
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1783

Particle Swarm Optimization with Reduction for
Global Optimization Problems

Michiharu Maeda and Shinya Tsuda

Abstract—This paper presents an algorithm of particle swarm
optimization with reduction for global optimization problems. Particle
swarm optimization is an algorithm which refers to the collective
motion such as birds or fishes, and a multi-point search algo-
rithm which finds a best solution using multiple particles. Particle
swarm optimization is so flexible that it can adapt to a number
of optimization problems. When an objective function has a lot of
local minimums complicatedly, the particle may fall into a local
minimum. For avoiding the local minimum, a number of particles are
initially prepared and their positions are updated by particle swarm
optimization. Particles sequentially reduce to reach a predetermined
number of them grounded in evaluation value and particle swarm
optimization continues until the termination condition is met. In order
to show the effectiveness of the proposed algorithm, we examine the
minimum by using test functions compared to existing algorithms.
Furthermore the influence of best value on the initial number of
particles for our algorithm is discussed.

Keywords—Particle swarm optimization, Global optimization,
Metaheuristics, Reduction.

I. INTRODUCTION

FOR optimization problem, it is difficult to obtain an
optimal solution and it requires an immense amount of

time. Metaheuristics have been a focus of attention for this
situation since they are not dependent on a specific problem
[1]. Metaheuristics are optimization approaches which make
use of the best solution improved iteratively to the next search.
Metaheuristics involve, for example, genetic algorithm (GA),
differential evolution (DE), and particle swarm optimization
(PSO). GA is a search algorithm which carries out the genetic
operation of selection, crossover, and mutation [2]. DE adopts
mutation as a weighted sum of a base vector and a difference
vector. An individual selected from the population becomes the
basic vector and the difference between a pair of individuals
becomes the difference vector [3]. PSO is a multi-point search
algorithm using multiple candidate solutions called particles
and performs the solution search by sharing huge amounts
of information in each particle [4]. PSO is a popular and
utility algorithm without complicated calculations. Although
PSO can be applied to a number of optimization problems,
the solution may fall into a local minimum and it is difficult
to find an optimal solution for a complicated objective function
such as a multimodal function with a lot of local minimums
[5]–[12]. Various approaches have also been introduced for
unit reduction, and many discussions have been made on
the multilayer neural networks [13], [14]. For the purpose of
vector quantization, self-organizing algorithms are proposed,

M. Maeda and S. Tsuda are with Fukuoka Institute of Technology, Fukuoka,
811-0295 Japan (e-mail: maeda@fit.ac.jp).

and significant improvement compared to the conventional
techniques has been achieved [15], [16]

In this study, we present an algorithm of particle swarm
optimization with reduction for global optimization problems.
A number of particles are initially prepared and the positions
of these are updated in particle swarm optimization. Particles
sequentially reduce to reach a predetermined number of them
founded on evaluation value and particle swarm optimization
continues until the termination condition is met. In order to
show that our algorithm is effective in quality, experimental
results are presented in comparison with existing algorithms.
Moreover we examine the influence of best value on the initial
number of particles for our algorithm.

II. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is an algorithm referring
to the collective motion of flock organisms, such as birds or
fishes. PSO is a multi-point search algorithm using multiple
candidate solution called particles and performs the solution
search by sharing huge amounts of information in each par-
ticle. It is a plain and useful algorithm without complicated
calculation, and is so versatile that it can adapt to a lot of
optimization problems.

The position of the i-th particle in n-dimensional space
is defined by xi = (xi1, xi2, xi3, · · ·, xij , · · ·, xin)T . The
velocity of the i-th particle is represented by v i = (vi1, vi2,
vi3, · · ·, vij , · · ·, vin)T . Each particle stores the best position
previously encountered by particle i p i = (pi1, pi2, pi3, · · ·,
pij , · · ·, pin)T , and its evaluation value f (pi), the best position
of all particles g = (g1, g2, g3, · · ·, gj , · · ·, gn)T , and its
evaluation value f (g). The current position xk

i moves to the
new position xk+1

i in addition to the velocity vk+1
i (the i-th

particle at k + 1) represented as follows.

vk+1
i = wvk

i + c1r(pk
i − xk

i) + c2r(gk − xk
i) (1)

where w is an inertia weight, c1 and c2 are cognitive and social
parameters, respectively, and r is a random number uniformly
distributed in [0, 1].

