International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

Performance Analysis of OQSMS and MDDR
Scheduling Algorithms for IQ Switches

K. Navaz, Kannan Balasubramanian

Abstract—Due to the increasing growth of internet users, the
emerging applications of multicast are growing day by day and there
is a requisite for the design of high-speed switches/routers. Huge
amounts of effort have been done into the research area of multicast
switch fabric design and algorithms. Different traffic scenarios are
the influencing factor which affect the throughput and delay of the
switch. The pointer based multicast scheduling algorithms are not
performed well under non-uniform traffic conditions. In this work,
performance of the switch has been analyzed by applying the
advanced multicast scheduling algorithm OQSMS (Optimal Queue
Selection Based Multicast Scheduling Algorithm), MDDR (Multicast
Due Date Round-Robin Scheduling Algorithm) and MDRR
(Multicast Dual Round-Robin Scheduling Algorithm). The results
show that OQSMS achieves better switching performance than other
algorithms under the uniform, non-uniform and bursty traffic
conditions and it estimates optimal queue in each time slot so that it
achieves maximum possible throughput.

Keywords—Multicast, Switch, Delay, Scheduling.

I. INTRODUCTION

ULTICASTING is the ability to provide point-to-

multipoint connections. Driven by the Internet and its
applications, such as video on demand (VOD), music on
demand (MOD), teleconferencing, videoconferencing and
distributed data processing, more and more communication
services and applications will require that information from a
source that delivers to multiple destinations.

In ancient switches, the input output ports communicated
using a single shared bus. Consequently, this bus was a
limitation, as not more than one pair of ports can communicate
at a time. The classical crossbar switch overcame the
bottleneck imposed by this shared bus architecture that
restricted the use of N input-output port pairs in parallel. The
crossbar switch is an NxN matrix of 2N buses, connecting
input output ports. The switches and routers basically store,
route and forward these packets before they reach the
destination. One core functionality of such switches (a layer 2
switch, or a layer 3 IP router) is to transfer the packets from
the input port to one of the output ports. This functionality,
called switching, though appears simple, is such a challenging
problem to solve at line rates that, there is a wealth of
literature on this topic.

K. Navaz is Research Scholar with the Manonmaniam Sundaranar
University, Tirunelveli, 627 012, Tamilnadu, India (e-mail:
navazit@gmail.com)

Dr. Kannan Balasubramanian is Professor with the Mepco Schlenk
Engineering College, Department of CSE, Sivakasi, 626 005, Tamilnadu,
India (e-mail: kannanbala@mepcoeng.ac.in).

Multicasting will become an important feature for any
switching network designed to support broadband integrated
service digital networks (B-ISDN). Generally speaking, packet
switch architectures can be divided into three major categories
[10]: the shared memory packet switch, the shared medium
packet switch and the space division packet switch.
Theoretically, each of these three architecture types can be
modified to support multicast. However, in shared memory
and shared medium architectures, there is a scalability
problem as the need for a high-speed memory or a bus greatly
limits their use when the switch size grows larger.

A crossbar switch is a switch connecting multiple inputs to
multiple outputs in a matrix manner. The crossbar constraints
of an 1Q switch require it to schedule packets to be transferred
between inputs and outputs. The throughput and delay in 1Q
switch are heavily dependent on this scheduling decision. In
past there has been a lot of research done to design multicast
scheduling algorithms for IQ switches. In addition, people are
more interested in sharing knowledge and information for
various purposes. Innovations in information sharing are
continuously accelerated to cater user needs in such
environments. These motives have encouraged the
construction of sophisticated environments for effective
communication to deliver information. It is important to note
that the applications for IP Multicast are not solely limited to
the Internet. Multicast IP can also play an important role in
large distributed commercial networks. The demand for
network bandwidth is very essential and many of the
networking applications require high speed switching for
multicast traffic at the switch/router level to preserve network
bandwidth. It causes an incrementing interest in the input-
queued switches. A switch consists of three components: 1)
input queues for cells arriving at the input links 2) output
queues for cells exit on output links 3) A switch fabric for
transferring cells from the inputs to the desired outputs. LAN
and Asynchronous Transfer Mode (ATM) switches are
considered as a high performing internetworking protocol and
uses a crossbar switch based on switched backplane. Further,
these systems use the input queues for holding packets which
are waiting to traverse through the switch fabric. Thus, it is
known that the first in first out (FIFO) input queues can be
used to maintain packets. A scheduling algorithm is utilized to
configure the crossbar switch to decide the order in which
packets will be accommodated.

