
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

364

Abstract—Mobile agent has motivated the creation of a new

methodology for parallel computing. We introduce a methodology
for the creation of parallel applications on the network. The proposed
Mobile-Agent parallel processing framework uses multiple Java-
mobile Agents. Each mobile agent can travel to the specified
machine in the network to perform its tasks. We also introduce the
concept of master agent, which is Java object capable of
implementing a particular task of the target application. Master agent
is dynamically assigns the task to mobile agents. We have developed
and tested a prototype application: Mobile Agent Based Parallel
Computing. Boosted by the inherited benefits of using Java and
Mobile Agents, our proposed methodology breaks the barriers
between the environments, and could potentially exploit in a parallel
manner all the available computational resources on the network.
This paper elaborates performance issues of a mobile agent for
parallel computing.

Keywords—Parallel Computing, Mobile Agent.

I. INTRODUCTION
RADITIONAL solutions to large-scale computation
involve massive supercomputers consisting of multiple

processors. Data is processed in a pipelined fashion that can
incorporate multiple machines and numerous computing
stages. The limitations to this approach include flexibility,
scalability, cost and fault tolerance. Our proposed work is
focused on a new approach for computation that utilizes a
computing cluster; a network of small personal computers
connected via a network medium. In this system, a processing
task is partitioned and divided among a family of lightweight
agents [1]. These agents are distributed throughout the cluster
and compete for computing resources.

This approach of computation is advantageous in that the
system operates as an autonomous entity. Agents execute as a
collaborative team, working around node failures and system
bottlenecks. Additional computing resources can be added and
exploited dynamically, enhancing both the flexibility and
scalability of the system.

K. B. Manwade is with the Department of Computer Science &

Engineering., Shivaji University, Kolhapur 416113, (MS), India
(Corresponding author to provide phone: 91-9975634528; e-mail:
mkarveer@gmail.com).

G. A. Patil is with the Department of Computer Science & Engineering.,
Dr. .D. Y. Patil College of Engineering, Kolhapur, 416006 (MS), India (e-
mail: gasunikita@yahoo.com).

The goal of this effort is to implement parallel computing
using a family of mobile agents. To this end, task parallelism
serves as the foundation for our agent-based parallel
computing model. At the system level, task parallelism
represents an object-oriented design strategy, whereby both
data and the operations on those data are encapsulated in a
single entity. Adhering to this paradigm, each task has the
ability to operate independently, yet communicate and
exchange data with other tasks.

Agent task patterns are of particular interest in parallel
processing [2], where the focus is on partitioning and
delegating tasks among agents. The Master-Slave [3] pattern
is a common task design model incorporated in a broad
domain of parallel applications. This Master-Slave model is
based on a divide and conquers strategy in which a master
delegates tasks to one or more slaves that in turn are
distributed throughout the system and work in parallel. The
standard agent-based implementation involves master and
slave agents. The execution sequence is as follows:
1) The master agent creates a slave agent.
2) The slave agent moves to a remote host and performs a
task.
3) The slave agent returns to the master.
4) The slave agent passes task results to the master.

Fig. 1 Event diagram of MABPC Model

II. OVERVIEW OF MABPC
Fig. 1 shows the basic block diagram of MABPC. Each

node of the network has an agent execution environment
(AEE), which is responsible for accepting and executing
incoming agents. A client called Master agent [4], submits the
agent on behalf of the user to the AEE.

A user, who wants to perform a task, submits the task to the
master agent on the graphical user panel system. The master
agents then divide the task into subtask and assign it to
individual Slave agent. After assigning the task it dispatches
[6] the slave agent i.e. mobile agent to the specified servers.

K. B. Manwade, and G. A. Patil

Performance Analysis of Parallel Client-Server
Model Versus Parallel Mobile Agent Model

T

Node 2

 Step 1

 Step4

Node 1

Master Slave

Step 3

Step 2

Slave

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

365

Fig. 2 Block Architecture of MABPC Model

At remote site the slave agent does the given task using the

CPU resource of remote server. A slave agent then constructs
the message and embeds the result into it and sends it to
master agent using master agents proxy. The master agent
who is waiting for the result from slave agent receives the
message and extracts the result and combines all results
together. Then it calculates the turnaround time for the
computation which will be used for comparison with client
server model later.

