
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1011

Abstract—Motion estimation is the most computationally

intensive part in video processing. Many fast motion estimation
algorithms have been proposed to decrease the computational
complexity by reducing the number of candidate motion vectors.
However, these studies are for fast search algorithms themselves while
almost image and video compressions are operated with software
based. Therefore, the timing constraints for running these motion
estimation algorithms not only challenge for the video codec but also
overwhelm for some of processors. In this paper, the performance of
motion estimation is enhanced by using Intel's Streaming SIMD
Extension 2 (SSE2) technology with Intel Pentium 4 processor.

Keywords—Motion Estimation, Full Search, Three Step
Search, MMX/SSE/SSE2 Technologies, SIMD.

I. INTRODUCTION
IDEO coding standards like MPEG-1/2/4/7 by the
Moving Picture Experts Group (MPEG) and

H.26x-1/2/3/4 by the Video Coding Experts Group (VCEG)
have been used in many applications such as video
conferencing, video on demand, video phones, and so on [1].

In image and video compression, motion estimation and
motion compensation are key functions. A 1/4-pixel motion
estimation is used to increase the accuracy in H.264 video
standard, whereas a 1/2-pixel motion estimation is used in
MPEG-4 video standard. Using 1/4-pixel motion estimation,
the computational complexity increases four times but the high
compression efficiency will be achieved. To solve this
computational complexity problem, the fast search algorithms
based on TSS (Three Step Search) have been proposed and
widely used [2]. The timing constraints with such high data
rates not only challenge enough even for the video codec but
also overwhelm for some of superscalar processors [3].
Performing these operations with real time is not easy on most
platforms if image resolutions at acceptable quality are desired.

Motion estimation algorithm is the most important factor in
image and video compression processing. And it consists of
repetitive operations which could benefit greatly from some
architecture to perform repetitive tasks efficiently.

Trung Hieu Tran, Master student, is with the School of EE, University of

Ulsan, Ulsan, 680-749 South Korea (corresponding author phone:
82-52-259-1629; e-mail: tthieu@mail.ulsan.ac.kr).

Hyo-Moon Cho, PhD Candidate, is with the School of EE, University of
Ulsan, Ulsan, 680-749 South Korea (e-mail: hmcho67@mail.ulsan.ac.kr).

Sang-Bock Cho, Professor, is with the School of EE, University of Ulsan,
Ulsan, 680-749 South Korea (e-mail: sbcho@ulsan.ac.kr).

In recent years, general purpose processors have been
endowed with functional units of Single Instruction Stream
Multiple Data Stream (SIMD) operation [5]. The present rapid
growth of CPU power available in a personal computer will
allow real-time execution of motion-related tasks in software
on a general CPU.

In this paper, we present the performance enhancement of
motion estimation algorithms by using the Streaming SIMD
Extensions 2 (SSE2) with Intel Pentium 4 processors. SSE2
technology is designed to accelerate performance of
applications involving floating-point based code and
algorithms that operate on blocks of data. Our goal is to reduce
the CPU executed time for running motion estimation
algorithms. Using the new packed byte data type, eight pixel
bytes can be simultaneously executed at once instead of
executing each byte one at a time for eight cycles. Hence, the
speed-up in performing algorithms is achieved. Two algorithms
used in our experiment are Full Search Algorithm and Three
Step Search Algorithm as motion estimation processing.

II. REVIEW OF MOTION ESTIMATION ALGORITHMS
The basic idea in video compression is to eliminate spatial,

temporal and statistical redundancy. Motion estimation is the
process of calculating motion vectors by finding matching
blocks in the current frame corresponding to blocks in the
reference frame to eliminate the spatial and temporal
redundancy. And this plays an important role in inter-frame
predictive coding system. The reducing computational
complexity of motion estimation in video compression is
strongly requested because the sub-pixel unit motion
estimation operates to obtain high compression ratio in recent
video compression algorithm such as MPEG-4 and H.264.
Therefore, motion estimation is the main power consuming
block in video compression technology. Various search
algorithms have been announced for estimating motion.

