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Passivity Analysis of Stochastic Neural Networks
With Multiple Time Delays

Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract—This paper deals with the problem of passivity
analysis for stochastic neural networks with leakage, discrete and
distributed delays. By using delay partitioning technique, free
weighting matrix method and stochastic analysis technique, several
sufficient conditions for the passivity of the addressed neural
networks are established in terms of linear matrix inequalities
(LMIs), in which both the time-delay and its time derivative can be
fully considered. A numerical example is given to show the
usefulness and effectiveness of the obtained results.

Keywords—Passivity, Stochastic neural networks, Multiple time
delays, Linear matrix inequalities (LMIs).

I. INTRODUCTION

NEURAL networks have been extensively investigated
due to its successful application in various areas such

as pattern recognition, combinatorial optimization, smart
antenna array and so on [1]-[5]. However, when the system
is affected by external disturbances, deterministic neural
networks will fail. Stochastic neural networks are usually
introduced to describe this kind of practical system. The
stochastic affects plays an important role in the analysis of
neural networks. So, lots of attention is focused on the
analysis the dynamical behavior on stochastic neural
networks and many beautiful results have been proposed
[6]-[9].

On the other hand, the passivity theory originated from
circuit theory and is a important tool for the analysis of
nonlinear system [10]. Neural networks are special nonlinear
dynamic system, thus, there has been lots of research
concerning the passivity analysis of neural networks
[11]-[20]. Especially, in [14]-[20], the stochastic affects is
considered in system. The passivity analysis for neural
networks of neutral type with Markovian jumping parameters
and leakage delay was discussed in [13]. In [14]-[15],
authors investigated the passivity problem for delayed
discrete-time stochastic neural networks, and several
delay-dependent criteria for the passivity of delayed
discrete-time stochastic neural networks were derived. The
authors in [16]-[17] discussed the passivity problem for
delayed stochastic neural networks, and given some sufficient
conditions on the passivity of stochastic neural networks
with time-varying delay. Moreover, the passivity issue for
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stochastic fuzzy BAM neural networks with time varying
delays was considered in [18], by using delay partitioning
technique and Lyapunov stability theory, a new set of
sufficient conditions were established. In [19], the problem
of passivity analysis was investigated for stochastic interval
neural networks with interval time-varying delays and
Markovian jumping parameters. New delay-dependent
sufficient conditions were derived by utilizing the
free-weighting matrix method and some stochastic analysis
techniques. However, the problem of the passivity analysis
for stochastic neural networks with leakage, discrete and
distributed delays has not been studied. In general, while
signal propagation is sometimes instantaneous and can be
modeled as discrete delays. And it may also be distributed
during a certain period of time so distributed delays are
incorporated into the model [21]. Besides, time delay in the
leakage delay has great effect on the dynamics of neural
networks because time delay in the stabilizing negative
feedback term has a tendency to destabilize a system [22].
So, it is necessary to discuss the passivity problem for
stochastic neural networks with leakage, discrete and
distributed delays.

Motivated by the above discussions, the passivity problem
for stochastic neural networks with leakage, discrete and
distributed delays is considered in this paper. Several
sufficient criteria for stochastic neural networks with
multiple time delays are derived by using delay partitioning
technique, free weighting matrix method and stochastic
analysis technique. A numerical example is given to
illustrate the effectiveness and less conservation of the
proposed method.

Notations: Throughout this paper, P > 0 means that the
matrix P is symmetric positive definite; the superscripts
′ − 1′ and ′T ′ stand for the inverse and transpose of a
matrix, respectively; Rn denotes n-dimensional Euclidean
space; Rm×n is the set of m× n real matrices; I denotes the
identity matrix with appropriate dimensions; ∗ denotes the
symmetric block in symmetric matrix; λmax(·) denotes the
largest eigenvalue of a given matrix; tr() denotes the trace
of a given matrix; ‖ · ‖ is the Euclidean norm in Rn; E{·}
stands for the mathematical expectation operator with respect
to the given probability measure P .