III. ARCHITECTURE AND DESIGN OF MABPC SYSTEM
In our system the master agent dispatches one or more

MAs, each with its parameters. The MA visits specified server
to perform the required task. After completion of task the MA
returns result of the operations performed to the master agent.
Two types of agents are implemented. They differ mainly in
the different roles they can cover and/or services they can
offer computation.

1. Master agent which act as task handler in the
system. After getting the parameters from the user
interface, it creates the slave agents. Then it reads the
database for the list of servers, and then to check the
availability for server it sends the echo agent. After
preparing the available server list it sends the slave
agents to those servers.

2. Slave agent which act as mobile agent and migrate
from one host to another host and does the assigned
task on behalf of master agent.

The next section gives details of our MABPC [4] application,
the architecture of which is shown in Fig. 3.

A. Master Agent
The master agent plays the role of task handler. It

dispatches [6] two types of mobile agents first of it dispatches
the echo agent to all servers from list to check the availability
of the server, which provides the reliability to the system.
After collecting the result from echo agents it maintains the
available servers list which will be used further. After that it
creates the slave agents and assigns the parameters from the
user interface, and then it dispatches the slave agents to the
servers from available server list database. Then it handles the
messages from the slave agent which is executing at remote

site and extracts the result from the message. Once it receives
the result from all slave agents then it displays it.

Fig. 3 Architecture of parallel computing application

B. Slave Agent
The slave agent is the mobile agent which migrates from

client machine to server machine on behalf of user. At remote
site it does the given task and sends the result to master agent
by embedding it into message. After sending the result the
slave agent disposes itself.

C. Agent Execution Environment (AEE)
The Agent Execution Environment (AEE) consists of the

Tahid server and Java 1.1 runtime for execution of java
mobile agents. Each server and the client in the proposed
model is having this server. This environment is developed by
the IBM.

IV. IMPLEMENTATION AND PERFORMANCE STUDY
We have implemented the matrix multiplication for

performance analysis of two network computing paradigms.
The matrix multiplication task is divided on row wise basis.
Based on number of available servers and dimension of matrix
the block size is decided. The matrix of block size is assigned
to each mobile agent. For execution of mobile agent on remote
machine the Tahid server is used. The mobile agent contains
the data such as matrix class, index number of the agent & the
proxy of the master agent. The data flow for the mobile agent
is as shown in the Fig. 4.

The CS [7] implementation consists of multi-threaded client
and multi-threaded servers. The client and the server have
been implemented in Java using socket [5]. In CS model
matrix class is passed from client side to server side and same
class with result is returned from server to client as shown in
Fig. 5.

User

Result

Mobile agent with task

Master Agent

 Remote Host

Client End

Server End

Graphical User Panel

Master Agent

Agent Exec.
Envi

Slave
Agent

 MABPC

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

366

Fig. 4 Parameter passing in MA model

The execution flow of MA model is as shown below,

1. Initialize Matrices Class
2. Create Slave Agent
3. Dispatch Slave Agent
4. Extract the (3) parameters
5. Call matrixClass.Operation()
6. Create Message object
7. Send massage
8. Dispose itself
9. Extract Index No. & matrixClass.
10. Do assignment as

this.matrixClass[index]=matrixClass
11. matrixClass[index].ReadResult()

Fig. 5 Parameter passing in CS model

The execution flow of CS model is as shown below,
1. Initialize matrix A & B
2. Create MatrixClass object with A, B & indexes as

parameter
3. Create socket connection
4. Send / write this object to socket
5. Read matrixClass object
6. Call Operation() method
7. Send matrixClass object (which contains result now)
8. Read result
9. Join threads
10. Calculate response time

We used various application parameters that influence
performance, such as, size of CS messages, size of the MA,
number of remote information sources, etc, and performed
experiments to study their effect on performance. We used trip
time, i.e., time elapsed between a user initiating a request and
receiving the results, as the metric for performance
comparison. This includes the time taken for agent creation,
time taken to execute task and processing time to extract the
required information.