Many integrated scheduling algorithms have been proposed
earlier. They have been mainly proposed for input queued
crossbar switching architecture but multicast scheduling,
mainly concerns how to transmit as many cells as possible

2288

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

from input to output. In the unicast traffic, Head-of-Line
(HOL) blocking quandary occurs that is induced by first-in-
first-out (FIFO) queue which gets avoided by utilizing virtual
output queuing (VOQ) technique. Here, in this type of
technique every single input maintains a separate queue for
each output [7].

Numerous unicast scheduling algorithms have been
proposed so far. iSLIP is the fast and efficient algorithm which
has achieved 100% throughput in a single iteration for uniform
traffic. In [10], MRR (Modified Round Robin Algorithm)
proposes that it can show a performance equivalent to iSLIP,
yet require less number of processing steps. Using multicast
traffic [2], [5], we can avoid HOL blocking by utilizing 2N -1
queues for each input port in NxN switch. This type of queue
architecture is called Multicast Virtual Output Queuing (MC-
VOQ). However, in the medium/sizably voluminous switches,
because of its low scalability, it is virtually not tackled. One
such practical queuing scheme utilized for multicast switches
is to assign a single FIFO queue at each input for all multicast
traffic, however, the HOL blocking quandary limits the
throughput. Whereas the other algorithms [1], [3] considered a
circumscribed number of FIFO queues is maintained at each
input to reduce the HOL blocking problem. Thus queuing
architecture is denominated as k-MC-VOQ and performance
of these multicast switches are analyzed theoretically [11],
[14]. As the link speed grows dramatically, high speed
switches will have less time to perform scheduling process. As
a result, iterative schemes and high matching overhead would
cause delay, matching overhead scales up very expeditiously,
the link speed and the switch size increases, the requirement
for simple and high performance switches becomes very
essential.

In this paper, we analyze the average cell delay and
throughput of the OQSMS, MDDR and MDRR algorithms for
IQ switch under Bernoulli uniform and non-uniform traffic
patterns. The rest of the paper is organized as follows. In
Section II, related works on designing multicast scheduling
algorithms are reviewed. In Section III, MDDR and OQSMS
algorithms have been reviewed. In Section IV, Performance
evaluation and result analysis have been presented. Finally, we
conclude the paper in Section V.

II. RELATED WORKS

Most of the existing multicast switches [8], [9] require in-
switch packet replication, and a sophisticated central scheduler
to maximize performance of the switch. TATRA [9] is a
multicast algorithm on single FIFO queue, where each input
port has a single common queue for both unicast and multicast
traffic. The central scheduler maintains the N virtual queues
and each is destined for one output port. In each time slot, the
head-of-line (HOL) packet of each input queue is scheduled to
join different virtual queues according to its destination output
ports. Fan-out splitting [4], which sanctions a multicast packet
to be sent to a subset of its outputs, is adopted to increment the
throughput of the switch. However, TATRA suffers from
serious HOL blocking because of its single queue nature.

TATRA avoids starvation but is additionally perplexed to
implement a hardware due to heavy computations.

To minimize the HOL blocking, multiple dedicated
multicast queues have been utilized in [3] and [13]. In [13],
each input port has a set of multicast queues. When a multicast
packet arrives, it selects one of the multicast queues to join
according to its load balancing policy. In each time slot, the
scheduling priority is given to either a unicast packet or a
multicast packet. According to the accommodation ratio of the
two types of traffic. An iterative scheduling algorithm is
adopted to maximize the switch throughput.

ESLIP [6] adopts the VOQ structure to buffer unicast
packets and puts all the multicast packets in a special single
queue at each input port. It utilizes a variant of the iSLIP
algorithm to schedule mixed unicast and multicast traffic. As
can be expected, ESLIP eliminates the HOL blocking for
unicast traffic, but not for multicast traffic. In an extreme
situation, where all the incoming packets are multicast
packets, ESLIP cannot benefit from the VOQ structure and it
authentically works on the single input queued switch.