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following neural networks with multiple time
delays:

dx(t) =[−Cx(t− σ) +Af(x(t)) +B1f(x(t− h(t))(e-mail address: qinbiaolixin@163.com).
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+B2

∫ t

t−d(t)

f(x(s))ds+ u(t)]dt

+ δ(t, x(t), x(t− h(t)))dω(t), (1)

for all σρ(t) < 1, where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈

Rn is the state vector of the network with n neurons;
C = diag{c1, c2, . . . , cn} is a diagonal matrix with positive
entries ci > 0; the matrices A, B1 and B2 are connection
weight matrix, discrete connection weight matrix and
distributed connection weight matrix, respectively;
f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]

T denotes the
neuron activation function; u(t) = [u1(t), u2(t), . . . , un(t)]

T

∈ Rn is the external input vector; δ ∈ Rn×q is the diffusion
coefficient vector; ω(t) = [ω1(t), ω2(t), . . . , ωq(t)]

T is a
q-dimensional Brownian motion defined on a complete
probability space (Ω, F, Ft{t≥0}, P ) with a filtration Ft{t≥0}
satisfying the usual conditions (i.e., it is right continuous and
F0 contains all P-null sets); σ is the leakage delay; h(t) and
d(t) is the discrete delays and distributed delays,
respectively. Satisfying

h1 ≤ h(t) ≤ h2, ḣ(t) ≤ μ, 0 ≤ d(t) ≤ d, (2)

where h1, h2, μ and d are constant scalars.
The initial condition associated with system (1) is given by

x(s) = ϕ(s), s ∈ [−max{σ, h2}, 0],
the state trajectory of system (1) from the above initial
condition is denoted by x(t, ϕ).
Assumption 1. The neuron activation function f(·) is
continuous and bounded, and there exist constants K−

i and
K+

i such that

K−
i ≤ fi(a)− fi(b)

a− b
≤ K+

i , i = 1, 2, . . . , n, (3)

where a, b ∈ R, a �= b.
Remark 1. Assumption 1 on the activation function was
firstly proposed in [23]. Obviously, K−

i and K+
i can be

positive, negative or zero, this type of activation function is
more general than both the usual sigmoid activation function
and the piecewise linear function. When K−

i = 0 and
K+

i > 0, assumption 1 describes the monotone
nondecreasing activation function. Besides, monotone
increasing activation function can be described when
0 < K−

i < K+
i .

Assumption 2. There exist constant matrices M1 and M2 of
appropriate dimensions such that the following inequality

tr(δT (t, u, v)δ(t, u, v)) ≤ ‖M1u‖2 + ‖M2v‖2, (4)

holds for all (t, u, v) ∈ R×Rn ×Rn.
Before deriving our main results, the following definition

and lemma are introduced.
Definition 1. [16]. System (1) is called globally passive in the
sense of expectation if there exists a scalar γ > 0 such that

2E{
∫ tp

0

fT (x(s))u(s)ds} ≥ −E{γ
∫ tp

0

uT (s)u(s)ds},

for all tp ≥ 0 and for all x(t, 0).
Lemma 1. [22]. For any constant matrix W ∈ Rm×m, W > 0,

scalar 0 < h(t) < h, vector function ω : [0, h] → Rm such
that the integrations concerned are well defined, then∫ h(t)

0

ωT (s)dsW

∫ h(t)

0

ω(s)ds ≤ h(t)

∫ h(t)

0

ωT (s)Wω(s)ds.

Lemma 2. [24]. Let the functions f1(t), f2(t), . . . , fN (t) :
Rm → R have the positive values in an open subset D of Rm

and satisfy 1
α1

f1(t),
1
α2

f2(t), . . . ,
1

αN
fN (t) : D → R with

αi > 0 and
∑N

i=1 αi = 1, then the reciprocal technique of
fi(t) over the set D satisfies∑

i

1

αi
fi(t) ≥

∑
i

fi(t) +
∑
i �=j

gi,j(t) ∀gi,j(t) : Rm → R,

[
fi(t) gi,j(t)
gTi,j(t) fj(t)

]
≥ 0.

Lemma 3. [14]. Let a, b ∈ Rn, P be a positive definite matrix,
then 2aT b ≤ aTP−1a+ bTPb.