The new position of particle i is presented as follows.

xk+1
i = xk

i + vk+1
i (2)

Figure 1 shows the movement of PSO. xk
i is the position of

particle, vk
i is the velocity of particle, gk is the best position

of all particles, pk
i is the best position previously encountered

by particle i, and k is an iteration. These resultant vectors
decide the next velocity of each particle and particles move to
the new positions according to Eq. (2). Repeating the similar

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1784

xk
i

vk
i

vk+1
i

xk+1
i

gk

pk
i

Fig. 1. Particle movement in PSO. xk
i is the position of particle, vk

i is the
velocity of particle, gk is the best position of all particles, pk

i is the best
position previously encountered by particle i, and k is an iteration.

procedure, each particle searches for solution space while
updating pi and g.

III. PSO WITH REDUCTION

In this study, we present reduction of PSO. A number
of particles is prepared initially and particles are updated in
algorithm of PSO. Particles are sequentially reduced to reach
a predetermined number based on evaluation value and PSO
continues until the termination condition is met. As a particle
with a maximum value is selected and deleted, the worst
position of particle reduces. The reduction algorithm of PSO
is presented as follows.

[Reduction algorithm of PSO]:

1 Initialization:
(1.1) Give parameters w, c1, c2, initial number of
particles m0, final number of particles mf , maximum
iteration Tmax, and partial iteration
u = Tmax/(5(m0 − mf + 1)).
(1.2) Yield initial velocity v0

i and initial position x0
i

for each particle at random.
(1.3) Set k ← 0, m ← m0, p0

i ← x0
i , and g0 ← p0

s,
where s = arg min

i
f (p0

i).

2 Update of velocity and position:
Adapt velocity vk+1

i and position xk+1
i according to

Eqs. (1) and (2).
3 Update pi and g:

If f (xk+1
i) < f (pk

i), then pk+1
i ← xk+1

i , otherwise
pk+1

i ← pk
i .

Set gk+1 ← pk+1
s , where s = argmin

i
f (pk+1

i).

4 Reduction of particle:
If k = u × q and m > mf , then reduce particle j and
set m ← m − 1, where q is a positive integer and
j = argmax

i
f (xk+1

i)

5 Termination condition:
If k = Tmax, then terminate, otherwise set k ← k + 1
and go to Step 2.

IV. NUMERICAL EXPERIMENTS

In numerical experiments, we exhibit the proposed algo-
rithm compared to existing algorithms by using six functions
in two-dimensional space. Test functions are expressed in the
following descriptions.

F1 2n minima function:

F1(x) =
n∑

i=1

[
x4

i − 16x2
i + 5xi

]
(3)

F2 Rastrigin’s function:

F2(x) = 10n +
n∑

i=1

[
x2

i − 10 cos(2πxi)
]

(4)

F3 Levy’s function:

F3(x) =
π

n

{ n−1∑
i=1

[
(xi − 1)2(1 + 10 sin2(πxi+1))

]

+10 sin2(πx1) + (xn − 1)2
}

(5)

F4 Schwefel’s function:

F4(x) = −
n∑

i=1

(xi sin(
√

|xi|)) (6)

F5 Shubert’s function:

F5(x) =
{ n−1∑

i=1

i cos[(i + 1)x1 + i]
}

+
{ n−1∑

i=1

i cos[(i + 1)x2 + i]
}

(7)

F6 Shekel’s Foxholes Function:

F6(x) =

⎡
⎢⎢⎢⎢⎣

1
500

+
25∑

j=1

1

j +
2∑

i=1

(xi − aij)6

⎤
⎥⎥⎥⎥⎦

−1

(8)

where

aij =
(−32 −16 0 16 32 −32 · · · 0 16 32

−32 −32 −32 −32 −32 −16 · · · 32 32 32

)

Tables 1 and 2 show the domain of test functions and the
position of minimal solution for each test function, respec-
tively. Figure 2 shows the shape of each function in case of
two-dimensional space. Parameters used for experiments are
chosen in Table 3 and as follows: c1 = 1.4955, c2 = 1.4955,
and w = 0.729.

