
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

553

Performance Analysis of List Scheduling in
Heterogeneous Computing Systems

Keqin Li

Abstract— Given a parallel program to be executed on a heteroge-
neous computing system, the overall execution time of the program
is determined by a schedule. In this paper, we analyze the worst-case
performance of the list scheduling algorithm for scheduling tasks
of a parallel program in a mixed-machine heterogeneous computing
system such that the total execution time of the program is mini-
mized. We prove tight lower and upper bounds for the worst-case
performance ratio of the list scheduling algorithm. We also examine
the average-case performance of the list scheduling algorithm. Our
experimental data reveal that the average-case performance of the list
scheduling algorithm is much better than the worst-case performance
and is very close to optimal, except for large systems with large
heterogeneity. Thus, the list scheduling algorithm is very useful in
real applications.

Keywords— Average-case performance, list scheduling algorithm,
mixed-machine heterogeneous computing system, worst-case perfor-
mance.

I. INTRODUCTION

AKey consideration in high performance parallel com-
puting is the match between the computational needs

of a parallel application and the advanced capabilities of a
parallel machine. Homogeneous computing using one mode
of parallelism, while providing good performance for some
applications, has severe limitations in satisfying diversified
characteristics of program codes efficiently. A parallel program
or application may have various tasks with different archi-
tectural requirements. For applications with multiple types of
parallelism, any single parallel machine will spend most of
the time to execute ill-matched codes, resulting in significant
degradation of overall system performance.

Heterogeneous computing is a parallel computing technique
that solves computationally intensive problems with diverse
computing requirements in an environment that incorporates
a distributed suite of different autonomous high performance
parallel machines interconnected by high speed links and
networks. Heterogeneous computing is well-orchestrated, co-
ordinated, and effective use of different types of machines,
networks, software, and interfaces to maximize their combined
performance and cost-effectiveness. Heterogeneous computing
systems have the ability to match computing needs to appro-
priate computing resources [1], [3], [10], [12].

In a mixed-machine heterogeneous computing system,
coarse-grained heterogeneity is supported at task level. A
parallel program is divide into a collection of tasks (or
modules, code segments), such that within a task, processing

Manuscript received June 15, 2007.
The author is with the Department of Computer Science, State University

of New York, New Paltz, NY 12561, USA. E-mail: lik@newpaltz.edu.

requirements are homogeneous. Through offline procedures
called code-type profiling and analytical benchmarking [7],
[13], the execution time of each task on each machine is
measured, and the best machine to execute a task is identified.
Then, the problem is scheduling (including mapping), that is,
to assign the tasks to the machines and to determine when
a task is to be executed. Given a parallel program to be
executed on a heterogeneous computing system, the overall
execution time of the program is determined by a schedule. A
mixed-machine heterogeneous computing system coordinates
the execution of tasks of a parallel program on different
machines within the system to exploit various architectural
features and achieve improved system performance.

Scheduling and mapping of tasks of parallel programs in
heterogeneous computing systems have been studied exten-
sively, where parallel programs are modeled by task prece-
dence graphs (directed acyclic graphs) [14] or task interaction
graphs (undirected graphs) [6]. For independent tasks [11],
many heuristics have been developed and compared for static
scheduling (i.e., the complete set of tasks to be scheduled is
known in advance) [2] and dynamic scheduling (i.e., tasks
arrive at different times and scheduling is performed as tasks
arrive) [9].

In this paper, we investigate the problem of scheduling
tasks of a parallel program in a mixed-machine heterogeneous
computing system such that the total execution time of the
program is minimized. Since the problem is NP-hard even
in a homogeneous computing system [4], we consider ap-
proximation algorithms that produce near-optimal schedules.
We analyze the worst-case performance of the list scheduling
(LS) algorithm. In particular, we prove that the worst-case
performance ratio of the list scheduling algorithm is in the
range [γ2, γ1], with

γ1 =
1
α

(
2− 1

m

)
,

and

γ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
α

(
2−

(
2

α+ 1

)
1
m

)
if m ≤ 2

1− α,

1
α

(
2− 1

m− 1

)
if m ≥ 2

1− α,

where m is the number of machines and α is a measure
of system heterogeneity with 0 < α ≤ 1, i.e., the smallest
ratio of the execution time on the fastest machine to the
execution time on the slowest machine for all tasks. Our
result includes Graham’s classic result in [5] for homogeneous



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

554

computing systems as a special case. Our result also improves
the lower bound in [8] for the worst-case performance ratio
of the list scheduling algorithm. We notice that although
task scheduling in mixed-machine heterogeneous computing
systems have been investigated experimentally, there is lack
of such analytical result.