III. MAIN RESULTS

For the sake of simplicity of matrix representation,
ei(i = 1, . . . , 11 + l) are defined as block entry matrices.
(For example, e1 = [I, 0, . . . , 0︸ ︷︷ ︸

10+l

]). The notations for some

vectors and matrices are defined as following

K1 = diag{K−
1 K+

1 ,K−
2 K+

2 , . . . ,K−
n K+

n },

K2 = diag{K
−
1 +K+

1

2
,
K−

2 +K+
2

2
, . . . ,

K−
n +K+

n

2
},

eR1 = [I, . . . , I︸ ︷︷ ︸
l

, 0, . . . , 0], e
′
R1

= [0, I, . . . , I︸ ︷︷ ︸
l

, 0, . . . , 0],

Π1 = eT1 (−PC − CP + λmax(P )MT
1 M1)e1

+ eT1 (PA+ATP )e6+l + eT1 (PB1 +BT
1 P )e7+l

+ eT1 (PB2 +BT
2 P )e8+l + 2eT1 Pe10+l + 2eT1 CPCe5+l

− eT5+l(CPA+ATPC)e6+l − 2eT5+lCPe10+l

− eT5+l(CPB1 +BT
1 PC)e7+l

− eT5+l(CPB2 +BT
2 PC)e8+l

+ eT2+l(λmax(P )MT
2 M2)e2+l,

Π2 = eT1 (Q1 + σ2Q2)e1 − eT4+lQ1e4+l − eT5+lQ2e5+l,

Π3 = eTR1
R1eR1 − e

′
R1

T
R1e

′
R1

+

[
e1
e6+l

]T
R2

[
e1
e6+l

]

− (1− μ)

[
e2+l

e7+l

]T
R2

[
e2
e7+l

]
+ eT1 R3e1 − eT3 R3e3,

Π4 = d2eT6+lTe6+l −
[

e8+l

e9+l

]T [
T U
∗ T

] [
e8+l

e9+l

]
+ h1λmax(S1)e

T
1 M

T
1 M1e1 + (h2 − h1)e

T
11+lS4e11+l

+ h1λmax(S1)e
T
2+lM

T
2 M2e2+l + h1e

T
11+lS2e11+l

+ (h2 − h1)λmax(S3)e
T
1 M

T
1 M1e1

+ (h2 − h1)λmax(S3)e
T
2+lM

T
2 M2e2+l,

Π5 = eT1 (−N3 −NT
3 )e1 + eT1+l(−N4 −NT

4 )e1+l

+ eT2+l(−N5 −NT
5 )e2+l + eT1 N3e1+l + eT1+lN4e2+l

+ eT2+lN5e3+l,
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Π6 = [eT11+lN1 + eT1 N2][−e11+l − Ce4+l +Ae6+l +B1e7+l

+B2e8+l + e10+l] + [−eT11+l − eT4+lC + eT6+lA
T

+ eT7+lB
T
1 + eT8+lB

T
2 + eT10+l][N

T
1 e11+l +NT

2 e1]

− eT1 K1L1e1 + eT1 K2L1e6+l − eT6+lL1e6+l

− eT2+lK1L2e2+l + eT2+lK2L2e7+l − eT7+lL2e7+l

− 2eT6+le10+l − γeT10+le10+l,

η(t) = [xT (t), xT (t− h1

l
), . . . , xT (t− l − 1

l
h1)]

T ,

ζ(t) = [xT (t), fT (x(t))]T , Ω =

6∑
i=1

Πi,

y(t) = −Cx(t− σ) +Af(x(t)) +B1f(x(t− h(t)))

+B2

∫ t

t−d(t)

f(x(s))ds+ u(t),

α(t) = δ(t, x(t), x(t− h(t))),

ξ(t) = [xT (t), ηT (t− h1

l
), xT (t− h(t)), xT (t− h2),

xT (t− σ),

∫ t

t−σ

xT (s)ds, fT (x(t)), fT (x(t− h(t))),∫ t

t−d(t)

fT (x(s))ds,

∫ t−d(t)

t−d

fT (x(s))ds, uT (t), yT (t)]T .

Now, we have the following theorem.

Theorem 1. For given scalars h1 > 0, h2 > 0, d > 0, and
μ > 0, the stochastic neural network (1) is passive in the
sense of expectation if there exist symmetric positive definite
matrices P , Q1, Q2, Ri (i = 1, 2, 3), T and Sj

(j = 1, 2, . . . , 4), the positive diagonal matrices L1 and L2,
any appropriately dimensional matrices U , Nk

(k = 1, 2, . . . , 5), a positive constant γ > 0 such that the
following LMIs (5) and (6) hold:[

T U
∗ T

]
> 0, (5)

