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Pattern Matching Based on Regular Tree
Grammars
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Abstract—Pattern matching based on regular tree grammars have
been widely used in many areas of computer science. In this paper, we
propose a pattern matcher within the framework of code generation,
based on a generic and a formalized approach. According to this
approach, parsers for regular tree grammars are adapted to a general
pattern matching solution, rather than adapting the pattern matching
according to their parsing behavior. Hence, we first formalize the
construction of the pattern matches respective to input trees drawn
from a regular tree grammar in a form of the so-called match trees.
Then, we adopt a recently developed generic parser and tightly
couple its parsing behavior with such construction. In addition to
its generality, the resulting pattern matcher is characterized by its
soundness and efficient implementation. This is demonstrated by the
proposed theory and by the derived algorithms for its implementation.
A comparison with similar and well-known approaches, such as the
ones based on tree automata and LR parsers, has shown that our
pattern matcher can be applied to a broader class of grammars,
and achieves better approximation of pattern matches in one pass.
Furthermore, its use as a machine code selector is characterized by
a minimized overhead, due to the balanced distribution of the cost
computations into static ones, during parser generation time, and into
dynamic ones, during parsing time.

Keywords— Bottom-up automata, Code selection, Pattern
matching, Regular tree grammars, Match trees.

I. INTODUCTION

HIS paper introduces a pattern matcher within the frame-

work of code generators. Where, machine instructions
are represented by patterns drawn from LR grammars, Reg-
ular tree grammars or Rewrite systems [1], [2], [3]. Pattern
matching is then performed using parsing automata to generate
an optimal set of machine instructions, respective to the
intermediate representation (IR) of the front-end compilers
[4]. Although LALR parsing is a sound formalism, it is too
restrictive to handle the ambiguity of the machine language
specifications. On the other hand, the tree parsers are based on
generating states for all possible trees. Hence, their minimiza-
tion is a complex task that might harm the expressive power
of the parsing automata. Further more, parsing and pattern
matching should be tightly coupled; however, the selection

R. S. Jabri is with Philadelphia University, Amman, Jordan, on leave from
University of Jordan, Amman,11942, Jordan; phone: (962-6)5355000; fax:
(962-6)5355511; e-mail: jabri@ju.edu.jo.

of patterns is performed in a separate pass, in addition, it is
associated with an extra overhead due to the computation of
the minimization criterion that is based on the instructions
costs. Such costs are computed either at parser generation
time (static cost computation) or at parsing time (dynamic
cost computation). The static cost computations improve the
performance of the code selector. However, the dynamic cost
computations simplify the tree parsers generators. Thus, there
is a need for a pattern matching approach that is based on
hybrid concepts from different parsing methods and on a bal-
anced distribution of the time at which the cost computations
are performed.

To satisfy such need, we adopt a recently developed generic
parsing automaton and follow an approach that adapts the
parser to the pattern matcher behavior rather than adapting
the pattern matching to the parser behavior. Hence, we first
propose a pattern matching approach that is then tightly
coupled with a reduced version of the adopted parsing au-
tomaton. The proposed pattern matching approach is based on
a depth first traversal of an input tree, derived from a regular
tree grammar, performing a respective pattern matching to
each visited node of such tree subject to cost minimization
criteria. This reduces the proposed pattern matching approach
to adapting the parsing behavior of the reduced version of the
generic automaton to perform pattern matches in a form of
match trees, constructed in a bottom up order; and augmented
with costs respective to pattern matches. The match tree with
the minimum cost is then selected as the one respective to the
input tree. We formalized the proposed approach and the parser
adaptation methodology, based on which we derived a generic
and efficient pattern matching algorithm that is distinguished
from similar ones [2], [4] by the following:

o It is based on a different and more generalized parsing
approach that covers a broader class of grammars such
as context free grammars.

« [t synchronizes parsing, pattern matching and code selec-
tion in one pass.

The remainder of this paper is organized as follows. Section

2 is a background; it presents a summary of related work
and respective preliminaries. In section 3 we first present
the proposed pattern matching approach. Then, we present
the adopted parsing automaton; and its reduced version,
augmented with cost minimization criteria and according to
the adaptation methodology. Section 4 presents the theory
on which the implementation of the proposed approach is
based; followed by the proposed pattern matching algorithm.
A discussion and conclusion are given in section 5 and section
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II. BACKGROUND
A. Related Work

Glanville and Graham [5] proposed a method, according to
which IR is specified by LR grammar, and a parser generator
is used as code generator. Machine instructions are generated
as a side effect of parsing. This method was subject of further
improvements by Ganapathi, Fisher and others [6]. It was
found that LALR formalism is too restrictive to handle the
ambiguity of the machine language specifications. Hence, the
interest shifted toward bottom-up and top-down tree parsing,
combined with dynamic programming either at tree parsing
time or at tree parsing generation time, and based on two
approaches. According to the first approach, IR and the
machine instructions, augmented with costs, are specified by
regular tree grammar rules, and a respective tree automaton is
generated, as in the code selector generators like Burg [7]. The
automaton traverses the input tree (IR), registering each match
of the patterns (instruction). Upon traversal completion, the
code, corresponding to the derivations with the minimal cost,
is generated. The second approach is based on specifying the
input trees and the instructions by terms rewriting systems, as
in the code selector generators like BURS [8], [9]. A bottom-
up traversal of the input tree is performed, labeling its nodes
with the respective pattern matches. A top- down traversal is
then performed to select the matches, and respectively the code
with the least cost. Representative efforts for the first and the
second approaches, as well as the hybrid ones are as follows:

o The approach proposed by Ferdinand et al [2]. Where,
machine code augmented with cost is represented as a
computation of tree automta. A subset construction is
then applied to obtain deterministic automata. The tran-
sition functions are represented either by k-dimensional
array or by decision trees. However, in both cases a table
compression is needed in order to reduce the needed
space.