A. Full Search Algorithm
Full search is an exhaustive search algorithm and it is the

simplest method to find the motion vectors for each block. In it,
the mean of absolute difference (MAD) is found at each point
(i, j) in the search region [2].

For each motion vector with the search region p, the mean of
absolute difference function has to evaluate (2p+1)2 times for
each macro-block. At each searching point (i, j), we compare M
× N pixels and each pixel comparison requires three operations,
namely: a subtraction, an absolute value calculation and an

Performance Enhancement of Motion Estimation
Using SSE2 Technology

Trung Hieu Tran, Hyo-Moon Cho, and Sang-Bock Cho

V

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1012

addiction. Thus the total complexity per block is (2p+1)2 × MN
× 3 operations. For an F frame rate with I × J image resolution,
the overall computational complexity is (IJF) × (2p+1) 2 × 3
operations per second.

This makes it as a very computationally intensive method.
CPU executed time for Full Search is the highest of all the
motion estimation algorithms. At the same time, the accuracy
of Full Search algorithm is also highest and the best match for
every block in the current frame is always found. Full Search
algorithm, therefore is a benchmark for comparison of the
quality of a search algorithm. There is a trade-off relationship
between the efficiency of the algorithms and the quality of the
prediction image. Keeping this trade-off in mind, a lot of
algorithms have been developed.

B. Three Step Search Algorithm
Three-step Search algorithm is one of the fast search

algorithms to reduce high computation complexity. Three-step
Search algorithm has been widely used in block matching
motion estimation due to its simplicity and effectiveness [2]. It
is very suitable for searching large motion and finding
minimum globe especially for those sequences with large
motion base on the sparsely distributed checking points in the
first step. For the search region p = 7, the total number of
computations for searching are fixed as 25 points in
comparison with 289 points of Full Search algorithm. Hence,
the CPU executed time for Three-step Search algorithm is less
than Full Search algorithm at acceptable quality of image
resolutions.

III. SINGLE INSTRUCTION MULTIPLE DATA (SIMD)
ARCHITECTURE

Usually, a processor processes one data element in one
instruction and that processing style is called Single Instruction
Single Data, or SISD. In contrast, a processor with the Single
Instruction Stream Multiple Data Stream or SIMD capability
processes multiple data elements in one instruction [5]. The
Single Instruction Stream Multiple Data Stream (SIMD)
Architecture performs the operations on many elements in a
lockstep fashion. The same instruction is performed on
different data elements which are computed by differently
functional units. The Intel’s MMX/SSE/SSE2, AMD’s
3DNow, and Power PC’s Altivec ISA extensions are
testimonial to the benefits of SIMD support to traditional
superscalar processors.

A. Intel’s Streaming SIMD Extension
SIMD Extensions for the IA-32 ISA began with the

Multimedia Extensions (MMX) in 1997 for the Pentium
processor. MMX data type contains of 64 bits sub-word
parallel ALU’s for byte, word, double word and quad word that
enhances its performance on multimedia benchmarks.

However, these instructions had a strongly limited function,
in that only integer data types could be handled. Also, since the
MMX instructions utilized the floating point registers, it was

very hard to inter-mingle floating point and MMX instructions
[5].

Streaming SIMD Extensions (SSE) from the Intel Pentium
III marked the advent of 70 new instructions to the IA-32 ISA.
The biggest winners from the new instructions were
applications that handled 3D or streaming media. Applying
identical instructions to multiple pieces of code for these
applications was now handled in parallel.

The SSE2 technology from the Intel Pentium-4, introduced
new SIMD double-precision floating-point instructions and
new SIMD integer instructions into the IA-32 Intel architecture
[6]. The 128-bit SIMD integer extensions are a full super-set of
the 64-bit integer SIMD instructions, with additional
instructions to support more integer data types, convert
between integer and floating-point data types, and make
efficient operations between the caches and system memory
[4]. These instructions provide a mean to accelerate operations
for typical of 3D graphics, real-time physics, spatial (3D)
audio, video encoding/decoding, encryption, and scientific
application.

B. SSE versus MMX
MMX and SSE, both of which are extensions to existing

architectures, share the concept of SIMD, but they differ in the
data types that they handle, and in the way they are supported in
the processor.