Table 4 shows the minimum in averages of 10000 trials
for each of real-coded genetic algorithm (RGA), differential
evolution (DE), conventional algorithm (Conv.), and proposed
algorithm (Prop.). The number of particle for real-coded

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1785

-4

-2

 0

 2

 4

-4
-2

 0
 2

 4
-200

-100

 0

 100

 200

 300

 400

 500

-4

-2

 0

 2

 4

-4
-2

 0
 2

 4
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

(a) F1: 2n minima function (b) F2: Rastrigin’s function

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0
 1

 2
 3

 4
 5

 6 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

-400

-200

 0

 200

 400

-400
-200

 0
 200

 400
-1000
-800
-600
-400
-200

 0
 200
 400
 600
 800

 1000

(c) F3: Levy’s function (d) F4: Schwefel’s function

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-200
-150
-100

-50
 0

 50
 100
 150
 200
 250

-60

-40

-20

 0

 20

 40

 60

-60
-40

-20
 0

 20
 40

 60 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

(e) F5: Shubert’s function (f) F6: Shekel’s Foxholes function

Fig. 2. Shape of test functions.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1786

TABLE IV
EXPERIMENTAL RESULTS

RGA DE Conv. Prop.
F1 −1.55 × 102 −1.56 × 102 −1.55 × 102 −1.57 × 102

F2 3.32 × 10−2 6.55 × 10−2 2.09 × 10−2 1.99 × 10−3

F3 1.35 × 10−1 3.53 × 10−2 9.14 × 10−3 0.00
F4 −5.95 × 102 −7.80 × 102 −7.83 × 102 −8.04 × 102

F5 −1.83 × 102 −1.86 × 102 −1.86 × 102 −1.87 × 102

F6 5.91 2.10 1.39 1.01

TABLE I
DOMAIN OF TEST FUNCTIONS

Function Domain
F1 −5.0 ≤ xi ≤ 5.0
F2 −5.0 ≤ xi ≤ 5.0
F3 0.0 ≤ x1 ≤ 4.0, 0.0 ≤ x2 ≤ 6.0
F4 −500.0 ≤ xi ≤ 500.0
F5 −2.0 ≤ xi ≤ 2..0
F6 −60.0 ≤ xi ≤ 60.0

TABLE II
POSITION OF MINIMAL SOLUTION FOR EACH TEST FUNCTIONS

Function Position
F1 (−2.90,−2.90)
F2 (0.0, 0.0)
F3 (1.0, 1.0)
F4 (420.9678, 420.9678)
F5 (−1.425,−0.800) or (−0.800,−1.425)
F6 (−32.0,−32.0)

genetic algorithm, differential evolution, and conventional al-
gorithm is 20, and the number for proposed algorithm reduces
50 to 20. It is proven that the proposed algorithm leads the
best position compared to the conventional algorithm. The
proposed algorithm is better than existing algorithms.

For reduction, Fig. 3 shows the relationship between the
best value and the initial number of particles. We studied the
effect that the initial number of particles had on accuracy
in reduction. When the initial number is 20, the proposed
algorithm becomes the conventional algorithm because there
are no particles to be deleted. The best value gradually
decreases as the initial number of particles increases. It is
found that the proposed algorithm is more effective on the
complicated functions given in this experiments.

V. CONCLUSIONS

In this paper, we have presented an algorithm of particle
swarm optimization with reduction for improving the solution
search accuracy. We examined the minimum value by using
test functions to show the effectiveness of the proposed algo-
rithm and the influence of best value on the initial number
of particles for our algorithm. As a result, our algorithm had
a superiority in comparison with existing algorithms for the
complicated functions given in this paper. For the future works,
we will study more effective techniques of our algorithm.

TABLE III
PARAMETERS

Trials 10000
Maximum iteration 1000

Minimum population 20
Dimensions (n) 2

REFERENCES

[1] E. Aiyoshi and K. Yasuda, Metaheuristics and Applications, Ohmsha,
2007.