It is clear that precedence constraints, task execution times,
together with the machine selection issue, make the scheduling
problem in heterogeneous computing systems more com-
plicated than the corresponding scheduling problem in ho-
mogeneous computing systems. We find that in the worst
case, the list scheduling algorithm has limited ability to take
advantage of the power of heterogeneous computing systems
with large heterogeneity, due to its simple scheduling and
mapping strategies. It is therefore an interesting problem to
design more efficient algorithms that are able to assign tasks
to the right machines at the right times.

In addition to the worst-case performance analysis, we also
examine the average-case performance of the list scheduling
algorithm. Our experimental data reveal that the average-case
performance of the list scheduling algorithm is much better
than the worst-case performance and is very close to optimal,
except for large systems with large heterogeneity. Thus, the
list scheduling algorithm, though very simple, is useful in real
applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we give a parallel program model for heterogeneous
computing, describe the task scheduling problem, and define
performance measures. In Section 3, we present the list
scheduling algorithm in heterogeneous computing systems. In
Section 4, we analyze the worst-case performance ratio of
the list scheduling algorithm. In Section 5, we demonstrate
experimental data for the average-case performance bound of
the list scheduling algorithm. Finally, we conclude the paper
in Section 6.

II. PRELIMINARIES

Let H = (M1,M2, ...,Mm) be a mixed-machine het-
erogeneous computing system consisting of a suite of m
autonomous machines. The m machines may have different
processor architectures (e.g., SIMD, MIMD, VLIW, vector,
superscalar, and special processors) and different execution
speeds for the same task.

A parallel program P can be specified as a triplet P =
(T,≺, τ). T is a set of n tasks T = {T1, T2, ..., Tn}, each
will be executed on one of M1,M2, ...,Mm. There is a set
of precedence constraints, or, a partial order ≺ on T , such
that if Ti1 ≺ Ti2 , then Ti2 cannot start its execution until Ti1

is completed. The precedence constraints ≺ among the tasks
can be represented by a task precedence graph, i.e., a directed
acyclic graph (dag) in which, there are n nodes representing
the n tasks T1, T2, ..., Tn, and there is an arc (Ti1 , Ti2) if and
only if Ti1 ≺ Ti2 .

Task execution times are given by τ : T ×M → (0,+∞),
where τ(Ti,Mj) is the execution time of task Ti on machine
Mj . For each task Ti, there exists a permutation πi =
(πi(1), πi(2), ..., πi(m)), such that

τ(Ti,Mπi(1)) ≤ τ(Ti,Mπi(2)) ≤ · · · ≤ τ(Ti,Mπi(m)).

Therefore, machine Mπi(k) is the kth fastest machine to
execute task Ti. Let α be the largest value such that for
each task Ti, the execution times on its fastest machine
and the slowest machine are related as τ(Ti,Mπi(1)) ≥
ατ(Ti,Mπi(m)), where 0 < α ≤ 1. The parameter α is a
measure of heterogeneity of H .

A schedule is a specification of when and where to execute
the tasks T1, T2, ..., Tn. Clearly, for a parallel program P and
a heterogeneous computing system H , the overall execution
time is determined by a schedule. The scheduling problem
addressed in this paper is, given a parallel program P and a
heterogeneous computing system H , finding a nonpreemptive
schedule of tasks in P on H such that the overall execution
time of the tasks in P is minimized.

The above scheduling problem is NP-hard even in a homo-
geneous computing system consisting of identical machines
[4]. Therefore, we seek efficient algorithms that are able to
generate acceptable schedules. The objective of this paper is to
study the performance of the list scheduling algorithm which
finds a near-optimal schedule of tasks in a parallel program P
on a heterogeneous computing system H .

Let A(P ) be the length of a schedule produced by an
algorithm A, and OPT (P ) be the length of an optimal
schedule. Define

γA = sup
P

(
A(P )

OPT (P )

)

to be the worst-case performance ratio of algorithm A. If
A(P ) ≤ γ1OPT (P ) for all P , then γ1 is called a worst-
case performance bound of algorithm A, i.e., γA ≤ γ1. If
for any small ε > 0, there exists an instance P such that
A(P ) ≥ (γ2−ε)OPT (P ), then the bound γ2 is a lower bound
for γA, i.e., γA ≥ γ2.

When a parallel program P contains random precedence
constraints and/or random task execution times, both A(P )
and OPT (P ) are random variables. Define

γ̄A(P ) = E

(
A(P )

OPT (P )

)

to be the average-case performance ratio of algorithm A for
random parallel program P , where E(·) stands for the expec-
tation of a random variable. If A(P )/OPT (P ) ≤ β, then β̄,
the expectation of β, is called an average-case performance
bound of algorithm A for random parallel program P , i.e.,
γ̄A(P ) ≤ β̄.