Multicast packet split scheme is proposed in [3] for further
reducing the HOL blocking problem. In [3], the set of output
ports is divided into m non—overlapped subsets, and each input
port maintains m unicast / multicast shared queues and each is
dedicated to a subset of outputs. When a multicast packet
arrives, if its fan-out set wholly fit in a queue, it will join the
queue, otherwise, the multicast packet is divided into smaller
ones (each with a modified fan-out set) to join multiple
queues. Again, an iterative scheduler is adopted to maximize
throughput.

FIFOMS [8] is an efficient multicast scheduling algorithm
which is proposed to avoid HOL blocking. The basic idea is to
discretely store unicast/multicast packets and memory
addresses. FIFOMS uses common unicast VOQ’s as pointer
queues. More concretely, when a multicast packet with a fan-
out of f (f = 1 for unicast packet) arrives, it is time stamped
and stored in shared memory, and its memory address / pointer
joins f different VOQ queues according to the fan-out set. In
each time slot, the scheduling priority is given to pointers
which are the unicast copies of a multicast packet with the
most diminutive timestamp. Indeed, In Scheduling all
multicast packets are “converted" into a unicast. At this end,
the HOL blocking is completely eliminated. But in order to
maximize switch throughput, in-switch packet replication is
still utilized for sending multiple replicas of a multicast packet
in the same slot. This is achieved by an iterative scheduling
algorithm, which incurs considerable amount of
communication overhead.

In [12], Multicast Dual Round Robin Scheduling Algorithm
called MDRR, it is proposed to achieve maximum throughput
with low-matching overhead. Here input schedulers are
distributed to each input, and a global pointer ‘g’ is
collectively maintained by all output schedulers. Each input
scheduler has two priority pointers that guarantee high
throughput: a primary pointer and a secondary pointer. MDRR
needs more message transfer between the input and output
ports in the request phase. It does not ensure a minimum delay

2289

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

compared with MaxService [3]. When the number of queues
and the fan-out size (ef) increase MDRR could not obtain a
maximum throughput than MaxService scheme done. Dual
pointer utilization in the input ports are overhead here which
takes longer execution time.

We compare the scheduling scheme called OQSMS with
MDDR and MDRR. OQSMS achieves better switching
performance than other algorithms under the admissible traffic
conditions because OQSMS will estimate optimal queue
selection based on more queue combinations so that it
achieves maximum possible throughput. MDDR primarily
minimizes the request overhead at the output ports and
eliminates the dual pointer utilization in input ports. It shows
that MDDR more preponderant than the MDRR algorithm.

III. SWITCH ARCHITECTURE AND MULTICAST SCHEDULING
ALGORITHMS

In this section, we give the packet switch architecture,
MDDR and OQSMS multicast scheduling algorithms for input
queued crossbar switch in detail.

A. Packet Switch Architecture

The scheduling algorithms are made for synchronous input-
queued (IQ) switches. The fixed-size packet which is
transmitted by the switch fabric is called cell. But only the
fan-out splitting discipline is considered because the cells may
deliver output over several cell times. Any multicast cell is
characterized by its fan-out set, i.e., by using the set of outputs
to which the cell is directed. We define the fan-out size ‘f* as
the number of destinations of a multicast cell. The NxN switch
architecture is shown in Fig. 1. Let us assume NxN switch
having N input ports and N output ports, and the fabric is
connecting input ports and output ports for any time slot. A
small number k of FIFO queues dedicated to multicast traffic
is maintained at each input port. Qj is the jth queue in the ith
input port. Arriving multicast cells are partitioned into the k
queues according to the fan-out size. Each queue contains the
multicast cells with fan-out sets. A scheduling algorithm does
the arbitration between the N input ports and N output ports,
obtained by solving the bipartite graph-matching problem.
This matching is a collection of edges, from the set of non-
empty input queues to the set of output ports. Such that each
input is connected to at most N outputs and each output is
connected to at most one input. In each time slot, Input ‘i’ is
connected with set of output destinations. If the fan-out of the
cell is completely served, a cell is removed from the
corresponding queue to output destinations by properly
configuring the non-blocking multicast switch fabric
otherwise a cell is retained until all its destinations are served.

