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Abstract—Smoothing or filtering of data is first preprocessing step
for noise suppression in many applications involving data analysis.
Moving average is the most popular method of smoothing the data,
generalization of this led to the development of Savitzky-Golay filter.
Many window smoothing methods were developed by convolving
the data with different window functions for different applications;
most widely used window functions are Gaussian or Kaiser. Function
approximation of the data by polynomial regression or Fourier
expansion or wavelet expansion also gives a smoothed data. Wavelets
also smooth the data to great extent by thresholding the wavelet
coefficients. Almost all smoothing methods destroys the peaks and
flatten them when the support of the window is increased. In certain
applications it is desirable to retain peaks while smoothing the data
as much as possible. In this paper we present a methodology called
as peak-wise smoothing that will smooth the data to any desired level
without losing the major peak features.

Keywords—smoothing, moving average, peakwise smoothing, spa-
tial density models, planar shape models, wavelets.

I. INTRODUCTION

SMOOTHING and differentiation of signals corrupted by
noise is a requirement in all the fields concerning analysis

of data where obtaining derivatives by direct measurement is
difficult or impossible. The evaluation of the derivatives of an
experimentally measured data is an ill-posed problem, because
the available values are finite in number and affected by errors.
In fact, the measurement errors, which can never be avoided,
complicate the differentiation, because this amplifies the noise
present to such an extent that additional signal treatment such
as smoothing becomes essential.

Moving average is the primitive method of smoothing the
data widely used in many applications involving data analysis
[1, 2]. Different moving average methods were proposed in
literature [Jeffrey] with different weights/kernels [3], Savitzky
and Golay generalized the moving average method by fitting
a polynomial of degree p to a moving window of data points
of length L(=2k+1) [4]. Savitzky and Golay method suffered
from a limitation of truncating the data by k-points at each end.
Peter A Gorry used general least squares method to overcome
this limitation to accommodate end points [5]. Smoothing can
be achieved by convolving with a kernel function that varies
for different applications, most widely used weight functions
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are Gaussian or Kaiser. Function approximation by polynomial
fitting also produces smoothing of the given data. Smoothing
is also carried using Fourier series expansion but the kinks
that are usually present in any data can never be reconstructed
with any finite number (however large)of terms included in the
series approximation, also, at the points of discontinuities there
are ripple effects whose oscillations increased with increase
in the terms included in partial sums famously called as
Gibbs phenomenon. Many special weighted window designs
are proposed in literature to handle Gibbs oscillations such
as Lanczos and Fejer who used weighted Fourier coefficients
to reduce these ripple effects [6]. Fredric Harris in his study
compared many different window functions and suggested the
use of Kaiser or Blackman-Harris windows as most optimal
designs [7]. Recently, wavelets are playing an important role
in data analysis; wavelets smooth the data to the required
degree, the magnitude of smoothing achieved is dependent on
the choice of basis function and a threshold applied on wavelet
coefficients [8].

Almost all smoothing methods destroy the peaks and
flatten them; the amount of flatness depends on the nature and
support of the weight function. Wider the support greater is
the smoothness and hence completely removing some of the
important features like peaks. Many times it becomes difficult
to retain required peaks and suppress the high frequency noise.
Situations like these are not uncommon in areas of image
processing such as restoration of certain important features,
edge detection where the neighboring pixels are not important,
filtering of SAR data, etc. In this paper we present a method-
ology called as peak-wise smoothing that will smooth the
data to any desired level without losing the major peaks. The
present methodology stems from the observation that selection
of larger width weight functions/kernels will collapse the most
important peak features of the data, hence the requirement of
achieving enough smoothing without losing major features.
The strength of this methodology is that it is effective with any
kind of smoothing technique. This methodology is similar to
piecewise smoothing assuming that the data between peaks
are taken as pieces. This methodology was experimented
on two data sets, one from spatial density models of space
debris environment and the other on slope distance curves of
regular shapes in a binary image, and the results are presented.
The paper is organized in the following manner: in section
2 we present different methods of data smoothing, section
3 deals with peak identification using wavelets, the present
methodology is described in section 4, description of data
sets used for testing the present methodology is presented in
section 5, results and discussions are elaborated in section 6.
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II. DATA SMOOTHING METHODS

In this section we quickly review some of the smoothing
methodologies that are frequently used in many smoothing
and filtering applications (1) Moving window methods (n-
point moving average, n-point moving median Savitzky-Golay
method, Gaussian, Kaiser) (2) Function approximation method
(Polynomial, Fourier, wavelet)