III. THE LIST SCHEDULING ALGORITHM

The list scheduling algorithm was originally proposed by
Graham for scheduling precedence constrained tasks in ho-
mogeneous computing systems with α = 1 (that is, a task Ti

has the same execution time on all machines M1,M2, ...,Mm)
[5]. A list schedule (i.e., a schedule produced by the list
scheduling algorithm) is based on an initial ordering of the
tasks L = (Tj1 , Tj2 , ..., Tjn

), called a priority list. Initially, at
time zero, the scheduler instantaneously scans the list L from
the beginning, searching for tasks that are ready to be executed,
i.e., tasks which have no predecessors under ≺ still waiting in
L. The first ready task in L is removed from L and assigned



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

555

��
��
T1 (5, 10, 15)

��
��
T2(7, 4, 11) ��

��
T3 (8, 6, 3)

��
��
T4(9, 14, 12) ��

��
T5

(4, 10, 8)
��
��
T6

(21, 10, 32)

��
��
T7(17, 13, 6)

�������

�������

�
�

��

�
�

��

�
�

�	

�
�

�	

Fig. 1. An example parallel program with n = 7 tasks.

to a machine for processing. Such a search is repeated until
there is no ready task or there is no more machine available. In
general, whenever a machine completes a task, the scheduler
immediately scans L, looking for the first ready task to be
executed. If such a ready task is found, it is scheduled on
that machine; otherwise, the machine becomes idle and waits
for the next finished task. As running tasks complete, more
precedence constraints are removed and more tasks will be
ready.

For a parallel program P , the length (i.e., makespan) of a
list schedule certainly depends on the priority list L. However,
the performance of a list schedule is quite robust. Graham
proved that the list schedule length is no more than twice
the optimal schedule length for arbitrary L. In particular, let
LS(P,L) denote the length of a list schedule based on a
priority list L, and OPT (P ) be the length of an optimal
schedule. Graham proved the following well known result: for
any parallel program P and any priority list L, we have

LS(P,L) ≤
(

2− 1
m

)
OPT (P );

furthermore, the bound 2−1/m is the best possible, i.e., γLS =
2− 1/m [5].

The excellent performance of the list scheduling algorithm
motivates us to apply the strategy to scheduling tasks of
parallel programs in mixed-machine heterogeneous computing
systems. The extension of the algorithm to heterogeneous
computing systems is straightforward. Again, a list schedule is
based on a priority list, i.e., an initial ordering of the tasks. The
priority list can be arbitrary and does not affect our analytical
result. Initially, and whenever a machine completes a task,
the scheduler searches for a ready task. If such a task is
found, it is assigned to the best idle machine and is executed
nonpreemptively on that machine. Ties are broken arbitrarily if
there are several best idle machines for the task, e.g., selecting
the best machine with the least index. The selection of the best
machine is only for practical purpose. Theoretically, it does
not matter which idle machine to choose, since the worst-
case performance bound to be proven in Section 4 remains
the same.

M1

M2

M3

0 10 20 30 40

T1 T5

T2 T4 T7

T3 T6

Fig. 2. A list schedule of length 40.

M1

M2

M3

0 10 20 30 40

T1 T4 T5

T2 T6

T3 T7

Fig. 3. An optimal schedule of length 24.

For example, let us consider a parallel program with n = 7
tasks shown in Figure 1 on a heterogeneous computing system
with m = 3 machines. Each task Ti is described by a vector
(τ(Ti,M1), τ(Ti,M2), ..., τ(Ti,Mm)). The τ(Ti,Mj)’s are
chosen randomly only for the purpose of illustration. A list
schedule based on the priority list L = (T1, T2, ..., T7) is
displayed in Figure 2. Initially, at time 0, task T1 is scheduled
on its best machine M1. When T1 completes at time 5, tasks
T2 and T3 are ready for execution and they are assigned to
their best machines M2 and M3 respectively. When task T3

completes at time 8, tasks T5 and T6 are ready for execution.
Task T5 is scheduled on M1, since M1 is the best machine of
T5. Task T6 is assigned to M3, since M3 is the only available
machine at this moment. At time 9, task T2 is finished. Task
T4 is then scheduled on M2. The completion of task T5 does
not introduce any more ready tasks. Finally, when task T4 is
finished at time 23, task T7 is scheduled on M2, since M2 is
the best available machine for T7. We notice that it is not a
good decision to schedule T6 on M3, because M3 is the worst
machine of T6. However, the list scheduling algorithm does
not have another choice at time 8. Although four tasks are
executed on their best machines, the overall length of the list
schedule is still 40, which is longer than that of an optimal
schedule as depicted in Figure 3. In the optimal schedule, task
T6 is deferred until task T2 finishes at time 9 so that T6 can
be executed on its best machine M2. This means that there
is an issue of machine selection. Task T5 is deferred until
T4 completes because T4 has a successor T7, i.e., there is
a consideration of the structure of a task precedence graph.
It seems that the list scheduling algorithm has very limited
capability to deal with such difficulties.

