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Abstract—Elliptic curve-based certificateless signature is slowly
gaining attention due to its ability to retain the efficiency of
identity-based signature to eliminate the need of certificate
management while it does not suffer from inherent private
key escrow problem. Generally, cryptosystem based on elliptic
curve offers equivalent security strength at smaller key sizes
compared to conventional cryptosystem such as RSA which
results in faster computations and efficient use of computing
power, bandwidth, and storage. This paper proposes to im-
plement certificateless signature based on bilinear pairing to
structure the framework of IKE authentication. In this paper,
we perform a comparative analysis of certificateless signature
scheme with a well-known RSA scheme and also present the
experimental results in the context of signing and verification
execution times. By generalizing our observations, we discuss the
different trade-offs involved in implementing IKE authentication
by using certificateless signature.

Index Terms—Certificateless signature, IPSec, RSA signature,
IKE authentication.

I. INTRODUCTION

Network security has become an essential part in today’s
network by preventing threats from damaging business op-
eration of an organization. With the explosive growth of e-
business applications, extra security measures are in need to
protect and secure the exchange of the transactions. Transport
mode IPSec can be used to efficiently protect data end to
end between clients and servers, peers in a workgroup, and
extranet partners. The principal feature of IPSec that enable
it to support these applications is that it can encrypt and/or
authenticate all traffics at the IP layer. Thus, all distributed
applications, including remote login, client/server, e-mail, file
transfer, web access, and so on, can be secured.

The establishment of a secure end to end communication
generally requires IPSec to use IKE to negotiate and establish
Security Association (SA) between two or more nodes. A SA
is a relationship that describes how the nodes negotiate the
security services such as encryption, hash algorithm, keys,
and authentication mechanisms to the IP packets. IKE requires
a mechanism to authenticate the nodes which involve in the
exchange of SA in the negotiation process. The conventional
IKE authentication outlined in [7] are pre-shared key and
certificate-based asymmetric cryptosystems such as RSA/DSA
digital signature and RSA public key encryption. The use
of pre-shared key is only feasible in small scale network
due to the difficulties in distributing the shared key to each
pair of nodes. On the other hand, the use of certificate-based
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infrastructure requires a common certificate authority (CA)
between two nodes.

Because of the inherent limitations of the existing im-
plementation of IKE authentication, we propose a new IKE
authentication scheme based on certificateless signature, which
is derived from the concept of digital signature. Certificateless
signature is implemented based on bilinear pairing on elliptic
curve. Generally, cryptosystem based on elliptic curve such
as Ellitic Curve Digital Signature Algorithm (ECDSA) offers
equivalent security strength at smaller key sizes compared
to the conventional cryptosystem such as RSA. This results
in faster computations and efficient use of computing power,
bandwidth, and storage. It makes ECDSA an attractive choice
for many IKE implementations [6]. However, ECDSA authen-
tication still requires the nodes to know and trust each other’s
public key. It’s applied by exchanging certificates, possibly
within the IKE Phase 1 negotiation. The proposed scheme
offers significantly reduction in infrastructure complexity,
eliminates the use of certificate to guarantee the authenticity
of public keys, and reduces the cost for establishing and
managing the certificates.

The rest of the paper is organized as follows. Section II
gives a brief introduction to IKE authentication and also sum-
marizes the RSA digital signature algorithm. In Section III,
we describe background concepts on bilinear pairings and
certificateless signature scheme. In Section IV, we present
a new IKE authentication by using certificateless signature
scheme. The general performance comparisons such as the
size of public key and the size of actual signature block, and
the efficiency analysis on signing and verification algorithm
for certificateless signature and RSA are given in Section V.
Finally, we conclude the paper with Section VI.

II. IKE AUTHENTICATION

The conventional IKE authentication mechanisms outlined
in [7] are pre-shared key and certificate-based techniques such
as RSA public-key encryption and RSA/DSA digital signature.
A pre-shared key is nontrivial string up to 128 characters
long. The authentication is accomplished by assigning the
identical key to each node. The pre-shared key authentication
offers simplicity in its implementation. On the other hand,
the use of certificate-based techniques provides more security
and scalability than pre-shared key. In the traditional Public
Key Infrastructure (PKI), certificates are deployed to provide
an assurance of the binding between public keys and users’
identities that hold the corresponding private keys. The binding
process is performed by the CA. The public/private key pairs
in PKI can either be generated by the CA for the node or the
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node can generate the keys for itself and then verify with the
CA for authenticity.