MMX instructions are SIMD for integers, while SSE
instructions are SIMD for single-precision floating-point
numbers. MMX instructions operate on two 32-bit integers
simultaneously, while SSE instructions operate on four 32-bit
floats simultaneously.

The main difference between MMX and SSE is that no new
registers have been defined for MMX, while eight new
registers have been defined for SSE. Each of the registers for
SSE is 128 bits long and can hold four single-precision
floating-point numbers (each being 32 bits long) [6].

The MMX registers have been allocated out of the
floating-point registers of the floating-point unit. A
floating-point register is 80 bits long, of which 64 bits are used
for an MMX register [5]. A limitation of this architecture is that
an application cannot execute MMX instructions and perform
floating-point operations simultaneously. Additionally, a large
number of processor clock cycles are needed to change the state
of executing MMX instructions to the state of executing
floating-point operations and vice versa. SSE does not have
such a restriction. Separated registers have been defined for
SSE. Hence, applications can execute SIMD integer (MMX)
and SIMD floating-point (SSE) instructions simultaneously.
Applications can also execute non-SIMD floating-point and
SIMD floating-point instructions simultaneously.

The arrangement of the registers in MMX and SSE is
illustrated in Figure 1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1013

Fig. 1: MMX and SSE registers

IV. EXPERIMENT AND RESULT
We performed motion estimation using Full Search and

Three-step Search algorithm for both 16 × 16 and 8 × 8 block
size of images. All experiments were run on a Pentium 4
processor and the results were compared between ordinary C
code and code using SSE2 technology. The performance
between two algorithms without using SSE2 technology was
also compared.

There was limited support compiler available for the SIMD
ISA extension. As a result to make use of the rich features
provided by this extension, we needed to go through different
programming techniques. One of the following techniques
could be used to code programs with SSE2:

• Assembly level programming
• Intrinsics
• Vector Class Library

A. SSE2 Coding Technique
We used Intrinsics and Vector Class Library for our

programs. The advantage of using Intrinsics and Vector Class
Library is that the Intrinsics and Vector Classes free the
programmer from managing registers while ensuring easier
maintenance and modularization of code. The compiler
optimizes instruction scheduling and register allocation to
make the executable programs run faster.

Each computation and data manipulation assembly
instruction has a corresponding intrinsic that implements it
directly. The intrinsics in SSE2 contain suffixes to indicate
which data type is operated on by instructions.

• p, pd, ps suffix indicates a packed, packed double, packed
single precision floating-point operation.

• s, sd, ss suffix indicates a scalar, scalar double or scalar
single precision floating-point operation.

• i, si, su suffix indicates an integer, 64-bit signed or
unsigned integer.

• pi, pu, epi, epu suffix indicates 128-bit signed or unsigned
integer extended precision operation for 8, 16, 32 or 64 bits.

To use the intrinsics library, the file xmmintrin.h must be
included into the programs. Thus we chose to utilize the
Intrinsics style of coding for our motion estimation programs.
The Intel’s C++ compiler was chosen to compile our programs.
For most of the parts in our programs, normal C code constructs
were used.

B. Code Snippet
Blockdiff is the main computationally intensive function

called in the program. It can also make use of the SSE2
technology to improve its performance. We made the code
using intrinsics to employ the SSE2 data path.

Snippet below provides the blockdiff function call for
processing 16 x 16 block size:

int blockdiff(int x1, int x2, int y1, int y2)

{
unsigned char block1[16], block2[16];

int i1, j1, k1, ch, offset1, offset2;
int diff1[16][16], totaldiff = 0;
FILE *fp1, *fp2;
__m128i *b1,*b2, m1;

union sse2
{
 __m128i m;
}m;
...
...
// type casting pointers.
b1 = (__m128i*) block1;
b2 = (__m128i*) block2;
// SAD for 16 bytes.
m1 =_mm_sad_epu8(*b1,*b2);
m.m = m1;
...
...
}

The snippet shows the SSE2 code for the blockdiff function
which finds the differences between two blocks located at (x1,
y1) and (x2, y2).