B. Multicast Due Date Round-Robin (MDDR)

In [16], MDDR multicast scheduling algorithm has been
proposed. Input schedulers are distributed at each input and a
global pointer g is collectively maintained by all the output
schedulers. Each input maintains a Due Date to be sent. This
due date is generated based on the priority of cells contained
in the fan-out. The highest fan-out size port gets the first

priority and next fan-out size has the second priority and so
on. By keeping this order, the throughput will be increased.
This algorithm works in the following phases.

Switching
Fabric
Output Port
r] Input Port
- -
—< | -—
|
[| —
—<] — .
|
|
_<] —
| | S

Fig. 1 NxN Input Queued Switch Architecture

Request: The input sends request to all the destined output
ports corresponding to the first nonempty queue. At request
phase, fan-out size of the current non-empty queue is
measured in each input port and prioritize the input ports
based on fan-out size. Next step is to assign the due dates to
the cells within the fan- out. This Due dates are assigned in a
priority input port which will assign the first Due Date (Due
Date = 1) to the cells. On the second priority port, elements
already presented in first priority are assigned to second Due
Date (Due Date = 2) and remaining cells are assigned to the
first Due Date (Due Date = 1) and so on. On the completion of
these Due Dates, the requests will be made to output ports.

Grant: In the Grant phase, if more than one request is made
for the same port, the global pointer pointing one is granted
and the others are rejected then the global pointer is
incremented to the next position.

When considering alternative multicast switch schedules,
we can evaluate how they affect cost structure and whether
they make operation easier to manage. With this aspect,
MDDR got the following characteristics.

e Supports multicast and multi queues at input ports.

o Utilization of output ports in well since the throughput is
increased.

e MDDR is easy to implement in the hardware.

e MDDR will manage maximum load offers.

e Have the ability to flex up to meet queue demand when
multicasting.

e Execution of Due Date assignment is fast.

C. Optimal Queue Selection Based Multicast Scheduling
Algorithm (OQSMS)

OQSMS [15] is an iterative based algorithm which works in
two stages: Queue Selection and Reservation Set. RV is the
pre-processing task which stores the queue combination.
Based on the queue combination optimal queue is selected.
OQSMS achieves the maximum possible throughput and it
outperforms the existing MDDR and MDRR scheduling
algorithms. In current art of work, queues in each input port
are selected by round robin method. In OQSMS an optimal
queue is selected in each time slot and fan-out splitting is also
made after the queue selection. By using this algorithm
maximum possible throughput is achieved without HOL

2290

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

blocking. In this section we detail the OQSMS algorithm
design and its components.

Temporary Reservation Set at Each Time Slot

It is an iterative approach, in which each time the RVr is
estimated. It declares the queue selection and achievable
throughput temporarily.

Queue Selection at Each Input Port

For each input port an optimal queue is selected such a way
that the overall queue selection should result maximum
throughput.

Fan-Out Split in Reservation Set

When a queue is selected temporarily or permanently, the
fan-out sets of the cells in the queue should be splitted in order
to avoid HOL.

Searching Maximum Throughput Reservation Set as Final
Reservation Set (Optimized Set)

At each temporary reservation set, the temporary
throughput will be estimated and compared with the previous
estimation. This iteration ends when a maximum throughput
range is possible.

Grant Input Ports with Selected Queue and Fan-Out Split

The end of temporary reservation set is the final reservation
set to be granted in order to send traffic.

Reservation Set

The reservation set RV is the array set of queue names
selected to each input port. For all the input ports we can have
multiple permutations with various queue. But we have to
select the optimized queues in each input port. Here
reservation set is the pre-process task to store queue
combination and its expected throughput range (R,). Here
throughput range R, refers the number of traffic cells granted
at particular timeslot. Here two types of reservation sets are
maintained one is Temporary Reservation Set (RVr) and Final
Reservation Set (RV). From the fan-out list of the RVr, we
can estimate the Throughput Range (R,).