« Borchardt [4] proposed tree series transducers. Where,
the code selection is reduced to selecting the cheapest
derivation of IR, during its parsing and its respective
pattern matching.

o Cleophas et al [3] proposed a new version of the Hoffman
and O’Donnell [10] tree pattern matching algorithm .Both
algorithms are based on top down pattern matching using
the string matching automata suggested by Aho and
Corasick [11].

o Nymeyer and Katoen [6], [12] formalized BURS theory
and proposed an algorithm that computes all pattern
matches. A search algorithm, augmented with a cost
heuristic, is then applied to perform pattern selection. The
algorithm terminates if the rewriting system is finite.

« Boulytchev [13] applied the BURS technique to appli-
cation specific processors and devised an algorithm that
generates both the instruction set and the assembly code
from the source program.

« Bravenboer [14] proposed programmable rewriting strate-
gies for instruction selection. Where different strategies,

such as inner- most or outer —most, are encoded in a lan-
guage for program transformation, called Stratego [15].
An appropriate strategy can be selected, augmented with
dynamic programming. A similar approach was suggested
by Rety [16], where three different algorithms have been
proposed according to different reducing strategies. The
proposed algorithms can be adapted to different purposes.

o Ertl et al [17] proposed tree parsing automata based on
computation of tree parsing states on demand rather than
generating the automata at tree parser generation time .
The objective is to deal with the finite number of trees
that actually do occur, and not with all possible trees.

« Madhaven et al.[18] proposed a method that combines
LR(0) parsing technique and the bottom- up tree parsing
strategy to develop retagetable, locally optimal code
generation with static cost computation. Where ambiguity
is handled by deferring the parsing decisions beyond the
points where the conflicts actually occurs. However, the
method is based on transforming the regular grammar
into a constrained context free grammar, where the pro-
ductions are represented in normal form. Furthermore, the
input is transformed into a postfix encoding. In addition,
code generation is performed in two passes, the first pass
is bottom-up, used to label the subject tree, and the second
is top down, to generate the respective code.

Our parsing approach is motivated by the approaches fol-
lowed by Ferdinand et al [2], Borchardt [4] and by Madhaven
et al. [18]. However, it is based on a generic parsing/pattern
matching approach that can handle a broader class of gram-
mars, with a balanced distribution of the cost computations
into static ones, during the parser generation time, and into
dynamic ones, during the parsing time, as embedded semantic
actions.

B. Preliminaries

For our further discussions, we assume the following defi-
nitions based on the ones given by Madhaven et al. [18] and
by Nymeyer and Katoen [6], [12].

Definition 1: (Ranked alphabet). A ranked alphabet is a
finite set ¥ of terminals with ranking function, called arity.
¥, denotes the set {a € ¥ | arity (a) = 1, 1 €Np}. A tree
language (terms) over X, denoted by Ty is the set T such
that:

1) Yo CT.Iftl,...,tnare in T and a € ¥n then a (ty,...,

t)CT.
2) Positions where symbols occur in a (tl,..., tn ) are
denoted by sequence of doted integers. Such po-
sitions are defined by the set:Pos (a(ty,..., t, ))=

{€,1.Pos(ty),. .. ,n.Pos(t,))}.

Definition 2: (Regular tree grammar).The 4-tuple (3, N, P,
S) defines a regular tree grammar, denoted by G, where:

1) ¥ is a ranked alphabet of terminals, N is a finite set of
nonterminals and S is a starting symbol.

2) P is a finite set of productions {p}. Each production p
has the form: A —V, where A € Nand V € Tyun.
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We denote A and V by LHS(p) and RHS(p), to represent
the left hand side and the right hand side of the production p
respectively.

Given p: A —V and t; € Tyuy, we say t; derives € Tyun
in one step, denoted by t; = to , if LHS(p) € t; and RHS(p)
€ ty. Applying zero or more such derivation steps on t; is
denoted by t; = t2, where each step derives a tree t € Tyun .

We extend the definition of G to a one augmented by
minimization criteria. In code selection, such criteria are
the computations costs of the instructions modeled by the
grammar G.

Definition 3: (Augmented regular tree grammar).The gram-
mar G = (3, N, P, S) is an augmented regular tree grammar,
denoted by (AG), if each production p € P has the form p: A
—V, c.Where A € N, V € Ty and c is nonnegative number
reflects the computation cost of the instruction modeled by p.

Definition 4. (Regular tree language) The language gener-
ated by the grammar G is defined by the set L (G) = {t |t
€Ty and S = t}.

Definition 5. (Regular tree Parsing). Let t L (G) is an input
tree, a regular tree parser is the process of constructing a set
of possible S—derivation trees for t, defined as follows:

S-Derivation tree for an input tree t € L (G) is a sub tree
with a root that is labeled by S and with children that are
labeled by RHS(S). Where:

1) The leaves are labeled by terminal symbols (a € Xg).

2) The interior nodes are labeled by grammar symbols

V € N U X,) and constitute roots for V-derivation
trees that are recursively defined as the S-derivation tree.
However, the children of the grammar symbols V € %,
are labeled by ones composing their respective arities.

Definition 6: Patterns, denoted by pn, are defined as the set
PN = {(pn C RHS (p)) | p € P}

Definition 7. (Pattern matches).Given a grammar G and an
input tree t over Tx;. We say a pattern (pn) matches at position
(i) in t, if the following conditions are satisfied:

1) 3S == t ( S-derivation tree for t),

2) 3V € N such that 9 V-derivation tree C S-derivation

tree for t and

3) 3V = pn == t; and t; is sub tree rooted at position

(i)int.