The top part shows the declarations inside the function and
the bottom part shows the calculation of the differences using
the SSE2 intrinsic. We defined a union called sse2, which could
be used to address the m register of the sse2 data type
“__m128i” and as an array of 8 integers as well. This __m128i
register consists of 16 8-bit integer values.

The block1 and block2 arrays will contain the 16 8-bit pixel
values from the image. These are typecast into the __m128i
format and put into the locations pointed by b1 and b2. Next the
_mm_sad_epu8() instruction will find the sum of differences of
these 16 values directly and will place it in the m1 register.

The following snippet provides the blockdiff function call
for processing 8 x 8 block size:

int blockdiff(int x1, int x2, int y1, int y2)

{
unsigned char block1[8], block2[8];

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1014

int i1, j1, k1, ch, offset1, offset2;
int diff1[8][8], totaldiff = 0;
FILE *fp1, *fp2;
__m64 *b1,*b2, m1;

union sse2
{
 __m64 m;
}m;
...
...
// type casting pointers.
b1 = (__m64*) block1;
b2 = (__m64*) block2;
// SAD for 16 bytes.
m1 =_m_psadbw(*b1,*b2);
m.m = m1;
...
...
}

This blockdiff function code for taking differences between

8 x 8 blocks is similar to the one above. The operations of 8 x 8
blocks were performed similar to the 16 x 16 blocks but the
data type and intrinsic used were different. The data type used
was the __m64 type which consisted of 8 8-bit values. The
intrinsic used to calculate the sum of differences was the
_m_psadbw() operation.

C. Result

TABLE I
PERFORMANCE COMPARISON FOR 16 X 16 BLOCK SIZE

Algorithm Without
SSE2

With
SSE2 Speed-up

Full search 25s 6s 4.1
Three-step search 7s 2s 3.5

TABLE II
PERFORMANCE COMPARISON FOR 8 X 8 BLOCK SIZE

Algorithm Without
SSE2

With
SSE2 Speed-up

Full search 29s 8s 3.6
Three-step search 12s 4s 3.0

We draw the following summary from the results given

above. The CPU executed time for Three-step Search algorithm
costs much less than the one for Full Search algorithm. We
notice that the speed-up is by a factor of 3.0 - 4.0 for most
programs using SSE2 technology. The 8 x 8 block size
programs for both algorithms took longer to execute in
comparison with the 16 x 16 block size programs. The reason is
that the loop overhead for the programs goes up even though
the number of additions or subtractions to be performed are the
same. The 8 x 8 blocks perform a better job at matching than the
16 x 16 blocks. Moreover, the 8 x 8 block size programs are
better suited for tracking movement of the smaller image
regions with these algorithms.

V. CONCLUSION
SIMD extensions to the superscalar architectures have

helped to improve the performance of general purpose
processors on media applications. In this paper, we show that it
is possible to reduce the time required for the algorithm
significantly by writing code for one specific processor and
exploit all its capabilities. Experiment results show that for both
16 x 16 block size and 8 x 8 block size, the algorithms proposed
with SSE2 technology performed better than the algorithms
without using SSE2 technology. The programs with SSE2
technology actually reduce the CPU executed time 3 - 4 times
while the image resolution is kept at the same quality.
Therefore, SIMD architecture is suitable for multimedia
applications.

REFERENCES
[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of

the H.264/AVC Video Coding Standard,” IEEE Trans. Circuits. Syst.
Video Technol., vol. 13, pp. 560–576, July 2003.

[2] X. Jing and L. P. Chau, “An Efficient Three-Step Search Algorithm for
Block Motion Estimation,” IEEE Trans. Mutimedia, vol. 6, pp. 435–438,
June 2004.

[3] D. Talla, L. K. John and D. Burger, “Bottenecks in Multimedia Processing
with SIMD Style Extensions and Architectural Enhancements,” IEEE
Trans. Computers, vol. 52, pp. 1015–1031, August 2003.

[4] “Using SSE2 in Motion Compensation for Video Decoding and
Encoding,” Intel Application Note, AP-942.

[5] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro, August 1996.

[6] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P.
Roussel, “The Microarchitecture of the Pentium 4 Processor”, Intel
Technology Journal Q1, 2001.