Queue Selection

In order to achieve the maximum throughput, we have to
select a queue in each input ports such that the final queue set
loads to a maximum throughput. There are so many
combinations can be obtained by permutation logic. Therefore,
RVt and R, estimation will be done iterating for all the
combinations until getting a maximum R,. Maximum R, will
be equal to number of output ports. Thus in each time slot we
can select an optimal queue in order to achieve maximum R,.
This increases the maximum throughput in the scheduling.
RVt will be updated or changed during each iteration and
finally maximum R, is reached. RVt will be assigned to RV.
For each time slot RV will be calculated according to the final
RV input port cells are granted to send traffic.

D. Scheduling Overhead Analysis

The existing iterative scheduling algorithms have main
problem that the scheduling overhead scales up very quickly
as the link speed and switch size increase, which limits the
scalability in high-speed switches which have very short time
to perform scheduling. Scheduling overhead is defined as the
information exchanged at an input port in one matching cycle.
In existing three-phase (request-grant-accept) integrated
scheduling algorithms with log(N) iteration times. MDDR and
MDRR perform with only one matching cycle, moreover, it
has one less operational step (request-grant), and less
information exchanged between inputs and outputs. MDDR
and MDRR reduce the multicast scheduling overhead from
O(kN) to O(N) by selecting one of the k multicast HoL cells
for requesting, where k (1<k<<2N-1) represents the number of
multicast queues maintained at each input. But comparing
with MDRR, MDDR minimizes the dual pointer overhead. In
iterative based scheduling algorithm OQSMS there is no
(request-grant-accept) steps. Reservation set (RV) is the pre-
processing task to find the throughput range R,. Based on the
throughput range calculation the cells are transferred. OQSMS
achieves the maximum possible throughput at each time slot.
But the pre-processing task is the overhead at each time before
the cells are transferred to output ports.

TABLEI
COMPARISON OF MDRR, MDDR AND OQSMS

Algorithm Scheduling overhead Pointer Usage Queue Selection

MDRR Request-grant Dual pointer ~ Based on primary and
usage in input secondary pointer
side
MDDR Request-grant Global pointer in ~ High fan-out size
output side
OQSMS No information No pointer usage ~ Optimal queue is

in both sides selected based on R,

calculation

exchanged between
inputs and outputs

IV. PERFORMANCE EVALUATION AND RESULT ANALYSIS

To study the performance of OSQMS, MDDR and MDRR
the simulation has been conducted in NS2 that models the
input queued crossbar switch of size NxN. In general, most of
the experiments, we used an 8 x 8 and 16 x 16 VOQ switch.
In some experiments the value of N is specific to the
experiments. The VOQ’s are supplied with Bernoulli
uncorrelated and Bursty correlated multicast traffic.

In a Bernoulli process the probability of an arrival in any
time slot is p, independent of any other time slot. We consider
both uniform and non-uniform traffic scenario. In uniform
traffic scenario all input (and output) ports are equally loaded
and the fan-out set of new cell is generated randomly,
according to a uniform distribution

(N=2\-1, Py= (1}') / No). (1)

A non-uniform traffic scenario, where the fan-out set is
chosen according to a non-uniform binomial distribution, with
mean fan-out size er. That is the probability Pr of choosing a
fan-out set of size f'is

2291

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

Pi= (1}’) (er/ N) (1- er/ NYNT ©)

Bursty traffic is a sequence of packets from the same
source, travelling to the same destination (with replies in the
opposite direction). These two traffic as two different arrival
processes. This performance analysis concentrates on two
Performance metrics which are Average Cell Delay and
Throughput. The graphs drawn in Figs. 2-11 show that the
overall performance of Delay and Throughput comparison of
MDRR, MDDR and OQSMS algorithms.

Delay: A multicast cell is stored in the queue until all the
destinations in its fan-out set are reached. The multicast delay
of a cell is calculated as the cell times that the cell stays in the
queue until it is removed. Delay increases when they become
unstable as the offered load increases.

Throughput: Throughput is the another performance
measurement used in this investigation which is defined as the
ratio between the total number of cells forwarded to output
interfaces, and the total number of cells arrived at input
interfaces. It is essentially a measure of the cell loss
probability at input queues.