In addition to the conventional IKE authentication mecha-
nisms, [6] proposed Elliptic Curve Digital Signature Algorithm
(ECDSA) as the authentication method within the IKE and
IKEv2. ECDSA is the elliptic curve analogue of the DSA.
ECDSA signatures provide advantages including computa-
tional efficiency, small signature sizes and minimal commu-
nication bandwidth compared to RSA and DSA signatures.
Like RSA public key encryption and RSA/DSA Signatures,
ECDSA-based signatures still deploy the PKI to convey the
elliptic curve domain parameters and public key in X.509
certificates.

Both public key encryption and digital signature require
the use of digital certificates to validate the public/private
key mapping. However, PKI faces many obstacles in practises
such as expensive implementation, the scalability of the in-
frastructure and complex certificate management [8], [12]. In
addition, it is not widely deployed. In contrast, the pre-shared
key is not very secure and must be distributed out of band
(e.g. telephone or registered email) before IKE negotiations.
Moreover, in large-scale deployments a single key is assigned
to an entire domain, this leads to compromise of security.
Therefore, we propose a new IKE authentication scheme
based on certificateless public key infrastructure. The proposed
scheme offers significantly reduction in system complexity,
eliminates the use of certificate to guarantee the authenticity
of public keys, and reduces the cost for establishing and
managing the certificates.

A. RSA Digital Signature

The idea of digital signature can be traced back in [3] where
it is based on asymmetric public key cryptosystem. Digital
signatures can guarantee message integrity and authenticity
in unsecure network. It consists of three main algorithms:
key generation, signing and verification. In key generation
process, public key and private key are generated randomly.
To generate the signature, the issuer first calculates a digest of
his message using a hash function. Then he encrypts the digest
with his private key to generate the signature. Both message
and signature are transmitted to the responder. Upon receipt
of the message and signature, the responder first decrypts
the issuer’s signature into a digest using the issuer’s public
key. Then the responder calculates the digest from the issuer’s
message. If the two digests match, it proves that the message is
from the issuer and unaltered. The most widely known digital
signature scheme is RSA.

RSA is named after the initials of the three creators: Ron
Rivest, Adi Shamir and Leonard Adleman[13]. It is a public
key cryptosystem which is widely used today. The security of
RSA is based on the difficulty of factoring two large integers
where these integers are the mathematical relationship between
public and private keys. The algorithm can be summarized as
follows.

1) Generate two prime numbers p and q such that p �= q.
2) Compute n = pq which has an equivalent length of key

size, e.g. 1024 bits.

TABLE I
COMPUTATIONALLY EQUIVALENT KEY SIZES

Security Level (bit) ECC (bit) RSA/DH/DSA (bit)

80 160 1024
112 224 2048
128 256 3072
192 384 7680

3) Compute the totient φ = (p-1)(q-1).
4) Choose an integer e such that 1 <e <φ and GCD(e, φ) =

1.
5) Compute d such that 1 <d <φ and ed ≡ 1 mod φ.
6) The public key is (n,e) and the private key is (n,d) where

the values of p,q and φ should be kept secret.
7) Signing Process: Given a message M ∈ M = {0, 1}∗ ,

compute signature s ≡ md mod n.
8) Verification Process: Compute v = se mod n. The signa-

ture is valid if and only if v = m.
The strength of the signature depends on the size of the

key used. An advance in cryptanalysis and computing power
requires public key sizes to grow over time to ensure it
is secured for particular period of time. Table 1 shows the
equivalent key sizes of various public key cryptosystems.

III. CERTIFICATELESS PUBLIC KEY INFRASTRUCTURE

In the certificateless public key infrastructure (CL-PKI), the
authenticity of a public key is ensured by the Key Generator
Centre (KGC). Unlike the trusted third party in PKI, the KGC
does not have access to the node’s secret key. Instead, the
KGC generates a partial secret key and transmits it to the
end node. Upon receipt of the partial key, the node combines
partial secret key, KGC’s public parameters, and node’s secret
value to form node’s secret key. In this paper, we focus
on the certificateless signature (CLS) scheme as only the
authentication service is needed. In this section, we describe
the concepts of bilinear pairing and related mathematical
problems. We then present the model and algorithms used in
CLS. The security and efficiency of the CLS can be referred
to the original paper [15].