III. THE PATTERN MATCHING APPROACH

Let G = (X, N, P, S) is an augmented regular tree grammar,
where: (p: A— «a,c) € Pand a € Tyyn. Let t =a (ty,...,
t, ) € L(G) is an input tree over Tyx. Let all possible sets
of augmented pattern matches respective to t are defined by
the superset: APM = { U (apmj,c (apm;)) | apm; = U (pn,

i, ¢) and ¢ ( apm;) = Zc,, for i = ¢,1.Pos(ty),...,n. Pos(tn))}
Where:
1) apm; is a set of augmented pattern matches respective
to t.

2) pn € PN is a pattern matches at node i € position (t)
according to Definition 7.

3) c is the cost of the pattern matches, defined as the cost
of the production rule r (¢ =c(r)), if pn = RHS(r) and as
c¢=0,if pn C RHS ( 1).

4) ¢ ( apmy) is the cost of the set apm;, defined as the
summation of the costs of production rules respective to
the pattern matches from which apm; is composed.

We define the pattern matcher as a process that first,
constructs the super set APM; and then selects a set apm;
€ APM such that its cost ¢ ( apmy) is less than the cost of
any other set apm € APM. To construct such pattern matcher,
we proceed according to the following approach:

Each pattern ( pn,i, ¢) € APM that matches at node i of
the input tree is rewritten by the LHS(r) such that pn = RHS
( r) and the conditions set by Definition 7 are satisfied. Such
rewriting step is represented by the construction of the triple
(r, i, c(r)). A set of pattern matches apm respective to the
input tree t = a (t,..., t, ) is then constructed in a form of
a set of such triples, called match tree (mt). Therefore, each
augmented match tree is constructed as the pair:

(mt, ¢( mt)).Where: mt = (r, i, c(r)) and c( mt) =) c;, for i

K2

= ¢,1.Pos(ty),. .. ,n.Pos(t,)).

The construction of pattern matcher is then reduced to the
construction of all match trees respective to the input tree t, by
executing the program given in Fig.1. Where, the construction
of the individual match trees proceeds according to an order
that is defined as a depth first traversal of the input tree. During
such traversal, augmented triples(r, i, c(r)) are constructing for
each visited node, provided its respective children have been
traversed in left to right order. Concurrently, the cost of each
constructed sub tree is then augmented by the cost(c), defined
as an aggregation of the costs of its respective children. The
match tree with minimum cost is then selected as the one
respective to t. On the other hand, the construction program
implicitly simulates the behavior of a bottom-up regular tree
parser. Hence, the construction of the match trees can easily
be coupled with the parsing behavior of such parser; and in
away that satisfies the conditions set by Definition 7.

Construct-mt (node 1i,)

For each child m of node from left to right
{Construct-mt ( m )

mt; = mt; U (1,,i, ¢); c(mty) = c(mty) +c;

mt'n = mt'n U ( T, .1, C)) c(mtﬂ) = c(mt"/) +C,

}
Fig. 1 The Pattern matching program

As result, the presented approach defines the pattern matcher
as a bottom up regular tree parser, coupled with pattern
matching. However, the parser should satisfy the following
requirements:

e The parser should construct the S-derivation trees at
reduced complexity and subsequently at a reduced cost
of the computation of its respective states.

o The parser should permit adapting its parsing behavior to
the proposed approach for the construction of the pattern
matches

o The parser should permit adapting its states and their
respective transitions to a framework for computing the
costs of the pattern matches.
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o The parser should permit performing the following in one
pass:

-Construction of match trees augmented with costs
of the pattern matches.

-Selection of a match tree that is augmented with the
minimum cost.

Recently, we have developed a parser that meets the above
requirements. In this paper, we adapt such parser to our pattern
matching approach. We first present the adopted parsing
approach and proceed by adapting its subset construction.
We conclude by adapting its parsing configuration, within
the framework of a proposed algorithm for pattern matching
construction.

A. The Adopted Parsing Approach

The adopted parsing approach is based on simulating the
run of a reduced bottom —up automata (RBA) on the input
trees generated by a given grammar G. RBA is represented by
its states and a parsing table that specifies the parsing actions
respective to each input symbol. It is obtained as result of a
subset construction applied on a nondeterministic automaton,
called position parsing automaton (PPA). PPA is defined as a
direct mapping from a list format of the production respective
to the starting symbol S of the grammar G. We immediately
give the definition of PPA, followed by the description of the
parser behavior on the input trees from the grammar G.

B. A Position Parsing Automaton

Let S(V) be the list format ( (PLF(S)) for the production,
respective to the starting symbol S of a grammar G, where
the non recursive occurrences of the nonterminals in PLF(S)
are recursively replaced by their respective PLF formats. Thus,
each grammar symbol in PLF(S) is expanded by its definition
and is indexed by its respective position and nesting depth
(pi). For each grammar symbol V,,; € PLF(S), we define two
states: q;i and qg,‘i Where: qin- is an initial state, instantiated
by the symbol V;Z- and qgé is a final state, instantiated by the
symbol VZJ;-. The initial state qzin- acts as a predictor (scanner)
for V,,;. The final state qzj; acts as an acceptor for (Vy;), as
well as a predictor for the grammar symbol that follows the
symbol (V,,;) in PLF (p). Further, we augment each state with
two arguments:

o An instance identifier (ID), with an objective to create
multiple instances for the same state.

e A cost of a state, defined as c(q;,;) =0 and c(qp{l-) = cost
(Vzi).Where cost( VI];) =0 if V € ¥ and cost ( VZJ;.) =
cost(r), if V € N and r is the production rule respective
to V.

Based on the presented state concept, the augmented parsing
automata for the production PLF (S) is then defined by the 5-
tuple PA(p) = (T, Q, qin, qfin, SPA, RPA, CR ) Where :

1) T=(X Ue¢) and X is the input alphabet of G.