IV. WORST-CASE PERFORMANCE ANALYSIS

In this section, we analyze the worst-case performance of
the list scheduling algorithm that produces a near-optimal
schedule for a parallel program P on a suite H of hetero-
geneous machines.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

556

The main result of the paper is the following theorem, where
the upper bound for γLS was originally proved in [8] and is
included here for the sake of completeness, and the lower
bound for γLS is improved here.

Theorem 1: The worst-case performance ratio of the list
scheduling algorithm is γ2 ≤ γLS ≤ γ1, where

γ1 =
1
α

(
2− 1

m

)
,

and

γ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
α

(
2−

(
2

α+ 1

)
1
m

)
if m ≤ 2

1− α,

1
α

(
2− 1

m− 1

)
if m ≥ 2

1− α,

in heterogeneous computing systems.

Proof. We notice that when a task completes, ready tasks may
be scheduled for execution. We call such a moment as a break
point. Let t1, t2, t3, ..., tb be the break points in a list schedule
of a parallel program P based on a priority list L. Since several
tasks may complete at the same time, we have b ≤ n. Such
break points divide the time interval [0, LS(P,L)) into (b+1)
half-open sub-intervals:

I0 = [t0, t1),
I1 = [t1, t2),
I2 = [t2, t3),
...,

Ib−1 = [tb−1, tb),
Ib = [tb, tb+1),

where t0 = 0 is the starting time, and tb+1 = LS(P,L) is the
completion time of P under the list schedule based on L.

We go through the above list of sub-intervals in its reverse
order Ib, Ib−1, ..., I2, I1, I0, and divide the set of sub-intervals
{I0, I1, I2, ..., Ib−1, Ib} into two disjoint subsets �1 and �2

as follows.
Assume that Tj1 is a task that is completed at time LS(P,L)

and is scheduled at time tk1 . Then, the sub-intervals Ik1 , Ik1+1,
..., Ib are put into �1. We say that Ik1 , Ik1+1, ..., Ib are covered
by task Tj1 . Now, we ask the question, “Why is task Tj1 not
scheduled at time tk1−1?” There are two possible reasons for
this, namely,

• (C1) task Tj1 is not ready at time tk1−1, i.e., there is a
task Tj2 such that Tj2 ≺ Tj1 , and Tj2 is still in execution
or just scheduled at time tk1−1, or

• (C2) task Tj1 is ready at time tk1−1 and is considered for
execution; however, it is not scheduled because there is
no idle machine to be allocated to Tj1 .

Under condition (C1), we assume that Tj2 starts at time tk2 ,
and put Ik2 , Ik2+1, ..., Ik1−1 into �1, and say that these sub-
intervals are covered by Tj2 . Then, we ask the question, “Why
is task Tj2 not scheduled at time tk2−1?” Under condition
(C2), Ik1−1 is put into �2. We notice that all the m machines
are busy during Ik1−1; otherwise, task Tj1 would be scheduled
at time tk1−1. We then continue to check sub-interval Ik1−2

and ask the question, “Why is task Tj1 not scheduled at time
tk1−2?”

In general, assume that Ir, Ir+1, ..., Ib have been checked
and there exists a chain of tasks Tji

≺ Tji−1 ≺ · · · ≺ Tj1 such
that each sub-interval in �1 is covered by one of the tasks in
the chain. Also, task Tji is ready at time tr. Our question is
“Why is task Tji not scheduled at time tr−1?” Again, there
are two possible reasons, i.e., precedence constraints (C1) and
machine constraints (C2). If task Tji

is not ready at time tr−1,
i.e., there is a task Tji+1 such that Tji+1 ≺ Tji

, and Tji+1 is
scheduled at time tki+1 and still in execution at time tr−1,
we put Iki+1 , Iki+1+1, ..., Ir−1 into �1 and say that these sub-
intervals are covered by Tji+1 . If task Tji

is ready at time tr−1

but not scheduled for execution, Ir−1 is put into �2. We then
continue to check sub-interval Ir−2.