⎡
⎢⎢⎢⎣

Ω h1e
T
1 N3 eT1 N3 (h2−h1)e

T
1+lN4 eT1+lN4 (h2−h1)e

T
2+lN5 eT2+lN5

∗ −h1S2 0 0 0 0 0
∗ ∗ −S1 0 0 0 0
∗ ∗ ∗ −(h2−h1)S4 0 0 0
∗ ∗ ∗ ∗ −S3 0 0
∗ ∗ ∗ ∗ ∗ −(h2−h1)S4 0
∗ ∗ ∗ ∗ ∗ ∗ −S3

⎤
⎥⎥⎥⎦ < 0,

(6)

Proof: Consider the following Lyapunov-Krasovskii
functional:

V (t) =

4∑
i=1

Vi(t), (7)

where

V1(t) =(x(t)− C

∫ t

t−σ

x(s)ds)TP (x(t)− C

∫ t

t−σ

x(s)ds),

V2(t) =

∫ t

t−σ

xT (s)Q1x(s)ds+ σ

∫ 0

−σ

∫ t

t+θ

xT (s)Q2x(s)dsdθ,

V3(t) =

∫ t

t−h1
l

ηT (t)R1η(s)ds+

∫ t

t−h(t)

ζT (s)R2ζ(s)ds

+

∫ t

t−h2

xT (s)R3x(s)ds,

V4(t) =d

∫ 0

−d

∫ t

t+θ

fT (x(s))Tf(x(s))dsdθ

+

∫ 0

−h1

∫ t

t+θ

(tr(αT (s)S1α(s)) + yT (s)S2y(s))dsdθ

+

∫ −h1

−h2

∫ t

t+θ

(tr(αT (s)S3α(s)) + yT (s)S4y(s))dsdθ,

The mathematical expectation of the stochastic derivative of
V1(t) along the trajectory of (1) can be calculated as

E{dV1(t)} = E{[2(x(t)− C

∫ t

t−σ

x(s)ds)TP (−Cx(t)

+Af(x(t)) +B1f(x(t− h(t))) +B2

∫ t

t−d(t)

f(x(s))ds

+ u(t)) + tr(αT (t)Pα(t))]dt}. (8)

From assumption 2, we have

tr(αT (t)Pα(t)) ≤ λmax(P )

[xT (t)MT
1 M1x(t) + xT (t− h(t))MT

2 M2x(t− h(t))].
(9)

From (8) and (9), we can obtain

E{dV1(t)} ≤ E{[xT (t)(−PC − CP + λmax(P )MT
1 M1)x(t)

+ 2xT (t)PAfT (x(t)) + 2xT (t)PB1f
T (x(t− h(t))

+ 2xT (t)PB2

∫ t

t−d(t)

fT (x(s))ds+ 2xT (t)Pu(t)

+ 2xT (t)CPC

∫ t

t−σ

x(s)ds− 2

∫ t

t−σ

xT (s)dsCPAf(x(t))

− 2

∫ t

t−σ

xT (s)dsCPB1f(x(t− h(t)))

− 2

∫ t

t−σ

xT (s)dsCPB2

∫ t

t−d(t)

f(x(s))ds

+ λmax(P )xT (t− h(t))MT
2 M2x(t− h(t))

− 2

∫ t

t−σ

xT (s)dsCPu(t)]dt}. (10)

Calculating the time-derivative of V2(t), V3(t) and V4(t), and
using Lemma 1, we get

dV2(t) = [xT (t)(Q1 + σ2Q2)x(t)− xT (t− σ)Q1x(t− σ)
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− σ

∫ t

t−σ

xT (s)Q2x(s)ds]dt, (11)

− σ

∫ t

t−σ

xT (s)Q2x(s)ds ≤ −
∫ t

t−σ

xT (s)dsQ2

∫ t

t−σ

x(s)ds,

(12)

dV3(t) ≤ [ηT (t)R1η(t)− ηT (t− h1

l
)R1η(t− h1

l
)

+ ζT (t)R2ζ(t)− (1− μ)ζT (t− h(t))R2ζ(t− h(t))

+ xT (t)R3x(t)− xT (t− h2)R3x(t− h2)]dt, (13)

dV4(t) = [d2fT (x(t))Tf(x(t))− d

∫ t

t−d

fT (x(s))Tf(x(s))ds

+ h1tr(α
T (t)S1α(t)) + (h2 − h1)tr(α

T (t)S3α(t))

−
∫ t

t−h1

tr(αT (s)S1α(s))ds−
∫ t−h1

t−h2

tr(αT (s)S3α(s))ds

+ h1y
T (t)S2y(t) + (h2 − h1)y

T (t)S4y(t)

−
∫ t

t−h1

yT (s)S2y(s)ds−
∫ t−h1

t−h2

yT (s)S4y(s)ds]dt.