2) Q= { (@ rp + © = Vi @hisp » 9= Vi) | Vi

€ PLF(S)} is set the PA states, instantiated by the
respective grammar symbols from PLF(G).

3) (qin = S') and (qin, = S7) are the PPA initial and
final states, instantiated by the symbols respective to the
starting symbol of the grammar G.

4) SPA: o( q1,1p , V) = (q2,1p) U {semantic action} is a
move parsing action that specifies the subsequent PPA
state g2 € Q, for a given state q; € Q and an input
symbol V € T. It performs an augmented semantic action
upon transitions, if the transition is associated with such
action. In addition, an implicit semantic is defined to
propagate the instance identifier of the state q; to the
state g9, by performing the assignment: ID (qz) = ID
(qu)-

5) RPA: 46(q, V) "reduce"(r) U { semantic action} is a
reduce parsing action that defines a reduction rule (r), for
every V € N, q € Q such that q has been instantiated by
V/ and V is the LHS (r). RPA performs the indicated
{semantic action}, If the reduction is associated with
such action.

6) CR: A\(q, V) ="coherent read” V(...) is a parsing action,
defined for every V € X,, and q € Q such that q has
been instantiated by V. It represents the completion of
the parsing process for the ranked terminal V symbol
and its subordinate symbols.

The PPA automaton is constructed as a direct mapping from

the PLF (S), as demonstrated by the following example:

Example 1: Let G = (X, N, P, S), where: X=b, ¥5=a, (V,

B, G) € N, S =V and P is given by the following set of rules,
augmented with their respective costs.

{r1 : V—-aV,B),0;r2: V—-a(G, V), 1;13: V-G, 1;

4:V —b, 7 15: G —B, 1; 16: B —b, 4}.

The PLF form respective to the grammar G is defined as:

PLF(V)= r*0({a11Ua;1UG1Uby })({(Vrs1.1,G1.1UB1 1,

{(B1.1.1Ub1.1.1)}({(b1.1.1.1)},({B1.2UVy1.2})((b1.2.1)}-

The augmented PPA (V) respective to the PLF(V) is given

in Fig. 2. Its construction proceeds as follows:

The PPA states are constructed as:Q :{((%J (ah,() =

ijl)’(q;;(]) = VJ;,))| Vijpi € PLF ((V)}. Where the grammar
symbols from different alternatives (V) have the same at-
tached index (pi),and are represented by the PPA states having
the same index and the same respective alternatives.

The PPA parsing actions and state transitions for the indi-

vidual alternative are constructed using the following rules.

e For each terminal symbol V,; €{by, bi1.1, bi111 ,
by2.1} in PLF (V), the following move transitions are
constructed:

-(0 (q1,V) = q2) € SPA such that the pair (q1, q2) €

Q has been instantiated by pair ( V;i, VZJ;-) respective

to V.

-(c (ql, €) = q2 ) € SPA such that the pair (ql, q2)

€ Q has been instantiated by ( VIJ;-, Viii1), where

V,i41 is the subsequent symbol to Vy; in PLF(V).
o For each ranked terminal and each non terminal { a;,

Gl, G1A1, BLI; B1A1A1, B1_2} in PLF (V) the fOllOWiIlg

transitions and parsing actions are constructed:

-(o( q1,6 ) = q2 ) € SPA such that the pair (qi, q2)
€ Q has been instantiated by ( Vj,;, Vj, ), where
Vpi € Vand V;,; | € (N UX) is its first subordinate.
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-(o( q1,6 ) = q2 ) € SPA such that the pair (q1, 92)
), where

€ Q has been instantiated by ( sz, i

Vpi € V and VL; » € (N UX) is its last subordinate.
(q, V) = "reduce"( r) RPA such that q has been

instantiated by a nonterminal Vﬁiand V is the LHS

(r).
-(g, V) = "coherent read” V(...
been instantiated by a ranked terminal .VZJ;-

o For each recursive occurrence V,.p; €{Vi.1, Vi2} in

PLF (V) the following is performed

-The states respective to V and V,; are marked
as recursive, by appendmg a prefix (r) to the their
\%4 ) and
7’*0

Vr *0> qZ*O

T*p’L)

respective indexes: ( q,*O

% — 4t
(qr*pi - qT*pi? qr*pz =V

¢l0(1)
€ \%4
qfin
(@)
qr’*‘o/@) . { qi(2) } o [ qi'é@) } .
Qin
€ { q 131(2) ]5 { qi 1.1().1(2) ]i { q1 1.1[).1(2) }i,-'

f
qr*0(2)
inni) [ Grs1 2(2) i} 14
qfin
@) (b)
q’r* ¥
S {q1(3>} . [q{(?))}
Qin
60 (3)
£ V
qfin
(©

Fig. 2 The PPA automaton for three alternatives
of grammar(1)

) CR such that q has

-A position parsing automaton PPA respective to V,.p;
(PPA(V ,pi)) is defined as an instance of the one respective to
V (PPA (V)). PPA (V,.p; ) has the same states and transitions
as the ones for PPA(V). However, the transitions of PPA (V.

) start from the state V?
While the ones for PPA (V) start from V¢, and end at \%4

!
+pi. and terminate at the state VT*m

r*0*

To facilitate proper initiation, creation, and termination of
the transitions respective to such instantiation, the following
move transitions and parsing actions are constructed.

(a(ql{ i1 D) e) (9r+pi,rp) U semantic-action-
initialization (Vi
U(qr*pz D> €)=
U(qr*(] p) Vi) =
actlon- continuation (Vr*o)

( (qr*pl D) €)=

T*pl )
(qr*O ID)
"reduce 1"( V,.«0)) U (semantic-

(qm+1,ID)

The constructed transitions and parsing actions performs the
following respectively:

The e- transition from the state qzj;-_l instantiated by
the final symbol of the grammar symbol immediately
occurring before V,.p; in the PLF (V), is augmented by
a semantic-action- initialization (V,*pl) to be performed
during parsing. This action initializes the state identifier
ID with the value V,.,,; .Since such ID will be propagated
upon transitions from qi*m—, these transitions are distin-
guished among others. To enable multiple recursion, ID
is organized as a stack where the initialization action is
defined to push the value Vispi On the top of ID.