A. Preliminaries

In CL-PKI, a pairing function will give a mapping from a
cyclic group to another cyclic group. Particularly in our case,
we have a mapping from a subgroup of additive group of
elliptic curve points to a subgroup of multiplicative group of
the finite field. Let E(Fq) be an elliptic curve over finite field
Fq , with q a large prime

y2 ≡ x3 + ax + b (mod q) (1)

Let (G1, +) and (G2,×) be two cyclic groups of prime order
r. The pairing function is a map e : G1 × G1 −→ G2 with
the following properties [15]:

Bilinearity: ∀P,Q, R, S ∈ G1

e(P + Q, R + S) = e(P,R)e(P, S)e(Q,R)e(Q,S) (2)
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Consequently, ∀a, b ∈ Z
∗
r , we have

e(aP, bQ) = e(aP, Q)b = e(P, bQ)a = e(P, Q)ab (3)

Non-degeneracy: If P is the generator for G1, then

e(P, P ) �= 1 ∈ F
∗
ql (4)

where F ∗
ql is a generator for G2 and l is an embedding

degree.
Computability: For any P, Q ∈ G1, there is an efficient
algorithm to compute e(P, Q).

B. Certificateless Signature

A formal CLS structure is a 7-tuple polynomial time algo-
rithms: Setup, Partial-Secret-Key-Extract, Set-Secret, Set-
Secret-Key, Set-Public-Key, Sign and Verify. The KGC will
execute Setup and Partial-Secret-Key-Extract whereas the
node will execute Set-Secret, Set-Secret-Key, Set-Public-
Key. The algorithms are based on the proposed CLS scheme
by [15] which provide a better performance compared to
[9],[18]. We recall the details of the algorithms here. The
discussion on the security and performance can be found in
the original papers [15],[9],[18].

1) Setup: This algorithm calculates the parameters of CLS
params and master secret key msk. This algorithm runs as
follows:

i. Run a generator to output two cyclic groups G1 and G2

of prime order r and a bilinear pairing

e : G1 × G1 −→ G2 (5)

ii. Choose an arbitrary generator G ∈ G1 and generate

g = e(G,G) (6)

iii. Select a random s ∈ Z
∗
r and set master public key

KKGC = sG (7)

iv. Choose hash function

H : {0, 1}∗ → Z
∗
r (8)

The outputs of this algorithm are:
• the domain parameter which is public

params =< e, g, G, KKGC ,H > (9)

• master private key which is private to KGC

msk = s ∈ Z
∗
r (10)

2) Partial-Secret-Key-Extract: This algorithm is executed
by KGC when a node requests its partial secret key. The inputs
of this algorithm are params,msk and the node identity ID.
Prior to the release of the partial secret key, the node must be
authenticated by the system. The algorithm returns

partial_key = (H (ID) + msk)−1
G ∈ G1 (11)

The key is transmitted over a secure channel to the node.

3) Set-Secret: This algorithm computes the secret value
used in CLS. The node chooses a random sID ∈ Z

∗
r . This

secret value will be used in the next algorithm to create the
node’s secret key.

4) Set-Secret-Key: This algorithm creates node’s secret key.
This key is kept safely by the node and it will be used in the
signing process.

nsk = (partial_key, sID) ∈ G1 × Z
∗
r (12)

5) Set-Public-Key: This algorithm takes as inputs the
params and sID to compute the node’s public key. This
public key will be used to verify the signature. The public
key corresponding to the node is

npk = gsID ∈ G2 (13)

6) Signing Process: Given a message M ∈ M = {0, 1}∗,
this algorithm uses the params, and ID as well as its npk
and sID to compute the signature, σ. The steps are as follows:

i. Choose randomly x ∈ Z
∗
r

ii. Compute
t = gx ∈ G2 (14)

iii. Calculate the hash

h = H (M ||ID||npk||t) ∈ Z
∗
r (15)

iv. Compute S

S = (x + h · sID) · partial_key ∈ G1 (16)

v. The signature on M is

σ = (S, h) ∈ G1 × Z
∗
r (17)

7) Verification Process: To verify the authenticity of a
message M with the signature σ = (S, h), the other node
computes

t′ = e (S, H (ID)G + KKGC) (npk)−h (18)

h′ = H (M ||ID||npk||t′) (19)

The message is authenticated if and only if h′ = h.

