similar to the one above. The operations of 8 x 8 
blocks were performed similar to the 16 x 16 blocks but the 
data type and intrinsic used were different. The data type used 
was the __m64 type which consisted of 8 8-bit values. The 
intrinsic used to calculate the sum of differences was the 
_m_psadbw() operation. 

C. Result 

TABLE I 
PERFORMANCE COMPARISON FOR 16 X 16 BLOCK  SIZE 

Algorithm Without 
SSE2 

With 
SSE2 Speed-up 

Full search 25s 6s 4.1 
Three-step search 7s 2s 3.5 

TABLE II 
PERFORMANCE COMPARISON FOR 8 X 8 BLOCK  SIZE 

Algorithm Without 
SSE2 

With 
SSE2 Speed-up 

Full search 29s 8s 3.6 
Three-step search 12s 4s 3.0 

 
We draw the following summary from the results given 

above. The CPU executed time for Three-step Search algorithm 
costs much less than the one for Full Search algorithm. We 
notice that the speed-up is by a factor of 3.0 - 4.0 for most 
programs using SSE2 technology. The 8 x 8 block size 
programs for both algorithms took longer to execute in 
comparison with the 16 x 16 block size programs. The reason is 
that the loop overhead for the programs goes up even though 
the number of additions or subtractions to be performed are the 
same. The 8 x 8 blocks perform a better job at matching than the 
16 x 16 blocks. Moreover, the 8 x 8 block size programs are 
better suited for tracking movement of the smaller image 
regions with these algorithms. 

V. CONCLUSION 
SIMD extensions to the superscalar architectures have 

helped to improve the performance of general purpose 
processors on media applications. In this paper, we show that it 
is possible to reduce the time required for the algorithm 
significantly by writing code for one specific processor and 
exploit all its capabilities. Experiment results show that for both 
16 x 16 block size and 8 x 8 block size, the algorithms proposed 
with SSE2 technology performed better than the algorithms 
without using SSE2 technology. The programs with SSE2 
technology actually reduce the CPU executed time 3 - 4 times 
while the image resolution is kept at the same quality. 
Therefore, SIMD architecture is suitable for multimedia 
applications.  
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