The e-transition from qr*p2 to gy, defines the transitions
paths for qr*p2 as the ones for q’.,, but with a propagated
instance identifier (ID= q,.,,,;) instantiated by V.p;.

The parsing action ((qf*0 ;p)» performs reduction of
production rule respective7 to V... In addition, it is
augmented with the semantic-action-continuation, defined
as function to perform the following during parsing:
Computes a move transition to the state at the top of
the propagated instance identifier (ID) and then pops the
top of ID. The computed transition ( or equal to Vr*m)
is then added to a computed set of the next states of the
parser. Thus, during parsing, the continuation semantic
action acts as - transition from qf*o to qf*pi , if the ID
is instantiated by V,.p;.

Finally, an e-transition from qf*oto Qpi+1 1S
costructed.Where, qp;4+1 is the state mstantlated by
the grammar symbol subsequent to symbol V ;%0 in the
PLF (V) form.

C. An Augmented Reduced Automata (ARBA)

The reduced automaton RBA for the language generated by
the grammar G, with a starting symbol S, is defined as the PPA
automaton transformed from the PLF form respective to S and
on which the subset construction is applied. In this section,
we adapt the subset construction of the position parsing
automata by imposing the requirements for its adoption within
the framework of the proposed pattern approach. Mainly,
we impose the cost computation, according to the following
scheme:
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o If the constructed RBA state q is not instantiated by
recursive instances, then the cost of q is computed as:

c(q =Z c(q;)+ ¢ (qx) , where:

J
- 1<) < |closure(q;)| and closure (q;) is the set of
the states q; that are closed in the state q as result
of the subset construction.

- g is a constructed RBA state with a move transi-
tion (qx, a) = q;, @ € X
o If the constructed RBA state q is instantiated by a
recursive instance (V%,,,; ), then the cost of q is computed
as: ¢(q) = ¢ (qx), where qi is a constructed RBA state
with a move transition ( qg, €) = q.
o If the constructed RBA state q is instantiated by a

recursive instance (Vf*m ), then the cost of q is computed

as: o(q) = (ql.; ) +{o( ql,o)}. Where: o qi.; ) is the
cost of the RBA state , instantiated by the subordinate
recursive instance (Vi) and of qf;o) is the cost of the
RBA state, instantiated by head recursive instance Vf*o.
The cost {c( q{f*o)} is considered as dynamic one that is
added, during parsing, to the computed cost c(q) upon a
continuation transition to the state q from the state q..
To facilitate such addition, the computed continuation
transition (qi*o, € ) = q ) is augmented by semantic
action to add its cost (c( qf*o)) to the computed cost
of g. Such cost is then propagated upon the subsequent
move transitions and added to the cost of the destination
states.

Algorithm 1: Augmented Subset Construction.

Input: The nondeterministic APPA(S) automaton for a
grammar G, represented by its respective states
(PPA.qin, PPA.qfin and PPA.Q) and parsing actions
( PPA.SPA and PPA.RPA).

Output: An augmented reduced bottom-up automaton
ARBAC(S), constructed in terms of its respective
states (RBA.q;n, RBA.qy;, and RBA.Q) and parsing
table PAT [RBA.Q T] that represents the parsing
actions RBA.SPA and RBA.RPA respective to T.
Where T is the input alphabet

Method:

Let NewState (states s) is a function that creates a new
state ¢ RBA.Q, instantiated by a set of states s PPA.Q; and
augmented with two parameters to be used for its respective
cost(c) and instance identifier(ID).

Let closure (state q) is a function that returns all the states
reachable from the state q on e- transitions, as given in
[19]. However, the e-closure function for the initial state q;
that is instantiated by recursive instances retunes the states
themselves.

Let AddState (states RBA.Q , state q , processing flag p ) is
a function that adds a state q to the set of the RBA states either
as processed or un processed.Let SetPAT( parsing action p) is
function that sets the entry [q,t] of the parsing table PAT to
a parsing action as specified by p ,with appropriate encoding
respective to the different parsing actions SPA, RPA,( RPA
U semantic- action) and (SPA U semantic-action).

Let MoveStates(q) is a structure, used to store the move
transitions from the state q.

Algorithm 1 proceeds by executing the program given in
Fig. 3, Where:

o The initial state of RBA.q;;,, is computed as the -closure
of the it’s respective PPA state PPA.q;,. It is added
unprocessed to the set of the RBA states (RBA.O) for
subsequent computation.

{Select next state q from RBA.Q; Mark q as

processed

Stepl:

for each (q!, =V? ) €q such that V €N andgq,, is a

marked recursive instance

{ If (qn is a head){ (REOCC(qn)) = @)}

Elseif

{AddState (RBA.Q ,(q}, = NewState (qy,)),
processed);
RBA.q/ = NewState(Closure ( PPA.Q ,g/));
AddState (RBA.Q , qf, unprocessed);
SetPAT(RBA.SPA ((q.,c )= RBA.q U
semantic-action- initialization(RBA.q; ));
y=RBA.SPA(HeadOccurence (RBA.q¢ ),x )
SetPAT(RBA.SPA((RBA.q,x),y);
MoveStates(q) = U{ (PPA.q/, X) )}
such that qif,e RBA.q/ and X € %;
o(RBA..q}) = c(RBA.q\)+( o(q)),
4 q{ €RBA..qf;

Step.2:

For each ( q ,V ) eMoveStates(q);

{ Select next state q, such that o( q ,V )= qy;
RBA.q = NewState(Closure ( qy ));