Fig. 2 shows the average cell delay against the offered load
for MDRR, MDDR and OQSMS under Bernoulli uniform
traffic. We can observe that as output load increases, OQSMS
is very effective in reducing and constantly maintaining the
average delay, and performs reasonably well. It is shown that
the average delay of OQSMS is always smaller than that of
MDRR and MDDR, especially under heavy load. The reason
is that MDRR performs an inefficient matching where some of
the grants can be wasted because of dual pointer usage in the
input side.

Fig. 3 shows the simulation result that the delay occurred
according to the load offered by Bernoulli non-uniform traffic.
MDDR and OQSMS have no higher level significance of
difference in delay. MDRR could not achieve the minimum
delay comparing with MDDR and OQSMS because the VOQ’
s in each input port is selected based on round-robin pointer.
And no priority is provided to the input ports to control the
non-uniform distribution.

1200 -

=

o

[=}

o
1

800 A

600 4 —e— MDRR

—#@— MDDR
400 4

oQasMs

Average Cell Delay([slots]

0 — T T T T T — 71—

0.1 0.2 03 04 05 0.6 0.7 0.8 09 1
Load

Fig. 2 Average Cell Delay as a function with respect to Load for
Bernoulli uniform traffic

1200
1000 H
800 H

600 A —&— MDRR
400 A —@— MDDR
0QsMs

Average Cell Delay[slots]

0 — T T T T T — T

0.1 0.2 03 04 05 06 07 0.8 09 1
Load

Fig. 3 Average Cell Delay as a function with respect to Load for
Bernoulli non-uniform traffic

Fig. 4 illustrates the improvement of maximum achievable
throughput performance introduced by increasing the number
of queues under Bernoulli uniform traffic. It shows that
OQSMS achieves nearly above 95% throughput than MDRR
and MDDR for the number of queues above 5. We can
observe that when number of queues are increased OQSMS
obtains a high switching performance while pointer based
algorithms obtain low throughput when number of queues are
high. We can conclude that small number of queues are
enough to maintain the constant level throughput for pointer
based algorithms.

0.95 +

M s s p

0.85 +

——o— MDRR
0.8 4

~—#— MDDR

Throughput

0.75 A
0.7 A oQasMs
0.65 -

0.6 T T T T T T T !
1 2 3 4 5 6 7 8

Number of Queues

Fig. 4 Number of Queues Vs Throughput under Bernoulli uniform
traffic

Fig. 5 shows the throughput analysis of OQSMS, MDDR
and MDRR under uniform Bernoulli traffic pattern with
respect to load. Above 95% throughput has been achieved by
OQSMS. It’s shown that when the load is above 0.6 the
throughput of MDDR and MDRR are decreased.

Fig. 6 illustrates the throughput as a function of multicast
fraction and compare the maximum achievable throughput of
OQSMS with MDDR and MDRR under uniform burst traffic
pattern. It’s shown that irrespective of the arrival traffic
pattern OQSMS always achieves higher throughput
performance than MDDR and MDRR since when the load
increases OQSMS has more queue combinations so that it
achieves more throughput.

2292

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:9, No:10, 2015

0.95 A
s

09 - ‘%

0.85 -

0.8 A ==& MDRR

0.75 1 —#— MDDR

0.7 1

0.65 H

0.6 T T T T T T T T T 1
0.1 0.2 03 04 05 06 0.7 0.8 09 1

Offered Load

Throughput

0oQsMs

Fig. 5 Throughput as function with offered load for uniform
Bernoulli traffic

0.95
0.9

0.85 ."d:.‘:.’\o’.;-:::

08 —&— MDRR
0.75
0.7

0.65

0.6 T T T T T T T T T |
0.1 0.2 03 04 05 06 0.7 0.8 09 1

Offered Load

Throughput

—i— MDDR

oQsMs

Fig. 6 Throughput as function with offered load for uniform Bursty
traffic

Fanout size points to the number of outputs that are
destined. This fan-out size is also a performance attribute at
output port load. Fig. 7 shows the maximum achievable
throughput as a function of mean fan-out size under Bernoulli
non-uniform traffic for a 20x20 switch. We can observe the
throughput improvement of OQSMS when fan-out size is
above 8. Since more transmission possibilities could be
provided to the output ports and also when fan-out increases
iteration steps to calculate throughput range in OQSMS are
effectively reduced which yields good switching performance.