[2] H. Kitano, Genetic Algorithm vol.4, Sangyotosho, 2000.
[3] K. Price, R. Storn, and J. Lampinen, Differential Evolution, Springer-

Verlag, 2005.
[4] J. Kennedy and R. Eberhart Particle swarm optimization, IEEE Proc.

Int. Conf. Neural Networks, pp.1942–1948, 1995.
[5] S. Kinoshita, A. Ishigame and K. Yasuda, Particle swarm optimization

with hierarchical structure, The Institute of Electrical Engineers of
Japan, vol.130, pp.100–107, 2009.

[6] W. Langdon and R. Poli, Evolving problems to learn about particle
swarm optimization and other search algorithms, IEEE Trans. Evolu-
tionary Computation, vol.11, no.5, pp.561–578, 2007.

[7] J. Liang, A. Qin, P. Suganthan, and S. Baskar, Comprehensive learning
particle swarm optimization for global optimization of multimodal
functions, IEEE Trans. Evolutionary Computation, vol.10, no.3, pp.281–
295, 2006.

[8] K. Parsopoulos and M. Vrahatis, On the computation of all global min-
imizers through particle swarm optimization. IEEE Trans. Evolutionary
Computation, vol.8, no.3, pp.211–224, 2004.

[9] Y. Shi, Particle swarm optimization, IEEE Connections, vol.2, no.1,
pp.8–13, 2004.

[10] S. Tsuda, T. Liu, and M. Maeda, Solution search algorithm of particle
swarm optimization with perturbation term, ICIC Express Letters, vol.5,
no.5, pp.1515–1521, 2011.

[11] S. Wu and T. Chow, Self-organizing and self-evolving neurons: A new
neural network for optimization, IEEE Trans. Neural Networks, vol.18,
no.2, pp.385–396, 2007.

[12] W. Yeh, Y. Lin, Y. Chung, and M. Chih, A particle swarm optimization
approach based on monte carlo simulation for solving the complex net-
work reliability problem, IEEE Trans. Reliability, vol.59, no.1, pp.212–
221, 2010.

[13] R. Reed, Pruning algorithms—A survey, IEEE Trans. Neural Networks,
vol.4, pp.740–747, 1993.

[14] M. Ishikawa, Structural learning with forgetting, Neural Networks, vol.9,
pp.509–521, 1996.

[15] M. Maeda, N. Shigei, and H. Miyajima, Adaptive vector quantization
with creation and reduction grounded in the equinumber principle, Jour-
nal of Advanced Computational Intelligence and Intelligent Informatics,
vol.9, pp.599–606, 2005.

[16] M. Maeda, N. Shigei, H. Miyajima, and K. Suzaki, Reduction models
in competitive learning founded on distortion standards, Journal of Ad-
vanced Computational Intelligence and Intelligent Informatics, vol.12,
pp.314–323, 2008.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:11, 2011

1787

-1.6e+002

-1.6e+002

-1.6e+002

-1.6e+002

-1.6e+002

-1.6e+002

-1.6e+002

-1.6e+002

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

 0.0e+000

 5.0e-003

 1.0e-002

 1.5e-002

 2.0e-002

 2.5e-002

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

(a) F1: 2n minima function (b) F2: Rastrigin’s function

 0.0e+000

 2.0e-003

 4.0e-003

 6.0e-003

 8.0e-003

 1.0e-002

 1.2e-002

 1.4e-002

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

-8.1e+002

-8.0e+002

-8.0e+002

-8.0e+002

-7.9e+002

-7.8e+002

-7.8e+002

-7.8e+002

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

(c) F3: Levy’s function (d) F4: Schwefel’s function

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

-1.9e+002

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

 9.5e-001

 1.0e+000

 1.1e+000

 1.1e+000

 1.2e+000

 1.2e+000

 1.3e+000

 1.3e+000

 1.4e+000

 20 25 30 35 40 45 50

B
es

t v
al

ue

Initial number of particles

(e) F5: Shubert’s function (f) F6: Shekel’s Foxholes function

Fig. 3. Best value and initial number of particles for each function.