Using the above procedure, we obtain two disjoint subsets of
sub-intervals �1 and �2, and a chain of l tasks Tjl

≺ Tjl−1 ≺
· · · ≺ Tj1 such that each sub-interval in �1 is covered by one
of the tasks in the chain. We know that all the m machines are
allocated during a sub-interval in �2; otherwise, more ready
tasks would be scheduled at the beginning of the sub-interval.
Also, it is clear that during a sub-interval in �1, at least one
machine is used.

Now, we are ready to establish the upper bound γ1 for
γLS , that is, for any heterogeneous computing system H , any
parallel program P , and any initial priority list L, we have

LS(P,L) ≤ 1
α

(
2− 1

m

)
OPT (P ).

Let X1 and X2 be the total length of all the sub-intervals in
�1 and �2 respectively. Then, we have

LS(P,L) = X1 +X2.

Let Mpi
be the machine that executes task Ti in the list sched-

ule. Notice that Mpi is not necessarily the best machine of Ti.
In the worst case, Mpi is the slowest machine to execute Ti.
(Note: Since we are considering the worst machine, the worst-
case performance bound is valid for any machine selection
policy.) Nevertheless, in an optimal schedule, the execution
time of Ti is still at least ατ(Ti,Mpi

). Since Tjl
, Tjl−1 , ..., Tj1

must be executed sequentially in any schedule, we obtain

OPT (P ) ≥ αX1.

Let

W =
n∑

i=1

τ(Ti,Mpi
)

denote the total amount of work performed in the parallel
program P under the list schedule. Then, we get

OPT (P ) ≥ α
(
W

m

)
.

Since at least one machine is used during a sub-interval in �1,
and all the m machines are allocated during a sub-interval in
�2, we have

W ≥ X1 +mX2.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

557

��
�

��
�

��
�

M1

M2

Mm−1

Mm

T1 Tm

T2 Tm+1

Tm−1 T2m−2

T2m−1

Fig. 4. An optimal schedule of P1 with length m.

The above discussion can be summarized in the following
inequality,

LS(P,L)
OPT (P )

≤ X1 +X2

max(αX1, α(X1/m) + αX2)

=
1
α
· X1 +X2

max(X1, X1/m+X2)
.

The inequality for the upper bound in the theorem can be
obtained from

X1 +X2

max(X1, X1/m+X2)
≤ 2− 1

m
,

which can be derived as follows. If X1 ≥ X1/m + X2, i.e.,
X2 ≤ (1− 1/m)X1, we get

X1 +X2

max(X1, X1/m+X2)
=

X1 +X2

X1

= 1 +
X2

X1

≤ 2− 1
m
.

If X1 ≤ X1/m+X2, i.e., X2 ≥ (1− 1/m)X1, we get

X1 +X2

max(X1, X1/m+X2)
=

X1 +X2

X1/m+X2
.

It is easy to verify that the right hand side of the above
equation is a nonincreasing function of X2 and it reaches its
maximum value 2− 1/m when X2 = (1− 1/m)X1.

As for the first lower bound for γLS , i.e.,

γLS ≥ 1
α

(
2−

(
2

α+ 1

)
1
m

)
,

we construct the following example program P1. Let T contain
2m − 1 independent tasks T1, T2, ..., Tm−1, Tm, Tm+1, ...,
T2m−2, T2m−1 with no precedence constraint. The execution
times of the 2m − 1 tasks on the m machines are described
as follows.

• Task T1’s best machine is M1 and T1’s execution time
on M1 is 2/(α+ 1).

• For 2 ≤ i ≤ m − 1, task Ti’s best machine is Mi and
Ti’s execution time on Mi is 1.

��
�

��
�

��
�

M1

M2

Mm−1

Mm

T1 Tm

T2 Tm+1

Tm−1 T2m−2

T2m−1

Fig. 6. An optimal schedule of P2 with length m.

• Task Tm’s best machine is M1 and Tm’s execution time
on M1 is m− 2/(α+ 1).

• For m + 1 ≤ i ≤ 2m − 2, task Ti’s best machine is
Mi−m+1 and Ti’s execution time on Mi−m+1 is m− 1.

• Task T2m−1’s best machine is Mm and its execution time
on Mm is m.

• For all 1 ≤ i ≤ 2m − 1, the execution time of Ti on a
machine other than its best machine is 1/α times that on
Ti’s best machine.