0.9 P
0.8

£ 0.7 A

=]

2 0.5 1

0.4 4

0.3 A

0.2 4 0oQsMs

0.1 4

0 T T T T T T T |
2 4 6 8 10 12 14 16

~o— MDRR

—#— MDDR

Thro!

Mean Fanout Size

Fig. 7 Throughput as function of mean fanout size for non-uniform
traffic

It is shown that the MDRR and MDDR obtain minimum
throughput when fan-out increase. In MDDR when fan-out
increases, most of the due date assignment value 1 is
postponed to the next time slot which is slightly reduces the
throughput performance.

1
09
08 1
2
g. O? -
5 —— Bx8
2 06 1 —B— 16x16
E
05 4 32x32
Pyt —<— 64x64
03 ————
01 02 03 04 05 06 07 08 09 1
Load

Fig. 8 Throughput performance of OQSMS for different switch sizes
under Bernoulli uniform traffic

19 o
e
s e . ’
5 A 5 -
- —— -
¥ e m—a— Ry e
0s | =+
T
g. 0? -
_gn = —— BxB
2 086 1 ——16x16
£
05 - — 32x32
—=— B4x64
04 A i
03 T T T T T T T T T 1
01 02 03 04 05 06 07 0B 08 il
Load

Fig. 9 Throughput performance of OQSMS for different switch sizes
under Bernoulli non-uniform traffic

1 -
0o 4
0s { B

5
2 g7 4
En ; —4— BxB
2 06 —— 16x16
g
05 4 32x32
—— 64364
04 - i
03 — T T — T — 1

01 02 03 04 05 06 07 0B 059 1

Load

Fig. 10 Throughput performance of OQSMS for different switch
sizes under non-uniform bursty traffic

2293

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

1400

1200

w
k=
= 1000
&
5 eeo o . ki
= g a
& 600 H;x"' — —8— 16x16
w = — AW R
——— r
B o0 A= 32232
2
I s B4xG4

200

0 T T T T T T T T T 1

01 02 03 04 05 06 07 0B 08 1

Load

Fig. 11 Average delay of OQSMS for different switch sizes under
Bernoulli non-uniform traffic

Finally, the investigation is how a switch size impact the
performance of our scheduler OQSMS and how it performs
for Bernoulli uniform, Bernoulli non uniform and bursty
traffic. Figs. 8-10 show the throughput of the OQSMS for the
switch sizes 8x8, 16x16, 32x32 and 64x64. From the
simulation results we conclude that when the switch size is
64x64 OQSMS will have more queue combination this will
lead to achieve the 100% throughput for both uniform and
non-uniform traffic patterns. Fig. 10 shows the when the
traffic is bursty there is no slight difference in throughput
when the switch is increased.

Fig. 11 shows that the scheduler OQSMS achieves
minimum delay with increasing switch sizes under non-
uniform traffic. In a 64x64 switch, when the input load
reaches 0.5, there is a significant decrease in delay. This is due
to multicast cell’s large fan-out. When the fan-out is large
OQSMS iteration steps is reduced this leads to the minimum
delay.

Our future work includes, implementing the MDDR and
OQSMS algorithms with feedback based two-stage switch
architecture and analyse the performances also extend the
OQSMS algorithm to the integrated scheduler which supports
both unicast and multicast scheduling simultaneously.

V.CONCLUSION

In this paper we have implemented scheduling algorithms
OQSMS, MDDR and MDRR. From the simulation results that
OQSMS achieves more that 95% of the throughput under both
uniform and non-uniform traffic pattern. OQSMS estimates
optimal queue selection based on more queue combinations so
that it achieves minimum delay and maximum in throughput.
MDDR performance is better than MDRR since MDDR queue
selection is based on the highest fan-out size. MDDR
primarily minimizes the request overhead at the output ports
and eliminates the dual pointer utilization in input ports. The
single pointer algorithms achieve better performance than dual
pointer algorithms.