(14)

By using Lemma 2 and Assumption 2, we have

− d

∫ t

t−d

fT (x(s))Tf(x(s))ds ≤ −
[ ∫ t

t−d(t)
f(x(s))ds∫ t−d(t)

t−d
f(x(s))ds

]T

[
T U
∗ T

] [ ∫ t

t−d(t)
f(x(s))ds∫ t−d(t)

t−d
f(x(s))ds

]
, (15)

h1tr(α
T (t)S1α(t)) ≤ h1λmax(S1)

[xT (t)MT
1 M1x(t) + xT (t− h(t))MT

2 M2x(t− h(t))],
(16)

(h2 − h1)tr(α
T (t)S3α(t)) ≤ (h2 − h1)λmax(S3)

[xT (t)MT
1 M1x(t) + xT (t− h(t))MT

2 M2x(t− h(t))].
(17)

From the definition of y(t) and α(t), one has

0 = 2[yT (t)N1 + xT (t)N2][−y(t)− Cx(t− σ) +Af(x(t))

+B1f(x(t− h(t))) +B2

∫ t

t−d(t)

f(x(s))ds+ u(t)],

(18)

x(t)− x(t− h1)−
∫ t

t−h1

y(s)ds−
∫ t

t−h1

α(s)dω(s) = 0.

(19)

By utilizing Lemma 3, one can deduce that

0 = −2xT (t)N3[x(t)− x(t− h1)−
∫ t

t−h1

y(s)ds

−
∫ t

t−h1

α(s)dω(s)]

≤ xT (t)(−N3 −NT
3 + h1N3S

−1
2 NT

3 +N3S
−1
1 NT

3 )x(t)

+ 2xT (t)N3x(t− h1) +

∫ t

t−h1

yT (s)S2y(s)ds

+

∫ t

t−h1

αT (s)dω(s)S1

∫ t

t−h1

α(s)dω(s). (20)

Similarly, we can get that

0 = −2xT (t− h1)N4[x(t− h1)− x(t− h(t))

−
∫ t−h1

t−h(t)

y(s)ds−
∫ t−h1

t−h(t)

α(s)dω(s)]

≤ xT (t− h1)(−N4 −NT
4 + (h2 − h1)N4S

−1
4 NT

4

+N4S
−1
3 NT

4 )x(t− h1) + 2xT (t− h1)N4x(t− h(t))

+

∫ t−h1

t−h(t)

yT (s)S4y(s)ds

+

∫ t−h1

t−h(t)

αT (s)dω(s)S3

∫ t−h1

t−h(t)

α(s)dω(s). (21)

0 = −2xT (t− h(t))N5[x(t− h(t))− x(t− h2)

−
∫ t−h(t)

t−h2

y(s)ds−
∫ t−h(t)

t−h2

α(s)dω(s)]

≤ xT (t− h(t))(−N5 −NT
5 + (h2 − h1)N5S

−1
4 NT

5

+N5S
−1
3 NT

5 )x(t− h(t)) + 2xT (t− h(t))N5x(t− h2)

+

∫ t−h(t)

t−h2

yT (s)S4y(s)ds

+

∫ t−h(t)

t−h2

αT (s)dω(s)S3

∫ t−h(t)

t−h2

α(s)dω(s). (22)

Similar to the proof of [22], we can obtain that

E{
∫ t

t−h1

αT (s)dω(s)S1

∫ t

t−h1

α(s)dω(s)}

= E{
∫ t

t−h1

tr{αT (s)S1α(s)}ds}, (23)

E{
∫ t−h1

t−h(t)

αT (s)dω(s)S3

∫ t−h1

t−h(t)

α(s)dω(s)}

= E{
∫ t−h1

t−h(t)

tr{αT (s)S3α(s)}ds}, (24)

E{
∫ t−h(t)

t−h2

αT (s)dω(s)S3

∫ t−h(t)

t−h2

α(s)dω(s)}

= E{
∫ t−h(t)

t−h2

tr{αT (s)S3α(s)}ds}. (25)

For positive diagonal matrices L1 and L2, the following
inequalities hold[

x(t)
f(x(t))