AddState (RBA.Q , RBA.q, unprocessed)
MoveStates (RBA.q)= U( o(PPA.q;,X)|
Vg€ qy and Xe ¥ ) ;
SetPAT(RBA.SPA ( q, V) )= RBA.q);

Select subsequent q{,e RBA.q |

qlf ,is with the lowest index j;

¢ (RBA.q) = ¢ (RBA.q) + c(q/.);
SetPAT(RBA.RPA((RBA.q,V)=
(PPA.RPA(RBA. ¢/, V)), ¢ (RBA.Q));

Select subsequentq{ €RBA.q in order and perform
¢ (RBA.q) = ¢ (RBA.q) + c(q/, );

SetPAT (RBA.RPA ( (RBA.q, V) =
(PPA.RPA(RBA. ¢/, V)), ¢ (RBA.q));

§

Fig. 3 The subset construction program

o The algorithm then, iteratively, selects the subsequent
unmarked RBA state (q) and performs two major steps,
until the processing of all the RBA states is completed.
The first step handles the subset construction for the
states instantiated by initial symbols (V?) respective to
the recursive instances. It creates new marked RBA.q’
state, instantiated by the initial symbols (V?), and new
unprocessed RBA.qf state, instantiated by their respec-
tive final symbols (V). Then, it computes the parsing
actions, transitions and costs respective to the states
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(qv") and (qv/). The second step progressively consider
the move transitions (MoveStates(q)) from the selected
state q on terminal grammar symbols (V); and handles
the computation of the RBA states subsequent to the
selected one. This achieved by creating new unprocessed
RBA states for each such transition, instantiated by the
states computed by their respective e-closure. Finally, it
computes their respective transitions, parsing actions and
costs.

Example 2 :Applying the augmented subset construction
algorithm 1 on the PPA automaton for grammar (1), an
augmented RBA automaton is obtained, consisting of ten states
and a parsing table (PAT), as shown in Table I. The PAT table
shows the cost of each state and the its respective parsing
actions for the input alphabet (a,b) of the grammar 1 The
parsing actions are encoded as follows:

-R(r) represents a reduction using the production rule
r, augmented by its respective aggregated cost.
-M(q) represents a move transition to the stateq.
M(ql)

-M(g2)represents a move to ql and immediate tran-
sition to q2.

-C(...) represents a coherent read.

-S(initialization) and S(Continuation) represent
theaugmented transition semantic actions.

TABLE 1
THE PARSING TABLE FOR GRAMMAR (1)

.. Parsing actions

State | Input symbols

a b

do M(q2)Mg4) M(ql), M(q3)

S(Initialization(q6))

q1 R(rd4: V — b),c(r4)=7 R( 14: V —b),c(rd)=7

S(Continuation) S(Continuation)

42 M(g5)M( q7)

S(Initial(q9))

qs3 R( 16: B— b),c(r6)= 4

R(15: G —B), c(15)=1

R(13: V — G),c(r3)=1

S(Continuation)

a4 M(q2)M(q4) M(ql), M(q3)

S(Initial(q6))

q5 R(16: B b), c(r6)= 4

R( 15: G B), c(15)=1

a6 R() R(r) , M(q®)

a7 M(q2)M(q4) M(ql), M(q3)

S(Initial(g6)

a8 R( r6: B b), c(r6)= 4 R( r6: B b), c(r6)= 4

C(a(V;B))

R( rl: V= a(V,B)),c(rl)= 4

S(Continuation)

a9 R(1), c®)= 5, C(a(G,V))

R(12: V— a(G,V)) , c(r2)= 6

S(Continuation)

IV. THE PATTERN MATCHING CONSTRUCTION
APPROACH

Our pattern matching approach defines the proposed pattern
matcher as a parser that simulates the run of the augmented
RBA automaton, as constructed in section 3, on input trees
drawn from a regular tree grammar G. Such that the parser
configuration is adapted to permit, it’s tightly coupling with
the construction of augmented pattern matches respective to
the input trees in a form of match trees. We first formalize
such adaptation by the following theorem and then proceed by
giving the proposed pattern matching construction algorithm.

Theorem 1: Let G be a regular grammar and (t) is an input
tree with preorder listing. Let RBA is the bottom-up parsing
automaton for G as constructed by algorithm 1. Let PA is
the parser that simulates the run of the RBA automaton on
t. Then PA is tightly coupled with the construction of the set
of augmented pattern matches, respective to the input tree t,
if each position pi of the preorder listing of the input tree is
distinguished by RBA states and a respective set of pattern
matches. Such that if the RBA states are defined by set s,
={q; | 6(q;, A;) = "reduce A;", RHS(A;) =pn; and 1; is the
production rule respective to A; }, then pattern matches are
defined by the set of augmented triples

U(( 14, 1, c);, for I=1 to max ),where:

- (( 14, 1, ¢); € match tree mt ;and max is the max number
of match trees respective to t

-c is the cost of pattern matches, defined as: c= c(q;).