IV. IKE AUTHENTICATION USING CERTIFICATELESS
SIGNATURE

In this section, we discuss a new IKE authentication scheme
with certificateless signature based on bilinear pairing over
elliptic curve. This scheme is called CL-PKI Type A. We
employ pairing-based elliptic curve cryptosystem due to the
small key size and low computational overhead. So far, there
have been a total of eleven IANA-assigned attribute numbers
for Phase 1 IKE authentication. Here, we suggest a twelveth
option: CL-PKI Type A, specified by attribute value 12 in
the SA. In conjunction with the scheme, we specify a set of
elliptic curve group parameters gparams. These consist of
the recommended choice of the curve itself and the field it is
defined over.
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TABLE II
PARAMETER gparams FOR ELLIPTIC CURVE

gparams value (in Hexadecimal)
q 88EC1409 B09802F9 C8CA36B4 8E2BFB6F

6D86E09F 5B523FC7 26A3840D B9836B52
B05B3013 7923706B 87BB8012 037B4C76
3C2A3762 CBBFDCDB 074712B6 BAF4360B

r FFFFFFFF FFFFFFFF FFBFFFFF FFFFFFFF
FFFFFFFF

where:
• q prime order which satisfies 3 mod 4
• r subgroup order of Solinas prime

A. Pairing-friendly Elliptic Curve

Pairing-based cryptography is a cryptography technique
in which bilinear map is constructed between two groups
where the discrete logarithm problem is hard. The pairings
are constructed based on Weil or Tate pairings on elliptic
curve over finite fields. There is large number of constructions
of pairing-friendly elliptic curves with prescribed embedding
degree[5]. However, [11] showed that a supersingular elliptic
curve must have embedding degree l ≤ 6 with #E(Fq) = q+1
and #E(Fq2) = (q + 1)2. In this work, a supersingular
elliptic curve with an embedding degree 2 will be used to
implement CL-PKI Type A scheme. The underlying of this
proof of concept is based on C implementation of pairing-
based cryptography available at [10]. Type A curve is used by
applying modified Tate pairing on the curve y2 = x3 +x over
the field Fq. The group parameters gparams for the elliptic
curve are defined in Table II.

B. KGC Setup

In CL-PKI, a KGC is involved in generation of public
parameters and deriving a partial secret key from the node’s
identity whose is assumed to be unique in a trust domain.
Initially, KGC executes setup algorithm to generate a list of
public parameters params and master secret key msk. This
algorithm is executed only when a new set of params needs
to be generated or in case of KGC is under compromised
attack (in practice very seldom). This algorithm takes as
input the system security parameter k. Strength of public
domain parameters depends on security k which corresponds
to RSA modulus bit-length of comparable of security. In this
implementation, we use k = 1024 bits which attains 80 bits
of cryptographic strength [2]. This level of security is the
minimum requirement to ensure any adversary to perform
computationally-intensive cryptanalysis attack. The sample of
parameters used for this implementation is listed in Table III.
Apart from the parameters generated in section III-B, two
additional parameters are listed. KGCADDR and KGCPORT

are IP address or hostname of the KGC and port on which the
KGC is listening. These two parameters are used by the node
to request partial secret key from the KGC.

C. Distribution of Shared, Public Paramaters

In certificateless public key infrastructure, all end nodes
are required to know the domain public parameters params
in order to generate their public/secret keys pair. The most

TABLE III
PARAMETER params FOR TRUST DOMAIN

params value
e "modified Tate pairing"
g 75338D8E 3B51425D B8E1352E 8AF0563F

EFE1A07C 9AAC8614 CED241D7 EE120776
DFABB10E 3A00EEA4 0FAD9165 DDCE5130
470AF6D9 83D8645F 0F5862C1 A500FC36,
29BF49F5 9CBBC692 47E41FDB 8B790189
CD0F8470 610AF6ED CD31BD9D 4121F9FF
08EC9103 1B65D9B9 990C3753 092600C4
81419A65 EBF3F2E0 76366F24 AC666A80