Figure 4 shows an optimal schedule of P1, where OPT (P1) =
m and all tasks are executed on their best machines. Now,
consider a list schedule with the initial priority list L =
(T1, Tm, Tm+1, ..., T2m−2, T2, T3, ..., Tm−1, T2m−1). Assume
that the machine with the least index is chosen if there are ties.
The list schedule based on L is depicted in Figure 5, where
all tasks, except T1, are executed on their worst machines. It
is easy to verify that

2
α+ 1

+
m− 2
α

=
1
α

(
m− 2

α+ 1

)
,

that is, tasks T1, T2, ..., Tm−1 are executed on M1 and their
total execution time is identical to the execution time of Tm

on M2. When Tm−1 is completed, task T2m−1 is scheduled
on M1. Thus, the list schedule length is

LS(P1, L) =
2

α+ 1
+
m− 2
α

+
m

α

=
2

α+ 1
+

2m− 2
α

.

Therefore,

LS(P1, L)
OPT (P1)

=
1
m

(
2

α+ 1
+

2m− 2
α

)

=
1
α

(
2−

(
2

α+ 1

)
1
m

)
.

As for the second lower bound for γLS , i.e.,

γLS ≥ 1
α

(
2− 1

m− 1

)
,

we construct the following example program P2. Let T contain
2m − 1 independent tasks T1, T2, ..., Tm−1, Tm, Tm+1, ...,
T2m−2, T2m−1 with no precedence constraint. The execution



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

558

��
�

��
�

� � �
M1

M2

M3

Mm

T1 T2 Tm−1 T2m−1

Tm

Tm+1

T2m−2

Fig. 5. A list schedule of P1 with length 2/(α + 1) + (2m − 2)/α.

��
�

��
�

� � �
M1

M2

M3

Mm

T1 T2 Tm−1 T2m−1

Tm

Tm+1

T2m−2

Fig. 7. A list schedule of P2 with length (2m − (m − αδ)/(m − 1))/α.

times of the 2m − 1 tasks on the m machines are described
as follows.

• Task T1’s best machine is M1 and T1’s execution time
on M1 is a very small quantity δ.

• For 2 ≤ i ≤ m − 1, task Ti’s best machine is Mi and
Ti’s execution time on Mi is (m− αδ)/(m− 1).

• Task Tm’s best machine is M1 and Tm’s execution time
on M1 is m− δ.

• For m + 1 ≤ i ≤ 2m − 2, task Ti’s best machine is
Mi−m+1 and Ti’s execution time on Mi−m+1 is m −
(m− αδ)/(m− 1).

• Task T2m−1’s best machine is Mm and its execution time
on Mm is m.

• For all 1 ≤ i ≤ 2m − 1, the execution time of Ti on a
machine other than its best machine is 1/α times that on
Ti’s best machine.

Figure 6 shows an optimal schedule of P2, where OPT (P2) =
m and all tasks are executed on their best machines. Now,
consider a list schedule with the initial priority list L =
(T1, Tm, Tm+1, ..., T2m−2, T2, T3, ..., Tm−1, T2m−1). The list
schedule based on L is depicted in Figure 7, where all tasks,
except T1, are executed on their worst machines. It is easy to
verify that

δ +
(m− 2)(m− αδ)

α(m− 1)
=

1
α

(
m− m− αδ

m− 1

)
,

that is, tasks T1, T2, ..., Tm−1 are executed on M1 and their
total execution time is identical to the execution time of Ti

on Mi−m+2, where m + 1 ≤ i ≤ 2m − 2. When Tm−1 is
completed, task T2m−1 is scheduled on M1. Thus, the list
schedule length is

LS(P2, L) = δ +
(m− 2)(m− αδ)

α(m− 1)
+
m

α

=
1
α

(
2m− m− αδ

m− 1

)
.

Therefore,

LS(P2, L)
OPT (P2)

=
1
α

(
2− 1

m− 1
·
(

1− αδ

m

))
.

Since δ can be arbitrarily small, we obtain the second lower
bound.

Finally, we notice that

1
α

(
2−

(
2

α+ 1

)
1
m

)
≥ 1
α

(
2− 1

m− 1

)
,

that is, (
2

α+ 1

)
1
m
≤ 1
m− 1

,

if and only if m ≤ 2/(1 − α). Hence, we get the combined
lower bound γ2. This completes the proof of the theorem.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

559

TABLE I
NUMERICAL DATA FOR THE PERFORMANCE BOUNDS γ2 AND γ1 .