Proof: If t €L(G) then S ==t then the subsequent
runs of the RBA on t constitute a bottom-up construction
of its respective S-derivation tree. Therefore, if the RBA run
respective to the position pi is distinguished by the set s, of
the BA states for witch the reduce transitions { d(q;, A;)
="reduce" 1;} are defined, then the run is also distinguished
by the construction of A; —derivation trees, such that { A;
} and Aj- derivation trees C s-derivation tree. Hence, all
the conditions given in definition 7 are satisfied ,and each
augmented triple ( r;, i, ¢); match tree mt ; represents a
subtree ( pn; ) rooted at r; and a parsed subtree of t rooted
at position pi, where the pattern pn; matches. Subsequently,
the successful run of RBA on t is a bottom-up construction of
S-derivation tree that is tightly- coupled with the construction
of the respective match tree. On the other hand, the triple r;,
i, ¢); is augmented by the cost of state q; that is defined as an
aggregation of the costs of its respective match sub trees(mt).
This because the run of RBA respective to the position pi in t
computes the cost of q; as: ¢(q;)=c(r;)+ >_ (¢, ), where qn is
a state for which the reduce parsing action (q,, V,,) = "reduce"
V, and V,, € RHS(r;) constitutes the pattern respective to an
augmented triple( 1,,...,c(q,); € match tree mt;. ]

Based on our pattern matching approach and its construction
methodology; and applying the adaptation theorem, we present
the following algorithm for the construction of the proposed
pattern matcher. According to the presented algorithm, the run
of a bottom up parser on an input tree is distinguished by
sequences of states transitions; where each sequence represents
a parsing path. We represent such transitions, and subsequently

1124



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

the parsing paths, as "transition trees". Where, each parser
state, during its run, is considered as a root of a transition
tree; and the subsequent states, constituting its respective
transitions, are considered as the children of such tree. Thus,
iteratively, the children constitute the set of current states and
are considered roots for transition trees that are constructed in
accordance with their respective transitions. A correspondence
is then established between the transition trees and the match
trees; where for each constructed transition tree a respective
match tree is constructed. Thus, as the run of the parser
proceeds, such trees are constructed level by level and as a
result, a set of mach trees respective to the set of parsing
paths is constructed. In parallel, the match trees are augmented
by the cost of their respective transitions trees. Such cost is
reduced to the costs of the states, representing reductions,
as given in their respective entries of the parsing table and
propagated dynamic costs. The augmented cost is used as
selection criterion by the program given in Figure 5 to generate
the match tree mt with the minimum cost.

Algorithm 2: A pattern matcher
Input: An input tree t from a regular tree grammar
G,represented in a respective list form.
A parsing table PAT, representing of the ARBA
automaton for the grammar G.
Output: A match tree with a minimum cost.
Method:
Let IN[n] = {al a2, a3....} is an array of the input symbols
respective to the preorder encoding of t . Let PRF [n] = {, 1,
1.1,....}are the respective positions of the input symbols in t.
Let POS (IN [i] ) = PRF (IN [n] )|i is a function that returns
the position in t respective to an input symbol IN [i]
Let qin , {qfinjare the parser initial state and the set of the
parser final states respectively.
Let TR PS[i] [m] is a matrix of type transition trees TR to
represent the pattern matcher states for the input symbol IN
[i]. Where:
o TR is defined as struct {root, children} to represent state
transitions from the current state (Root) to the next states
( children).

« m represents the alternative state transitions for IN [i].

« children is defined as struct{ set of states s , dynamiccost
DC, instance identifier ID}.

Let MT PM [i][m] is a matrix of type mach tree to represent
the pattern matches respective to IN [i]. Where:

o MT is defined as struct { rj ,( pn;, POS (IN [i] )}

« m represents the pattern matches respective to the alter-

native state transitions for IN [i]

Let Parsing-action is a set of type parsing actions, as defined
and encoded by the parsing table PAT.

Let the pattern matcher is in its initial configuration, con-
sisting from the initial state qin of the ARBA automaton.

As the individual input symbols are read, the pattern
matcher computes the transition trees and their respective
match trees, by executing the program given in Fig. 4.The
one with a minimum cost is then selected.

The program implementing Algorithm 2 consists of three
main parts .the first part is to compute the subsequent transition

in a form of transition trees (PS [i] [j] .children, PS [i+1]
[j] .children).In addition, it performs the semantic actions
related to instance identifier propagation and initialization. The
second part constructs a set of match trees by calling the
function Construct-Match-trees, given in Fig.5, which synchro-
nizes transition trees and reductions with pattern matches.In
addition, it performs the semantic actions respective to con-
tinuations, dynamic cost computations and its propagation.
Finally, it augments the match trees with their respective costs.
The third part of the program determines the pattern matches
with the minimum cost. It then regenerates their respective
transition trees (parsing path) and match trees.

PS [1] [1] .Root = q;,,; PS [1] [1] .children = q;y;
MaxAltern =1;
For i = 1 to MaxSize ( IN[])
{ 1=0;
For m =1 to MaxAltern
{ q = PS [i] [m] .children
/* Construct transition trees */
Parsing - action = PAT [q, IN[i]];
For each action move-to M(s) in parsing action
{ Perform semantic action (ID);
{If (semantic action initializatin) is in Parsing - action
{perform semantic- action — initialization (s)}
j=jt1; PS [i+1] [j].Root = m;
PS [i+1] [j] .children=s; MT[i+1] [j]=
Construct- Match- trees (s,i,));
}
MaxAtern= j; }
/* select a match tree with a minimum cost*/
n = MaxSize ( IN[]);P= Position( MinCost(MT [n]);
SelectedMT=MT][n][p];SelectedTR=PS[n] p].children;
r =PS [n] [p].Root;
Fori=n-1to 1
{t = PS [i] [r].children; SelectedTR= t USelectedTR
m = MT [i] [r]; SelectedMT= m USelectedMT
r =PS [n] [r].Root;}
Fig. 4 The pattern matcher

Construct- Match-trees (state s, int i,j)
For each reduce action R(r) in PAT[s, IN[i]]
{ If (r is without continuation)
{ cost = c(r) + s.DC;
{If |r| >1{MT [i+1] [j]= MT [i+1][jlu
(POS (IN [i]), 1, cost)}
Elseif {MT[i+1][j]=(Parent(POS(IN[i]), 1, c(1)))}
Elseif (reduce action r is with continuation)
{t=perform semantic- action-continuation(s);
PS [i+1] [j] .children=s t;
cost = ¢(r) + s.DC+ c(t) ;
{If |r] >1 {MT [i+1] [j] = MT [i+1] [jlu
(POS (IN [i]), 1, cost)}
Elseif {MT[i+1][j] = (Parent(POS (IN [i]), r,cost))};
Fig. 5 The match trees construction program