We have performed experiments to determine:
(a) The effect of data size on trip time: The number of
servers was kept constant and the dimensions of the matrices
are varied. The turn around time for this variation was
measured for different dimensions from 100 to 100,000.
(b) The effect of number of servers on trip time: The
dimensions of the matrices are kept constant and the number
of servers is varied. The trip time was measured for different
number of servers from 3 to 45. Results are shown in Figs. 6
and 7, from which the following observations can be made:

 The performance of the MA based application
remains the same for different matrix sizes while the
performance of the CS based application degrades
with increase in data size.

 CS implementations perform better than MA
implementations for matrix dimension less than 100.

 MA performs better than CS when the matrix
dimension is greater than 200.

Fig. 6 Turn around time for varying matrix dimension

Fig. 7 Turn around time for varying number of servers

V. CONCLUSION
Our experiments suggest that CS implementations are

suitable for applications where a small amount of data (matrix

Performance analysis

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Matrices Diamensions

Ti
m

e(
m

ili
se

co
nd

)

Parallel MA
Parallel CS

Performance Analysis

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Servers

Ti
m

e(
m

ili
se

co
nd

s)

Parallel MA
Parallel CS

Master
agent

Matrix Slav
e
Agen

Slave Agent

Matrix
Class

Master
Proxy

Index
No.

Slave
Agent

Message

Inde
x No.

Matrix
Class

1 2
3

4, 5, 6

7

8
9, 10,

Client Server

Matrices Class
Matrix A, B, C

Indexes

Matrices Class
Matrix A, B, C

Indexes

4

1, 2, 3
5, 6, 7

8, 9, 10

8

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

367

of size less than 100) is to be processed on remote servers
(less than 3). For large dimensional matrices multiplication on
large number of servers MA gives better performance.
Scalability being one of the needs of net-centric computing,
we find that MAs are an appropriate technology for
implementing network centric applications.

ACKNOWLEDGMENT
I express my deep sense of gratitude and appreciation

towards my research guide Prof. G. A. Patil for his continuous
inspiration and valuable guidance in throughout of my Project
work.

REFERENCES
[1] W. Cockarine, M. Zyda, “Mobile Agents”, Manning, Greenwich, 1998.
[2] Panayiotou Christoforos, George Samaras, “Parallel Computing Using

Java Mobile Agents”, Greece.
[3] Jason Byassee, “Agent-Based Distributed Parallel” Processing, 2001.
[4] Manwade K.B, Prof. Patil G. A., Mobile Agent Based Parallel

Computing, NCTIAC-2007, Mumbai.
[5] Aderounmun, G.A. (2004). “Performance comparison of remote

procedure calling and mobile agent approach to control and data transfer
in distributed computing environment”. Journal of Network and
Computer Applications, 113 – 129.

[6] Danny B. Lange and Mitsuru Oshima, "Seven Good Reasons for Mobile
Agents", Communications of ACM, vol. 42, no. 3, March 1999.

[7] R. Orfali and D. Harkey, “Client/server Programming with Java and
CORBA”, Wiley, 1999.

K. B. Manwade received the B.E. degree in
Computer Science & Engineering from
Walchand College of Engineering, Sangli, India
in 2004. He is doing his MTech in Computer
Science & Technology at Shivaji University,
Kolhapur, India. From 2004 to 2006, he was
working as Lecturer at Annasaheb Dange
College of Engineering & Technology, Ashta,
India. He has published various papers in the
area of Distributed Computing & Parallel
Computing.

G. A. Patil received the BE degree in Computer
Science & Engineering. He has done ME in
Computer Science from Walchand College of
Engineering, Sangli. From 1992 to till date he is
working as Assistant Professor at D. Y. Patil
College of Engineering, Kolhapur, India. He has
published various papers in the area of Cluster
Computing & Information Security.