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

m γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1 γ2 γ1

2 5.8333 7.5000 3.2143 3.7500 2.2917 2.5000 1.8056 1.8750 1.5000 1.5000
3 7.5000 8.3333 3.8095 4.1667 2.6389 2.7778 2.0370 2.0833 1.6667 1.6667
4 8.3333 8.7500 4.1667 4.3750 2.8125 2.9167 2.1528 2.1875 1.7500 1.7500
5 8.7500 9.0000 4.3750 4.5000 2.9167 3.0000 2.2222 2.2500 1.8000 1.8000
6 9.0000 9.1667 4.5000 4.5833 3.0000 3.0556 2.2685 2.2917 1.8333 1.8333
7 9.1667 9.2857 4.5833 4.6429 3.0556 3.0952 2.3016 2.3214 1.8571 1.8571
8 9.2857 9.3750 4.6429 4.6875 3.0952 3.1250 2.3264 2.3438 1.8750 1.8750
9 9.3750 9.4444 4.6875 4.7222 3.1250 3.1481 2.3457 2.3611 1.8889 1.8889

10 9.4444 9.5000 4.7222 4.7500 3.1481 3.1667 2.3611 2.3750 1.9000 1.9000

Theorem 1 contains Graham’s classic result in [5] for
homogeneous computing systems as a special case when α =
1.

In Table 1, we show the numerical values for the lower
bound γ2 and the upper bound γ1 for γLS . We observe that
the lower bound and the upper bound are very close, except
when both m and α are very small.

It is clear that in addition to precedence constraints and
task execution times, there is also a machine selection issue,
which makes the scheduling problem more complicated than
the one solved in [5]. Theorem 1 implies that in the worst
case, the list scheduling algorithm has limited ability to take
advantage of the power of heterogeneous computing systems
with large heterogeneity, due to its simple scheduling and
mapping strategies, that is, scheduling a task as soon as it
is ready and not always assigning a task to its best machine.
It is therefore an interesting problem to design more efficient
algorithms that are able to assign tasks to the right machines
at the right times.

V. SIMULATION RESULTS

In this section, we present simulation results on the average-
case performance of the list scheduling algorithm in het-
erogeneous computing systems. Analysis of the average-case
performance ratio is beyond the scope of the paper.

For the purpose of average-case performance evaluation, we
need models to randomize precedence constraints among the
tasks and execution times of the tasks in a parallel program.
In our simulations, a parallel program P = (T,≺, τ) with
random dag structure and random execution times is generated
as follows.

• We use the random graph model DAG(n, p) to produce
a random dag. In such a random dag with n tasks
T1, T2, ..., Tn, the probability that there exists an arc
(Ti1 , Ti2) is p, where 0 ≤ p ≤ 1, for all pairs (i1, i2) with
1 ≤ i1 < i2 ≤ n. The existence of an arc is independent
of the existence of other arcs.

• The τ(Ti,Mj)’s are random variables generated as
follows. For each task Ti, we first pick Mk as the
worst machine for Ti, where k is uniformly distributed
in {1, 2, ...,m}. We then generate τ(Ti,Mk) which
is uniformly distributed in the interval (0, 1), and for
each j, 1 ≤ j ≤ m and j �= k, we generate

τ(Ti,Mj) which is uniformly distributed in the interval
(ατ(Ti,Mk), τ(Ti,Mk)).

Although other models of random dags and random task
execution times can be employed, we believe that they will
not change our conclusions.

While the list schedule length LS(P,L) can be obtained
by a simulation program for arbitrary parallel program P , it
is infeasible to calculate OPT (P ) in reasonable amount of
time. We use the following lower bound for OPT (P ),

OPT (P ) ≥ W ∗

m
,

where

W ∗ =
n∑

i=1

τ(Ti,Mπi(1))

is the total amount of work performed by the best machines.
It is clear that β̄ is an average-case performance bound, where

β =
LS(P,L)
W ∗/m

.

The purpose of our experiments is to reveal the value of β̄.
Tables 2–4 show our simulation data for three random

parallel programs whose precedence constraints are specified
by DAG(n, p), where n = 200 and p = 0, 0.05, 0.1. For
each combination of DAG(n, p), m, and α, we generate 500
samples of a random parallel program. For each sample of a
random parallel program, we compute its W ∗, simulate the
list scheduling algorithm and get the list schedule length, and
calculate the value of β. The average value of β is considered
as the experimental value of β̄. The 99% confidence interval
of all the data in each table is also given.

From these data, we observe that the average-case perfor-
mance of the list scheduling algorithm is much better than the
worst-case performance and is very close to optimal, except for
the case when m is large and α is small. One should also notice
that β̄ only gives an upper bound for γ̄LS ; the estimation of
OPT (P ) using W ∗/m is definitely too optimistic. Therefore,
the actual performance of the list scheduling algorithm should
be even better.