]T [
K1L1 −K2L1

−K2L1 L1

] [
x(t)

f(x(t))

]
≤ 0,

(26)
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[
x(t− h(t))

f(x(t− h(t)))

]T [
K1L2 −K2L2

−K2L2 L2

]
[

x(t− h(t))
f(x(t− h(t)))

]
≤ 0, (27)

From (7) to (27), we can deduce that

E{dV (t)− 2fT (x(t))u(t)dt− γuT (t)u(t)dt}
≤ E{ξT (t)Ω∗ξ(t)}, (28)

where Ω∗ = Ω+ eT1 (h1N3S
−1
2 NT

3 +N3S
−1
1 NT

3 )e1
+eT1+l(h1N3S

−1
2 NT

3 +N3S
−1
1 NT

3 )e1+l

+eT2+l(h1N3S
−1
2 NT

3 +N3S
−1
1 NT

3 )e2+l.

By using Schur complement, it is easy to verify Ω∗ < 0 is
equivalent to (6), so

E{dV (t)}
dt

− E{2fT (x(t))u(t) + γuT (t)u(t)} ≤ 0. (29)

It follows from (29) and the definition of V (t) that

2E{
∫ tp

0

fT (x(s))u(s)ds} ≥ −E{γ
∫ tp

0

uT (s)u(s)ds},

From Definition 1, it is obvious that if LMIs (5) and (6)
hold. Consequently, the stochastic neural networks (1) is
globally passive in the sense of expectation, and the proof of
Theorem 1 is completed.

Remark 2. Different to [7], [8], [12], [16]-[20] and [22], in
this paper, the distributed delays are incorporated into the
model, we deal with the system (1) with discrete, distributed
and leakage delays. By using Lemma 3, the term
− ∫ t−d(t)

t−d
fT (x(s))Tf(x(s))ds is not omitted, and will leads

to a superior result.

Remark 3. Compared to [22], this article the condition P <
λmax(P )I replaced of P < λI , which indicate that the tighter
upper bound of P is utilized. Through the numerical example,
the effectiveness of this method was demonstrated.

Remark 4. In this paper, the obtained conditions for checking
the passivity of stochastic neural networks with multiple time
delays are dependent on the size of distributed delay, leakage
delay and the upper and lower bound of discrete delay, which
implicate that the information on the size of both distributed
delay, leakage delay and discrete delay is sufficiently used.

When there is no stochastic affects, the system (1) becomes

dx(t)

dt
= −Cx(t− σ) +Af(x(t)) +B1f(x(t− h(t))

+B2

∫ t

t−d(t)

f(x(s))ds+ u(t). (30)

By a similar method to that employed in Theorem 1, we
can get the following results.

Corollary 1. For given scalars h1 > 0, h2 > 0, d > 0 and μ >
0, the stochastic neural network (30) is passive in the sense of
expectation if there exist symmetric positive definite matrices
P , Q1, Q2, Ri (i = 1, 2, 3), T and Sj (j = 1, 2), the positive
diagonal matrices L1 and L2, any appropriately dimensional
matrices U , Nk (k = 1, 2, . . . , 5), a positive constant γ > 0

such that the following LMIs (31) and (32) hold:[
T U
∗ T

]
> 0, (31)⎡

⎢⎢⎣
Ξ h1e

T
1 N3 (h2 − h1)e

T
1+lN4 (h2 − h1)e

T
2+lN5

∗ −h1S1 0 0
∗ ∗ −(h2 − h1)S2 0
∗ ∗ ∗ −(h2 − h1)S2

⎤
⎥⎥⎦ < 0,

(32)

where Ξ = Π∗
1 +Π2 +Π3 +Π∗

4 +Π5 +Π6,
Π∗

1 = eT1 (−PC − CP )e1 + eT1 (PA+ATP )e6+l + eT1 (PB1

+BT
1 P )e7+l + eT1 (PB2 + BT

2 P )e8+l + 2eT1 Pe10+l +
2eT1 CPCe5+l − eT5+l(CPA+ATPC)e6+l − 2eT5+lCPe10+l

−eT5+l(CPB1 + BT
1 PC)e7+l − eT5+l(CPB2 + BT

2 PC)e8+l,

Π∗
4 = d2eT6+lTe6+l −

[
e8+l

e9+l

]T [
T U
∗ T

] [
e8+l

e9+l

]
+

(h2 − h1)e
T
11+lS2e11+lh1e

T
11+lS1e11+l.