1) Moving window methods: All moving window smooth-
ing methods are based on convolution. Different window
functions are designed to extract a particular aspect of the data,
such as desired frequency, while eliminating other aspects.
These methods falls in two categories, spatial domain methods
that directly work on the data itself, and frequency domain,
which are based on Fourier transforms. We will not delve
much on frequency domain methods as there are abundant
resources available to describe them in a separate subject
called Filter Design. However we will present one optimally
designed window function given by Kaiser.
a. Moving average method: In many real time applications, the
observations x[n], n=1,2,..N, are smoothed by a weight vec-
tor/filter wj . Smoothing creates a new sequence yj according
as, y[n] = x[n] ∗ w[n] = 1

2k+1

∑k
i=−k x[n− i] for instance,

y[j] = 1
3 (x[j− 1]+x[j]+x[j+1]) replaces x[j] by a moving

average of x[j] and its two nearest neighbors. Note that the
moving-average systems significantly reduce the short-term
fluctuations in the data, and the system with the larger value of
k produces a smoother output. The challenge with smoothing
applications of moving-average methods is how to choose the
window length N so as to identify the underlying trend of the
input data in the most informative manner. The general form
of moving-average methods with unequal weights is given
by y[n] = x[n] ∗ w[n] =

∑k
i=−k w[i] ∗ x[n − i]. In many

situations it is required that weights must satisfy w[j] ≥ 0
and

∑k
i=−k w[j] = 1.

b. Savitzky-Golay method: This is a generalization of moving
average method given by Savitzky & Golay [4] by performing
a least squares fit to a small set of L(=2k+1) consecutive data
points to a polynomial and taking the central point of the fitted
polynomial curve as output. The smoothed data point is given
by the following

y[n] = x[n] ∗ w[n] =
∑k

i=−k
Ai∗x[n−i]∑k

i=−k
Ai

, where,

w[n] = An∑k

i=−k
Ai

, −k ≤ n ≤ k here Ai controls the

polynomial order.
c. Moving median method: The smoothed sequence yj from
the data xj is given by y[n] = median{x[n − i], i =
−k to k}, n ≥ k, where 2k+1 is the window size.This method
essentially removes peaks present in the data, usually not
required for the kind of applications mentioned above.
d. Smoothing by Gaussian Window: The given function/data
x(t) is convolved with a Gaussian kernel of the form w[t] =

1√
2πσ

exp(−t2

2σ2 ), the degree of smoothing is determined by
the standard deviation . In fact, we can view Gaussian filter
also as a weighted moving average filter. This kernel function
sets larger weight factors for points in the center and smaller
weight factors for points away from the center.
e. Smoothing by Kaiser Window: Kaiser designed a two

parameter window function by using weights based on Fourier
coefficients, given by

w[n] =

{
1

I0(α)
I0(α

√
1− ( n

N )2 ), for −N ≤ n ≤ N
0, else.

where, I0(x) =
∑∞

k=0[
1
k! (

x
2 )

k]2 is the zeroth order modified
Bessel function. The parameter controls the shape of the
window and N is half width of the window size.

2) Smoothing by Function approximation:
a. Smoothing by Polynomials: Least squares polynomial

fitting to the given data also gives a smoothed output of the
given data but in the case where the data are widely spread
with higher value of standard deviation then polynomial fitting
gives very poor performance. The polynomial functional form
is given by x(t) = a0 + a1t + a2t

2 + + akt
k. Also another

limitation of polynomial fitting is the choice of polynomial
order and its dependence on the number of data points.
b. Fourier smoothing: Fourier approximation of the given
function/data using a sum of weighted sine and cosine terms of
increasing frequency also produces smoothing to the data. The
data must be equi-spaced and discrete smoothed data points
are returned. The major advantage of this method is that it
achieves very good smoothing of the data depending on trun-
cating the number of terms taken for expansion (called as low
pass filtering in Signal processing literature) or thresholding
the series up to a tolerable error. Truncation of Fourier series
leads to Gibbs phenomenon [6]. Truncated Fourier approxima-
tion is given by x(t) = a0

2 +
∑N

k=0[akcos(kt) + bksin(kt)]
c. Smoothing by thresholding wavelet coefficients: The

wavelet transform with a wavelet function having n vanishing
moments is a multi-scale differential operator, i.e., it has both
the properties of smoothing and differentiation [8]. Signals x(t)
are represented by a series such as
x(t) =

∑∞
j=−∞

∑∞
k=−∞ djkψ

j
k(u), where,ψj

k(u) = ψ(2ju −
k) are wavelet functions and dkj are wavelet coefficients dkj =∫
x(u)ψj

k(u)du. An important property of wavelets is the
possibility to show that the amplitude of wavelet coefficients
is associated with abrupt signal variations or details of higher
frequency. Effective thresholding techniques are available to
denoise the high frequency content of the signal, here we
use the soft universal thresholding τ = σ

√
2log(m), if σ

is unknown a robust datadriven estimate σ̂ can be used.
Smoothing is achieved by setting all those coefficients dkj that
are less than the threshold τ to zero.