G 746C02FB 2B09F5B4 BB4C33BC 7DF83398
E7A4AA81 4DFC2E64 955C7DFE EB52BD8B
343574B7 261BB94B F4C510DF 9199F14F
2C783CD6 9D86D46D CBADE603 F162AE44,
3354F695 533E0A30 009231BF 87B12361
31740936 DC88F5FF 332BA46D 2D187594
99936B23 6D495138 54F062AA 8400ACDF
794809AA 6573971D F458271A 581450FA

KKGC 5A595019 36F15AD4 82CB1209 30EFE324
F72DEA27 38B2C085 3148A1A0 D962A4B9
CED8531C 8047F337 EA66C34F 7BA9E439
44055EA9 4293F23C 31741EC0 0C18380E,
03DEBDEA 814D2D36 1EEC1CEF 88819F89
B790DB77 B2B25B65 83EC7763 DCF5D85D
AC292BB7 13E8579C CFEF522E 57EBB5C1
12C53BC0 4D766A49 312F4742 1C94DF46

H 1.3.14.3.2.26 (SHA-1 OID)
KGCADDR kgc.testbed.com
KGCPORT 80

0                              16              24            32 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| Flag             |   Protocol    |   Algorithm | 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

/ version     |         datalength          /  

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

/                            params                           / 

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fig. 1. KGCPARAMS DNS Resource Record

feasible solution to distribute the KGC’s params is to use the
existing network infrastructure. Smetters and Durfee proposed
to piggyback this information to DNS reply [14]. Due to the
simplicity of the mechanism, we enhance this distribution
technique for our implementation. Initially, KGC executes
setup algorithm to generate params. KGC is then responsible
to publish the params to DNS server. To provide secure and
authenticating update to DNS server, KGC deploys Trans-
action Signature (TSIG) [17], a cryptographically means of
identifying each endpoint of a connection that involves in
making or responding to a DNS update. Under compromise
attack, KGC is forced to regenerate and republish params to
DNS server. Presumably, KGC is on a closely-monitored and
well-protected node, frequent dynamic update can be avoided
for a reasonably long period of time.

To realize the distribution of KGC’s params, we introduce
a new Resource Record (RR) type to DNS. In this section, we
discuss the format of RR fields associated to the new RR type,
i.e. KGCPARAMS, as shown in Figure 1. RDATA portion of
KGCPARAMS RR utilizes the same format as that of KEY
RR [4]. RDATA comprises of flags, protocol, algorithms and
two additional fields, version and params. Version field is an
integer that defines the version of the params generated in a
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single trust domain. Final field of RDATA represents a base64
encoding of the params.

To initiate the IPSec communication, the client initially
sends KGCPARAMS query to DNS server by setting the
QNAME of the query to Fully Qualified Domain Name
(FQDN) of the responder. Once obtained the DNS response,
the client extracts KGCADDR and KGCPORT from params
to contact KGC for requesting partial_key. Upon receiving the
query from the client, KGC runs partial_secret_key_extract
algorithm by taking the client’s identity, params, and msk as
inputs to generate IPv6 client’s partial_key. This partial_key is
transmitted to the client over a secure channel. Upon receipt of
the params and partial_key, the client generates public/secret
keys pair (nsk, npk). For the responder, the DNS query needs
to be preformed once it received the first IKE message from
the initiator. In this case, the responder is pre-configured with
the FQDN of the KGC. As an example, the node could
be configured with the name “kgc.testbed.com”, where the
testbed.com is the domain name. The responder generates a
DNS query by setting the QNAME to the name of the KGC.
The query has QTYPE set to KGCPARAMS so that the DNS
server replies the params to the responder. Upon receipt of
the params from DNS server and partial_key from KGC, the
nodes generate secret/public keys pair (nsk, npk) as shown in
Table IV.

D. New IKE Authentication

Because of the inherent limitations of the current implemen-
tation of IKE authentication by using pre-shared key and PKI
certificate-based, we propose new IKE authentication scheme
which has no impact on the existing network infrastructure,
but it requires both end nodes to have the appropriate IPSec
software. The framework CL-PKI Type A IKE authentication
is inherited from IKE authentication with digital signature.