VI. SUMMARY

We have analyzed the worst-case performance ratio of the
list scheduling algorithm for scheduling tasks of a parallel



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

560

TABLE II
SIMULATION DATA FOR THE AVERAGE-CASE PERFORMANCE BOUND β̄

ON DAG(200,0) (99% CONFIDENCE INTERVAL ±0.478%).

m α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

2 1.3383 1.2200 1.1297 1.0596 1.0034
3 1.5858 1.3461 1.1912 1.0848 1.0073
4 1.7741 1.4299 1.2302 1.1015 1.0120
5 1.9284 1.4896 1.2555 1.1135 1.0165
6 2.0584 1.5360 1.2769 1.1235 1.0213
7 2.1636 1.5751 1.2982 1.1333 1.0264
8 2.2558 1.6092 1.3123 1.1414 1.0313
9 2.3417 1.6419 1.3245 1.1485 1.0354

10 2.4142 1.6685 1.3391 1.1561 1.0414

TABLE III
SIMULATION DATA FOR THE AVERAGE-CASE PERFORMANCE BOUND β̄

ON DAG(200,0.05) (99% CONFIDENCE INTERVAL ±1.297%).

m α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

2 1.3391 1.2181 1.1294 1.0598 1.0038
3 1.5902 1.3452 1.1922 1.0864 1.0088
4 1.7828 1.4364 1.2343 1.1059 1.0162
5 1.9445 1.5027 1.2666 1.1222 1.0253
6 2.0952 1.5637 1.2982 1.1422 1.0360
7 2.2483 1.6256 1.3339 1.1643 1.0553
8 2.4106 1.7023 1.3903 1.1979 1.0885
9 2.6176 1.8115 1.4571 1.2542 1.1322

10 2.8932 1.9547 1.5564 1.3344 1.2031

TABLE IV
SIMULATION DATA FOR THE AVERAGE-CASE PERFORMANCE BOUND β̄

ON DAG(200,0.1) (99% CONFIDENCE INTERVAL ±1.311%).

m α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

2 1.3380 1.2205 1.1296 1.0600 1.0045
3 1.5944 1.3535 1.1967 1.0903 1.0127
4 1.8303 1.4664 1.2568 1.1252 1.0339
5 2.1347 1.6172 1.3621 1.2050 1.0974
6 2.5431 1.8527 1.5280 1.3384 1.2158
7 3.0061 2.1568 1.7585 1.5138 1.3681
8 3.5409 2.4731 1.9672 1.7147 1.5321
9 4.0979 2.7948 2.2264 1.9248 1.7304

10 4.6251 3.1283 2.4790 2.1359 1.9303

program in a mixed-machine heterogeneous computing system
such that the total execution time of the program is mini-
mized. We also presented experimental data to demonstrate
the average-case performance which shows that the simple list
scheduling algorithm is very useful in real applications.

As a further research direction, it is interesting to close
the gap between the lower and upper bounds in Theorem 1.
It is also important to design more efficient algorithms with
improved worst-case and average-case performance.

REFERENCES

[1] S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Heterogeneous
computing,” in Encyclopedia of Distributed Computing, J. Urbana and
P. Dasgupta, eds., Kluwer Academic, Norwell, MA, 2001.

[2] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund, “A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous computing systems,” Journal
of Parallel and Distributed Computing, vol. 61, pp. 810-837, 2001.

[3] M. M. Eshaghian, ed., Heterogeneous Computing, Artech House, Nor-
wood, MA, 1996.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide
to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[5] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J.
Appl. Math., vol. 2, pp. 416-429, 1969.

[6] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous
distributed computing systems,” IEEE Concurrency, vol. 6, no. 3, pp.
42-51, 1998.

[7] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. L. Wang,
“Heterogeneous computing: challenges and opportunities,” Computer,
vol. 26, no. 6, pp. 18-27, 1993.

[8] K. Li and J. E. Dorband, “A task scheduling algorithm for heterogeneous
processing,” Proceedings of the 5th High Performance Computing Sym-
posium, pp. 183-188, 1997.

[9] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 59, pp. 107-131, 1999.

[10] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous dis-
tributed computing,” in Encyclopedia of Electrical and Electronics
Engineering, J. G. Webster, ed., Wiley, New York, pp. 679-690, 1999.

[11] H. J. Siegel and S. Ali, “Techniques for mapping tasks to machines
in heterogeneous computing systems,” Journal of Systems Architecture,
vol. 46, pp. 627-639, 2000.

[12] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li,
“Heterogeneous computing,” in Parallel and Distributed Computing
Handbook, A. Y. Zomoya ed., McGraw-Hill, New York, pp. 725-761,
1996.

[13] H. J. Siegel, H. G. Dietz, and J. K. Antonio, “Software support for
heterogeneous computing,” in The Computer Science and Engineering
Handbook, A. B. Tucker, Jr. ed., pp. 1886-1909, CRC Press, Boca Raton,
FL, 1997.

[14] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260-274, 2002.