Example 3: Let G = (X, N, P, S) is the grammar 1. Let
ARBA is its respective automaton as constructed in example
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2. The application of the pattern matcher algorithm (Algorithm
2) on the input tree t = (a(a(b,b),b), derived from G, proceeds
as follows:

o The input tree t is represented by its respective preorder
encoding IN[ ]={a,a,b,b,b} and the corresponding posi-
tions PRF [ ] = { ¢, 1, 1.1,1.2,2}) of the input symbols.

o As the input is read, the pattern matcher performs se-
quence of state transitions, coupled with the construction
of the respective pattern matches. They are represented
in a form of transition trees and match trees as given in
Fig.6 and Fig.7 respectively.

o The match tree with the minimal cost and its respective
transition tree (parsing path) are then selected. They are:
mt = (1.1, 16, 4) U (1.1, 15, 5) U (1.1, 13, 6) U (1.2, 16,
4) U(1, 12, 10)) U (2, 16, 4) U (€, 11, 14)) and tr =q;y, a,
{2, 94} a { 2,94} b {q3 96} b {9s.96} b {as}
respectively. The pattern matcher performs such selection
because the alternative number 4 of the rows € MT
(Figure 8) has the least accumulated cost. Such alternative
represents the root of a match tree, which is selected by
the program, given in Figure 5, based on the fact that each
row; from the matrix TR (Figure 7) consists of alternative
children of a transition subtree rooted at row;_1; and the
corresponding alternative of the row; € MT constitutes
their respective match trees. For example, the alternative
number 4 (3,{qs, q¢}) of rows € TR is a subtree rooted
at the alternative number 3 of rowy. Its respective match
tree ((1, r2, 10)) U (2, 16, 4)) is the alternative number 4
of rows € MT.

TR Transition trees

1 q in

2 |_ L{az a4}

3 L{gs, 97}  1.{43.99.96} 1.{q3.96}

4 1,{d1,99.96} 1,{93.99.96  2,{qs, 6}  3,{ds, g6}
5 1,{ gs} 2,{ qs} 3,{qs} 4,{qs}

Fig. 6 The transition trees (TR) for the input a (a (b,b),b)

MT Matching trees
3 (1L156,4)  (1.1164)  (1.1,16,4)
(1.1,15,5)) (1.1,15,5)
1.1,63,6)
4 |= (12x412) (12555  (1211)  (1.2.16,4)
(112,13 (1.2,16,11) (1,12,10)
(1,12,12)
5 (2,16,4) (2,16,4) (2164)  (2,16,4)
( 1,17) (€,r1,16) (erl,15) (e r1,14)

Fig. 7 The matching trees (MT) for the input a(a(b,b),b).

V. DISCUSSION

The experiments and the analysis of the derived algorithms
for the proposed pattern matcher have shown the following
complexity:

The subset construction algorithm (algorithm 1) has a
runtime:

O ((JX + Xn +N|x | e-Transitions (X + X, +N )| <O(G?
)xs .Where G = is the sum of the productions length(|pi|) and
s is the number of the RBA reduced states

The pattern matching algorithm requires a time O(| shift-
transitions| +|reduce-transitions|) x |input pattern|. The size of
the Match trees set is <2 [PIXMAX(|pi])x|inputpattern|

The size of the parsing table is O (|2 | x |s|).

Compared with similar pattern matching algorithms, such
as the ones proposed by Ferdinand et al [2] and by Madhaven
et. al [18], the proposed algorithm is distinguished by the
following:

« It can be applied to a broader class of grammars. This is
because the adopted PPA automaton can handle context
free grammars as well as regular tree grammars; and
the pattern matching approach synchronizes the parsing
behavior of the automaton in a generic way.

« It achieves better approximation of pattern matches in one
pass, using less space and states. This is demonstrated by
the fact that the state transitions of the pattern matcher
explicitly reflect the positions of the input tree at which
the pattern matches occur. For example, the sequence
of state transitions for the input of example 2 at which
pattern matches occur is{ qs, qs}{ qs, 96} { qs}.These
states are instantiated by the PPA automaton closed
states (qfl'1 q{‘l q{'Q q{ ) that constitute the reductions
respective to the pattern matches. On the other hand,
pattern matches occur at the following positions of the
input tree: 1.1, 1.2, 1, 2 and e. These positions are
directly correlated to the indexes, attached to the reduced
states. Such correlation is a two fold. First, it implies
accurate pattern matches with optimized number of state
transitions. Second, it permits performing parsing, pattern
matching and selection in one pass. In addition, applying
the proposed algorithm on test samples given in [2], [18],
such as the grammar of example 1, has shown not less
than 20% reductions in states and tables size. Finally,
the algorithms proposed in [2], [18] perform static cost
computation while the proposed one performs static and
dynamic cost computation in a balanced way.

VI. CONCLUSION

In this paper, we have proposed and implemented a pattern
matching approach that is characterized by its soundness,
generality and efficiency. The resulting pattern matcher op-
erates like a bottom —up automaton that is tightly coupled
with the construction and the selection of pattern matches
subject to minimization criteria. Since the adopted parser and
the proposed pattern matching approach are generic ones, the
resulting pattern matcher handles a wider class of grammars
other than the regular tree grammars. Thus, the pattern matcher
can be used in areas other than code selection. Compared
with similar pattern matching algorithms, we have achieved
better approximation of pattern matches in one pass with
considerable reductions of the automaton states and the size of
the pattern matching /parsing tables. As a future work, further
experiments well be performed on the code selection for real
machines and on the application of the proposed algorithm
and in areas other than code selection.
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