III. PEAK IDENTIFICATION WITH WAVELETS

The presence of abrupt variations/peaks in any data carry
important information which gives an indication of some
transient behavior of the underlying physical phenomenon.
Classification, detection and measurement of such singularities
using wavelets was given by Mallat [9]. The advantage of
wavelet transform is that they can characterize the local
regularity of the data. The presence of singularities or sharp
variations in the data is sensed in detail coefficients of almost
all levels of decomposition which acts as a key in many
wavelet based peak estimation methods. At higher level of
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Fig. 1. Figure(1) Boundary shape data and its decomposition up to 10 levels
using symlets basis of order 2

decomposition, the magnitude of most of the detail coefficients
at higher levels of decomposition that corresponding to local
and small variations are zeros or close to zero and the rest
corresponds to large or sharp variation which occurs at peaks.
Using this fact as a criteria and fixing a threshold to filter out
the detail coefficients at one particular level of decomposition
and there by sorting the remaining coefficients will leads us
to find the exact peak location and thus the number of peaks.
Figure(1) shows a signal and its detail coefficients decomposed
up to 10 levels using Symlets basis function of support 2.
Observe that choosing an appropriate threshold at level 2 detail
coefficients gives exact peak locations.

IV. PRESENT METHODOLOGY

This method is mainly dependent on two techniques,
estimation of peaks in the data, and smoothing method. The
present procedure employs the following steps
1. Read the data (xi, yi) , i=1,2,3,....,N, and choose
a smoothing method movingaverage, Savitzky −
Golay, wavelets, etc,..
2. Locate the peaks that are to be retained using wavelets (as
described in III ), say xp1 , xp2 , xp3 , .....xpk

are k peaks.
3. Partition the data into k+1 pieces at the peak locations
obtained in 1 [x1, xp1

], [xp1
, xp2

], [xp2
, xp3

], ....[xpk
, xN ].

4. Smoothing the data that lie in these partitions with the
selected smoothing method ( if window smoothing method
is chosen in step (1) then leave those partitions without any
manipulation if the number of data points in that partition is
less than window size )
5. Join the smoothed pieces obtained in (4), that results in
peak wise smoothing of the data.

V. DESCRIPTION OF EXPERIMENTAL DATA

In this section we describe data sets used for testing the
present methodology, one data set is about spatial density
models of space debris data and the other regards slope
distance curves of a binary image.
Space Debris Data : Any man-made object in orbit around
the Earth that no longer serves a useful purpose is defined as
space debris. As of Jun 2010, approximately 15,550 debris
objects larger than 10 cm are being tracked in Earth orbit
[10]. Because of their high orbital velocities, collisions with
even small pieces of debris can involve considerable energy,
and therefore pose a significant danger to spacecraft and
astronauts. In this context the term spatial density refers
to number of objects per km3 around Earth [11]. Space
debris researchers use variety of methods to characterize the
space debris environment in terms of number, altitude, and
inclination distributions to improve the understanding and
knowledge of the risks debris poses to operational satellites, as
well as determine sources of debris for future mitigation. One
such characterization was developed by Ananthasayanam etal,
to model spatial density in different inclination regions [12]
by a mixture of Laplace distributions. Anilkumar & Sudheer
Reddy [13] used similar characterization and identified three
inclination regions of high risk of conjunctions. These models
are generated using the two line elements (TLE) data sets
which are obtained from space-track web site (www.space-
track.com). Figure (2) shows the spatial density calculated
for June 2009 TLE data from 200 km to 2000 km from the
earth surface taking 25 km as bin size in all inclinations
from 0-180 deg. Observe that there is high concentration of
debris objects in the orbits whose altitude is around 600-700
km and 1300-1400 km, these are the areas of high risk for
the operational satellites. The peaks around 700-750 km and
800-850 km are temporary and not due to noise, but these
concentrations will be moving towards a more stabilizing
orbits under the influence of gravity field and third body
perturbations as time progresses.
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Fig. 2. Spatial density distribution