We propose to implement CL-PKI Type A in the Phase 1 of
the IKE negotiation. This scheme is used to authenticate both
end nodes and to provide the protection for the upcoming
Phase 2 IPSec negotiation. To initiate IKE negotiation, the
exchange of first two messages is identical to the existing
scheme. The new scheme only has impact on the follow-
ing subsequent exchanges. The nonce payloads Nclient and
Nserver that are sent in third and fourth message normally
are a large random number between 64 bit and 2048 bits.
Instead of random number, this scheme transmits npkclient or
npkserver to remote node. This public key is used to validate
and verify the signature that will be sent in the later stage of
IKE negotiation.

The encryption key SKEY IDe is derived from messages
3 and 4 as described in [7]. This key is used to encrypt and to
provide confidentially for IKE messages 5 and 6. These last
two messages are strictly for exchanging the node identity,
proving the identity and retroactively authenticating all the
previous messages. The ID payload contains information about
the identity of the client or server. This scheme proposes to
populate client and server IP addresses in ID payload. The
server then can use the ID as a lookup key for IKE SA
policy and the client’s public key npkclient, and as part of

TABLE IV
CLIENT AND SERVER KEY PAIRS

(nsk, npk) value
nskclient 6720C35D 589137D8 65402209 40729D26

DF0FED11 40C87086 512CBEC0 CE6626BC
B795D32A 9B8DF98B 6E684EB2 85088F08
A4C02BB5 7B791970 A4D9459F 5E7B00F8,
7F6FE7B5 7A520107 CB84F61B 62AFF33E
07443F1B E8A2FDA8 8A828021 AFAA9C87
3A6978E3 CA45A317 8101B1AF F044166B
497E2CD4 0DA69E99 AD302F4F C8989344,
19CAFF80 7E863C1A 0677588D E9200430
617E1AAE

npkclient 207B9091 7918DC9B 482F4BC4 192244C7
0DB1FE04 429670AA 44100626 B8962E85
3E47A90D 1B02BFD9 A0F225F5 1EA3AE50
BE1B2F4A 6DC49CAC 5BBA636C FC9DD35B,
612E1920 E55AD010 23B2FAAD 3AECD562
45383E11 6327E9BC C45221E6 3207E5AA
E2A71CF1 0421BBE3 E722E1DE 225C296F
7412C4BC 1B6B87AD B2406AD4 7FA12120

nskserver 378F3C29 93CD0500 CBB1ED77 880834F9
BEF07C5F F5217FAD BCA2BB27 17FC7ED0
29B0F942 27EDF517 4A500413 D549F0FD
000DFD7D C5EABAD7 B111B636 8BE1DDB1,
172A7952 261A56C8 3C7EA4FE A639E8DE
FD558755 3FF465AD 77F05D12 6F847A43
0ED6CB9A FC340DBA 1F3F2515 915C8099
72315253 8518B6F9 A9F4C3CE 257BB7E8,
B967AFB6 065EE2CE F5A6A8A0 160130DD
33B3D6D4

npkserver 7D70337C DCD122CA FD30A82B 6B071D9F
41431D3D 42380B7B F0A601F3 F6D33972
B023FD51 8DBC20EC 5BB6F989 1B850D25
2CB6389A 47358A18 5E6441D2 6E484DDD,
0CBE45EB 75ECAC53 A3D7164B 8DE864AF
05C1D046 F661869F 6EE7AABE 6C3BCFB1
8410721D BCB9E228 D22DD17B 400EF4CC
BDE7DC23 BD0FD613 19F8E7C0 B326D930

the security attributes that are related to the generation and
verification of authenticators generated by the initiator and
responder, Hashclient and Hashserver, respectively.

Until the end of IKE message 4, all exchanges are not
authenticated. To provide mutual authentication, both nodes
need to provide a digital signature in the exchange that the
other node will verify. In this case, the client and server
authenticate their exchanges by sending signed Hashclient

and Hashserver respectively, as defined in the Figure 2 at
the last two exchange messages.

The client and server execute the signing algorithm sign
that takes Hashclient or Hashserver, client or server ID,
params, and end node’s secret key as input. Upon reception
of IKE third exchange, the client and server decrypt the
messages to obtain the ID payload and signed Hashclient

or Hashserver. Finally, the server’s verification algorithm,
verify, inputs Hashclient generated by the client by using
all the security attributes transmitted prior to this verification,
client IDclient, params, client’s public key npkclient, and
signature Sig- (Hashclient) . The algorithm returns output 1
if the signature is valid and 0 otherwise. Figure 2 summarizes
the new IKE authentication by using CL-PKI Type A.