Remark 5. Delay partitioning technique is a key method to
reduce the possible conservation. It is shown that the value of l
gets bigger which leads much less conservative results. In this
paper, delay partitioning technique is employed in Theorem 1
and Corollary 1.

IV. NUMERICAL EXAMPLES AND SIMULATION

In this section, a numerical example is given to show the
effectiveness of the results.
Example 1. Consider the stochastic neural networks (30) with
the following parameters

C =

[
1.5 0
0 1.3

]
, A =

[
0.5 0.2
−0.4 0.3

]
,

B1 =

[
0.4 −0.1
0.1 0.2

]
, B2 =

[
0.2 0.3
0.3 0.2

]
,

u(t) =

[ −0.3cos(3.1t)
0.7sin(1.4t)

]
, f(x(t)) = tanh(x(t)),

h(t) = 0.2|sin(7t)|+ 0.1, σ = 0.01.

It is obvious that h1 = 0.1, h2 = 0.3 and μ = 0.2. When
Assumption 1 is satisfied, and then K−

i = 0, K+
i = 1, thus,

K1 = diag{0, 0}, K2 = diag{0.5, 0.5}, the distributed delay
is chosen as 0 ≤ d(t) ≤ d = 0.5. When l = 2, and by applying
the MATLAB LMI Tool box to solve the problem, we find a
solution to LMIs in (30) and (31) as follows:

P =

[
3.9009 0.4785
0.4785 3.7344

]
× 103,

Q1 =

[
84.3605 24.5494
24.5494 150.3660

]
,

Q2 =

[
9.6803 0.4116
0.4116 5.8765

]
∗ 104,

T =

[
2.1005 1.3707
1.3707 2.9146

]
× 103,

R1 =

⎡
⎢⎢⎣

67.7765 18.3219 0 0
∗ 102.3192 0 0
∗ ∗ 34.3069 9.4428
∗ ∗ ∗ 52.2945

⎤
⎥⎥⎦ ,
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Fig. 1. State trajectories of system (30) with input u(t).

R2 =

⎡
⎢⎢⎣

2.8527 0.0131 −2.8176 −0.5789
∗ 2.2200 0.7543 −2.2852
∗ ∗ 3.0714 −0.2192
∗ ∗ ∗ 2.5060

⎤
⎥⎥⎦× 103,

R3 =

[
45.4658 12.4392
12.4392 69.3063

]
,

S1 =

[
1.8388 −0.0030
−0.0030 1.8606

]
× 104,

S2 =

[
9.3795 0.0209
0.0209 9.3384

]
× 103, U =

[
0 0
0 0

]
,

N1 =

[
13.7067 −5.1567
14.2257 27.0227

]
,

N2 =

[
3.8515 21.8974

−15.8274 11.2541

]
,

N3 =

[
28.1292 21.2862
0.2574 67.8658

]
,

N4 =

[
1.2025 0.1008
−0.0185 1.0583

]
× 103,

N5 =

[
40.5686 10.7713
10.9217 63.1691

]
,

L1 =

[
5.1650 0

0 4.4375

]
× 103,

L2 =

[
3.5674 0

0 2.1515

]
× 104, γ = 7.4564× 104.

Based on the Corollary 1, the neural networks (30) is passive.
Fig. 1 and 2 show that the states trajectories of x1(t) and

x2(t) with input u(t) and without input u(t), respectively,
where the initial condition is [0.5, 0.7]T . When the initial
condition is [1.2, 0.6]T , the phase trajectory of system (30)
with input u(t) and without input u(t) are depicted in Fig. 3
and 4, respectively.

V. CONCLUSION

In this paper, the problem of the passivity analysis for
stochastic neural networks with leakage, discrete and
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Fig. 2. State trajectories of system (30) without input u(t).
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Fig. 3. Phase trajectories of system (30) with input u(t).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

Fig. 4. Phase trajectories of system (30) without input u(t).
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distributed delays has been investigated. The presented
sufficient criteria are based on delay partitioning technique,
free weighting matrix method and stochastic analysis
technique, in which the information on the size of both
distributed delay, leakage delay and discrete delay is
sufficiently used. A numerical example is given to illustrate
the effectiveness of the obtained results. In future work, we
will utilized the proposed method to deal with the system
with parameter uncertainties or Markovian jumping
parameters.
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