Fig. 3. a triangle shape in binary image

Boundary Shape data in binary images : Shape iden-
tification is an important and the most fundamental aspect
of robot vision where the emphasis is to design algorithms
that enable a machine to recognize and interpret shapes of
various objects as perceived by humans. This process involves
capturing a scene from a robotic eye (camera) in the form
of images and then extraction of shapes from these images.
Many shapes are not that obvious to be identified; hence
recognition will be based on certain features of the shape
and its boundaries. Yang Mingqiang etal [14]., survey explores
around 40 different techniques for extraction of shape features,
one such description is through slope distance curves i.e.,
distance expressed as a function of slope when a radius vector
sweeps from some point inside the boundary to all points of
the boundary. Slope distance curves characterize the shape of
convex boundary of an object [15]. The slope distance curve
of a circle from its center is a straight line. The slope distance
curve of the triangle shape shown in figure (3) is given in figure
(4). Here the peaks correspond to corners of the triangle that
forms the most important features for shape identification.

Fig. 4. slope distance curve of triangle shape in binary image shown above

TABLE I
PARAMETERS CONSIDERED FOR DIFFERENT SMOOTHING METHODS IN

SPATIAL DENSITY DATA

Smoothing method Parameters
Moving Average Window size = 5
Savitzky Golay Window size = 5, degree of polynomial =4.

Gaussian window Window size=5, std=3.0
Kaiser Window Window size=5, alpha = 6.5

Fourier Number of terms = 25
Wavelet Symlets2 basis, 5 levels of decomposition=5

TABLE II
PARAMETERS CONSIDERED FOR DIFFERENT SMOOTHING METHODS IN

SHAPE MODEL DATA

Smoothing method Parameters
Moving Average Window size = 7
Savitzky Golay Window size = 7, degree of polynomial =4.

Gaussian window Window size=7, std=2.5
Kaiser Window Window size=7, alpha =6.5

Fourier Number of terms = 25
Wavelet Symlets8 basis, 5 levels of decomposition=5

VI. RESULTS AND DISCUSSIONS

We have experimented both data sets with different smooth-
ing methods described above viz., as Moving average method,
Savitzky-Golay method, Gaussian window method, Kaiser
window method, Fourier approximation method and wavelet
approximation method. Different parameters considered for
different smoothing methods are tabulated in Table-I &Table-
II. As the number of data points is less in spatial density data
we have taken smaller windows than compared with shape
model data.

Figure(5) shows the result of different smoothing meth-
ods ( here (a), (b), (c), (d), (e), (f) corresponds to mov-
ing average, Savitzky-Golay, Gaussian, Kaiser, Fourier, and
Wavelet methods respectively) taking full data at a stretch,
and figure(6) shows the corresponding result when smoothed
peak wise. In the prior case a flat peak gives a misplaced
position with decreased spatial density value. Observe that
methods ( Moving average, Gaussian, Kaiser, Fourier ) that
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have produced enough smoothing has suppressed noise to a
greater extent and flattened peaks, on the other hand meth-
ods (Savitzky-Golay, Wavelet) that have retained peaks to
some extent have failed to suppress noise. Clearly these two
demands seem to be contradicting. Wavelet smoothing has
taken care of smoothing and preserved desired peaks to a
better extent than other methods, polynomial smoothing can be
achieved with other wavelet basis functions that have larger
support and high regularity; however such basis will result
in similar effects as with moving average method. Peak-
wise smoothing has obtained better performance meeting the
contradicting demands, the individual pieces from peak to peak
are smoothed with the said methods and joined resulting in
suppression of noise to good extent. The truncation error at
end points in Fourier series is more compared to any other
method. Since peak wise smoothing involves smoothing of
data partitions between peaks, the truncation error at the end
points in each partition has to be addressed separately. Figure
(7) gives the smoothing of slope distance curve with different
smoothing methods, here a flat peak corresponds to round
corner triangle and noise makes sides of the triangle untidy.
Figure (8) shows peak wise smoothing of slope distance curve
with different smoothing methods. We also remark from figure
(6) and figure (8) that peak wise smoothing can be made
more effective by properly tuning the parameters of each of
the smoothing methods. Peak wise smoothing with moving
average method is the simple and fastest of all, however,
peak wise smoothing with wavelet method is more promising
even with larger support basis functions. Depending on the
nature of the application suitable smoothing method can be
adopted to smooth the data partitions. From both the data
sets we observe that peak wise smoothing has achieved better
smoothing without sacrificing major features. The performance
of this method is dependent on peak identification algorithm
and effective smoothing method.

VII. CONCLUSION

We observe that peak wise smoothing can result in any
degree of smoothing compared to smoothing of the data at full
length. This is most useful in the applications which demand
for better smoothing without sacrificing major features of the
data. Peak wise smoothing with moving average is fastest and
is more effective with wavelet basis.
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