The signature is a combination of a point in group G1 and
a number in Z

∗
r , noted as S and h respectively. As outlined

in equations (18) and (19), the verification process involves
in computing new values of t′ and h′ which are based on the
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Fig. 2. IKE messages exchange

TABLE V
EXAMPLE OF SIGNATURE

variable value (in hexadecimal)
HashServer ECA0C540 86394CEE F8B0DB85 46AA9112

B985E777
h 32424446 31383439 31373231 44424345

33373633
S 83E84284 44F2EB3A 0C3FB086 9B0CF15C

0CA7C097 A8999D46 F29E4223 F233F1F4
178065E5 8574F01A D39FD968 C72996A9
4360CE34 F6F7734E 7E9FDF89 4A333793,
4D1DD10A F173DE8A 6BAD838E A4683580
0548D4F6 54685978 9B632722 FD08B1A4
2A3CFC25 6D689731 239D460E 7FD71DA2
81C3BED2 F751EFE3 F07AFA39 B6B61B15

Sign(HashServer) (S,h)

transmitted signature, and in comparing the values of h and
h′. The sample of values related to signing and verification
processes of the server are shown in Tables V and VI.
The Hashserver represents the resulting value from hashing
function of a string derived from secret material known only
to the active nodes SKEYID, both cookies of active nodes,
SA, and IDserver. The signing and verification processes for
the server took place before and after the transmission of IKE
message 6. From Tables V and VI, we notice h = h′, which
indicate the the verification of the authenticity of the server is
successful.

TABLE VI
EXAMPLE OF VERIFICATION

variable value (in hexadecimal)
t’ 556F8401 D16E0939 75C87CE4 8B072861

5F9EFC7F EBBCAEB9 73AA82D8 3672EB05
3B9B6E46 2692B42F AE7AB8EC A1665276
FDD0EE53 5014006C 2C3A5941 3C20B597,
24CCEB5B 11C1AB11 7BC62CF7 57E1AEE8
FD41E73B A3EDB09C 6CF55C0C 106D07AA
DADE9C98 98B30157 39A08D81 11BD880B
B63FEFBA 1197B2EB 289286FD 3B56347C

h’ 32424446 31383439 31373231 44424345
33373633

TABLE VII
PUBLIC KEY SIZE OF RSA AND CL-PKI

Algorithm RSA 1024-bit CL-PKI-160-bit

Public Key Size 131 bytes 128 bytes

V. PERFORMANCE ANALYSIS

We evaluate the performance of CL-PKI and make com-
parison with a well-known RSA cryptosystem in terms of the
size of public key, the size of signature block, and the speed
for generating or verifying the signature.

A. Public Key Size of RSA and CL-PKI

An RSA public key consists of the modulus n and the public
exponent e. In a 1024-bit RSA system, the length of n is 1024
bits and a common value for the public exponent e = 216 + 1 =
65537. By using a small value of e, the public key operation
can be executed very fast. Thus, 1024-bit RSA public key
requires 128 bytes for the modulus and 2 + 1 = 3 bytes for
the public exponent field. The total size of the RSA public
key is then 131 bytes.

The public key of CL-PKI is represented as an element in
the finite field Fql and it is implemented as Fq[X]/f (X), where
l is the embedding degree and f (X) is irreducible polynomial.
To achieve 80-bit security level, the size of the extension field
Fql should be at least 1024 bits long for finite field Fq size of
512 bits and the group order E(Fq)[r] of 160 bits long. This
is due to the fact that element in Fql is represented by using
polynomial basis (1, X, X2, ..., Xl−1) of degree at most l -
1, where X is a root of the irreducible polynomial over Fql .
In this work, we implemented CL-PKI by using supersingular
elliptic curve with embedding l = 2. For an element A(X) in
Fq2 , A(X) is represented as a1X + a0 (a1, a0 ∈ Fq). In our
implementation, A(X) is encoded as (a1, a0). Therefore, the
CL-PKI public key consists of two 512-bit elements, giving a
total key size of 1024 bits or 128 bytes.