REFERENCES

[1] Bianco A, Giaccone P, Leonardi E, Neri F, and Piglione C., “On the
number of input queues to efficiently support multicast traffic in input

queued switches,” In Proceedings of Workshop on High Performance
Switching and Routing, pp. 111-116, 2003.

[2] Bianco A, Scicchitano A., “Multicast support in multi-chip centralized
schedulers in input queued switches,” Computer Networks, vol. 53, no.
7, pp. 1040-1049, 2009

[3] Gupta S, and Aziz A., “Multicast scheduling for switches with multiple
input-queues,” In Proceedings of High Performance Interconnects
Symposium, pp. 28-33, 2002.

[4] Marsan M.A, Bianco A, Giaccone P, Leonardi E, and Neri F, “Multicast
traffic in input-queued switches: optimal scheduling and maximum
throughput,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp.
465-477,2003.

[5] McKeown N, and Prabhakar B., “Scheduling multicast cells in an input
queued switch,” In Proceedings of IEEE INFOCOM, vol. 1, pp. 271—
278, 1996.

[6] McKeown N., “A Fast Switched Backplane for a Gigabit Switched
Router,” Business Communication Review, vol. 27, no. 12, 1997.

[71 McKeown N, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp.
188-201, 1999.

[8] Pan D. and Yang Y., “FIFO-based multicast scheduling algorithm
forvirtual output queued packet switches,” IEEE Transactions on
Computers, vol. 54, no. 10, pp. 1283-1297, 2005.

[9] Prabhakar B, McKeown N, and Ahuja R., “Multicast scheduling for
input-queued switches,” |EEE Journal on Selected Areas in
Communications, vol. 15, no. 5, pp. 855-866, 1997.

[10] Shanmugam Arumugam, Shanthi Govindaswamy., “Performance of the
Modified Round Robin Scheduling Algorithm for Input-Queued
Switches Under = Self-Similar Traffic,” In Proceedings of the
International Arab Journal of Information Technology, vol.3, no.2,
1996.

[11] Song M, and Zhu W., “Throughput analysis for multicast switches with
multiple input queues,” IEEE Communications Letters, vol. 8, no. 7, pp.
479-481, 2004.

[12] Yongbo Jiang, Zhiliang Qiu, Ya Gao, and Jun Li, “Multicast Support in
Input Queued Switches with Low Matching Overhead”, IEEE
Communications Letters, vol. 16, no. 12, 2012.

[13] Zhu W, and Song M., “Integration of unicast and multicast scheduling in
input-queued packet switches,” Computer Networks, vol. 50, pp. 667—
687, 2006.

[14] Zhu W, and Song M., “Performance analysis of large multicast packet
switches with multiple input queues and gathered traffic,” Computer
Communications, vol. 33, no. 7, pp. 803-815, 2010.

[15] Navaz K, and Kannan Balasubramanian., “OQSMS: Optimal Queue
Selection Based Multicast Scheduling Algorithm for Input-Queued
Switches,” Australian Journal of Basic and Applied Sciences, 9(27)
August 2015, Pages: 373-378

[16] Navaz K, Dr. Kannan Balasubramanian., “Multicast Due Date Round-
Robin Scheduling Algorithm for Input-Queued Switches” International
Journal of Computer Network and Information Security, 2016, 2, 56-63

Navaz K received the B.Tech degree in Information Technology in 2006, and
the M.E degree in Computer Science and Engineering in 2009, all from Anna
University, Tamilnadu, India. He is working towards his Ph.D in the
department of Computer Science and Engineering, Manonmaniam Sundaranar
University, Tirunelveli, Tamilnadu, India. His areas of interest in research are
Computer Networks, Network Design and Simulations, Switch Architecture
and Scheduling Algorithms for High Performance Switches.

Dr. Kannan Balasubramanian received the Ph.D degree in Computer
Science from UCLA, and the M.Tech degree in Computer Sceince and
Engineering from IIT Bombay, India and his Msc (Tech) degree in Computer
Science from BITS., Pilani, India. He is a Professor Mepco Schlenk
Engineering College, Sivakasi, India. His research interest includes Network
Architecture, Protocols, Security and Performance

2294