B. Signature Block Size

RSA signature length is a function of modulus n in bytes.
Hence, 1024-bit RSA signature can be represented in 128
bytes. CL-PKI signature block consists of (S, h), where S is a
point on the elliptic curve (S ∈ G1) and h is an 160-bit output
of the pseudo-random function based on SHA-1. For 512-bit
elliptic curve, the S is represented by two 64-byte numbers.
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TABLE VIII
SIGNATURE BLOCK SIZE

Algorithm RSA 1024-bit CL-PKI-160-bit

Signature Block Size 128 bytes 85 bytes

TABLE IX
SIGNING AND VERIFICATION EXECUTION TIME (IN MILLISECONDS)

Sign Verify

RSA CL-PKI RSA CL-PKI

0.662 2.975 0.041 4.112

Therefore, the length of the signature block for CL-PKI is 128
+ 20 = 148 bytes. However, there is a standard compression
technique that can be used to reduce the elliptic curve point
size by a factor of 2. Elliptic curve point compression allows
the y-coordinate of the point to be represented compactly using
a single additional bit [1]. If we deploy the point compression
in this scheme, S could be represented by using one 512-bit
value and one additional bit. This would then require 64 +
1 = 65 bytes, giving a total signature size of 85 bytes. The
bandwidth or storage used is considerably less than RSA if
only one point is sent.

C. Signing and Verification Execution Time

In this section, we present the analysis on the signing and
verification execution times for CL-PKI and RSA cryptosys-
tem. The experiments were conducted on a 2.93 GHz Core i5
Linux PC. We have used a popular OpenSSL 0.9.85o crypto
library [16] to implement the RSA cryptographic functions.
For RSA signature generation, the scheme uses 1024-bit public
modulus n and e =216 + 1(65537) for public exponent. For
CL-PKI, we implement the scheme in C using pairing-based
cryptography (PBC) library [10] (version 0.5.8) for the elliptic-
curve and pairing operations. Table IX shows the experimental
results for an average execution time of signing or verification
operation, where the amount time specified is for a single
operation. We run each specific operation 100 times.

Based on the results shown in Table IX, RSA signing
operation is generally slower than the verification operation.
RSA operation is essentially a modular exponentiation. Tech-
nically, one modular exponentiation involves in each signing
and verification operation. By using small public exponent
value (e = 65537) for the public key, the verification operation
can be performed faster than signing operation.

According to the observations, 1024-bit RSA signing oper-
ation is about 5 times faster than the one of CL-PKI. However,
RSA verification operation totally outperforms CL-PKI. This
is due to the fact that pairing is considered to be the most com-
putationally expensive operation in certificateless signature.
Therefore, it is important to efficiently implement the pairing
computation. In CL-PKI, the pairing e(G1, G1) = g can be
pre-computed and published as the public parameter params.
Thus, it eliminates the pairing computation in the signing
operation, and it only needs to perform one computationally
expensive pairing in the verification operation. There are two

expensive operations underlying the CL-PKI scheme, namely,
modular exponentiation and pairing. Unlike CL-PKI signing
operation where there is only one modular exponentiation,
the verification operation involves one modular exponentiation
and one pairing computation. Therefore, CL-PKI verification
operation is slower than signing operation.

VI. CONCLUSION

This paper proposed a new IKE authentication based on
certificateless signature in order to eliminate the need of
certificate in IPSec. Cryptosystem based on elliptic curve
offers good security with smaller key size compared to RSA.
Smaller key size results in faster computation and efficient
use of computing power, bandwidth, and storage. However,
elliptic curve-based certificateless signature does not inherit
this advantage. In this paper, we implemented certificateless
signature by using a supersingular elliptic curve with an em-
bedding degree 2. If the size of an element of Fq is 512 bits and
embedding degree l is 2, then the size of element of Fql and the
size of g = e(G1, G1) are 1024 bits. Since the public key of the
proposed scheme is one of the elements in Fql , the key size is
approximately the same length with 1024-bit RSA. Moreover,
due to computationally expensive operation of bilinear pairing,
the scheme introduces extra processing overhead in verifi-
cation algorithm. Nevertheless, the proposed scheme offers
significantly reduction in infrastructure complexity, eliminates
the use of certificate to guarantee the authenticity of public
keys, and reduces the cost for establishing and managing the
certificates.
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